Skip to main content

Advertisement

Log in

Aster Mapping of Limestone Deposits and Associated Lithounits of Parts of Chikkanayakanahalli, Southern Part of Chitradurga Schist Belt, Dharwar Craton, India

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Economically viable limestone deposits are mostly formed by calcite minerals, and these minerals are widely used in manufacturing of cement, mortar, fertilizer and flux for smelting of iron ores, and mapping of such deposits is significant and important in scientific research. This study examines the capability of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with the wavelength range visible–near-infrared and short-wave infrared spectral bands to map such limestone carbonate deposits and associated lithounits occurred in and around of Chikkanayakanahalli, southern part of the Chitradurga schist belt using minimum noise fraction (MNF) and decorrelation stretching methods. The study results that (1) the RGB image of MNF (R: B1; G: B2; B: B3) of ASTER is capable of discriminating the limestones and associated different rock types, namely banded magnetite quartzites (BMQ), graywackes, Mn- and Fe-rich cherts, metabasalts, granitic gneisses, granitoids and migmatites and (2) the decorrelation stretch image of ASTER bands 8, 3, 1 of the ASTER delineated clearly the limestones and associated rocks of the study area. Study of spectral signatures of field samples of such economic limestones in the wavelength of 350–2500 nm using Fieldspec3 Spectroradiometer showed the spectral absorption near 2.32 μm due to the presence of calcite minerals in the rocks. The results of study are cross-verified in the study area and confirmed through petrological and chemical analyses of the samples. This study bespeaks the potential of ASTER sensor and application of image processing methods to map the economic limestone deposits and associated rocks of the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrams, M. (2000). The advanced spaceborne thermal emission and reflection radiometer (ASTER): Data products for the high spatial resolution imager on NASA’s Terra platform. International Journal of Remote Sensing, 21, 847–859.

    Article  Google Scholar 

  • Ali, M. Q., Basavarajappa, H. T., & Ranjbar, H. (2009). Application of principal component analysis to ASTER and ETM + data for mapping the alteration zones in North East of Hajjah, Yemen. Asian Journal of Geoinformatics, 9(2), 15–21.

    Google Scholar 

  • Anantha Murthy, K. S. (1980) Carbonates, iron formation, iron and manganese ore deposits of the chiknayakanhalli schist belt Tumkur District, Karnataka. A thesis from Karnataka University.

  • ASD Inc. (2012). Field spec specification. http://www.asdi.com/products/fieldspecspectroradiometers/fieldspec-3-portable-spectroradiometer. Accessed on September 3, 2012.

  • Baldridge, A. M., Hook, S. J., Grove, C. I., & Rivera, G. (2009). The ASTER spectral library version 2.0. Remote Sensing Environ, 113, 711–715.

    Article  Google Scholar 

  • Bedini, E. (2011). Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data. Advances in Space Research, 47, 60–73.

    Article  Google Scholar 

  • Boardman, J. W., Kruse, F. A., & Green, R. O. (1995). Mapping target signatures via partial unmixing of AVIRIS data. In Summaries, Proceedings of the 5th JPL Airborne Earth Science Workshop (95-1, 1: 23–26), January 23–26, Pasadena, California: JPL Publ.

  • Brandmeier, M. (2010). Remote sensing of Carhuarazo volcanic complex using ASTER imagery in Southern Peru to detect alteration zone and volcanic structures—A combined approach of image processing in ENVI and ArcGIS/ArcScene. Geocarto International, 25, 629–648.

    Article  Google Scholar 

  • Chen, C. M. (2000). Comparison of principal component analysis and Minimum Noise Fraction transformation for reducing the dimensionality of hyperspectral imagery. Geographical Research, 33, 163–178.

    Google Scholar 

  • Clark, R. N. (1999). Spectroscopy of rock and minerals and principles of spectroscopy. In A. N. Rencz (Ed.), Remote sensing for the earth sciences: Manual of remote sensing (3rd ed., Vol. 3, pp. 3–58). New York: Wiley.

    Google Scholar 

  • Clark, R. N., Swayze, G. A., Heidebrecht, K., Green, R. O., & Goetz, A. F. H. (1995) Calibration to surface reflectance of terrestrial imaging spectrometry data: Comparison of methods. In Summaries of the 5th Annual JPL Airborne Geosciences Workshop (pp. 41–42). Jet Propulsion Laboratory Special Publication.

  • Crosta, A. P., Filho, C. R. D. S., Azevedo, F., & Brodie, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24, 4233–4240.

    Article  Google Scholar 

  • Crowley, J. K. (1986). Visible and near-infrared spectra of carbonate rocks: Reflectance variations related to petrographic texture and impurities. Journal Geophysical Research, 91, 5001–5012.

    Article  Google Scholar 

  • Devaraju,T. C., & Anathmurthy, K. S. (1977) Iron and manganese ores of C.N. halli schist belt, Tumkur district. In C. Naganna & B. Somashekar (Eds.) Proceedings of the first symposium on the geology, exploration, mining processing and metallurgy of ferrous and ferro-alloy minerals (pp. 22–31).

  • Devaraju, T. C., & Anathmurthy, K. S. (1984). Carbonates of Chikkanayakanahalli schist belt, Karnataka. The Journal of the Geological Society of India, 25, 162–174.

    Google Scholar 

  • ENVI. (2009). Atmospheric Correction Module: QUAC and FLAASH User’s Guide. http://www.exelisvis.com/portals/0/pdfs/envi/Flaash_Module.pdf2009.

  • Gaffey, S. J. (1985). Reflectance spectroscopy in the visible and near infrared (0.35–2.55 microns): Applications in carbonate petrology. Geology, 13, 270–273.

    Article  Google Scholar 

  • Gaffey, S. J. (1986a). Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 microns): Calcite, aragonite, and dolomite. American Mineralogist, 71, 151–162.

    Google Scholar 

  • Gaffey, S. J. (1986b). Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 microns): Calcite, aragonite, and dolomite. American Mineralogist, 71, 151–162.

    Google Scholar 

  • Gaffey, S. J. (1987). Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 microns): Anhydrous carbonate minerals. Journal Geophysical Research, 92(B2), 1429–1440.

    Article  Google Scholar 

  • Garrels, R. M. (1960). Mineral Equilibria (p. 254). Newyork: Harper and brothers.

    Google Scholar 

  • Ghosh, S. K., & Chatterjee, B. K. (1990). Paleoenvironment reconstruction of early Proterozoic Kolhan siliciclastic rocks, Keonjhar districts, Orissa, India. Journal Geological Society of India, 35, 273–286.

    Google Scholar 

  • Green, A. A., Berman, M., Switzer, P., & Craig, M. D. (1988). A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience Remote Sensing, 26(1), 65–74.

    Article  Google Scholar 

  • Guha, A., Rao, A., Ravi, S., Vinod Kumar, K., & Dhananjaya Rao, E. N. (2012a). Analysis of the potential of kimberlite rock spectra as spectral end member using samples from Narayanpet kimberlite Field (NKF), Andhra Pradesh. Current Science, 103(9), 1096–1104.

    Google Scholar 

  • Guha, A., et al. (2012b). Spectroscopic study of rocks of Hutti-Maski Schist Belt, Karnataka. Journal Geological Society of India, 79, 335–344.

    Article  Google Scholar 

  • Gupta, R. P. (2003). Remote Sensing Geology (2nd ed.). Heidelberg: Springer.

    Book  Google Scholar 

  • Hamilton, W. R., Wolley, A. R., & Bishop, A. C. (1995). Hamlyn guide: Minerals, rocks and fossils. Hong Kong: Mandarin Offset.

    Google Scholar 

  • Harding, D. J., Wirth, K. R., & Bird, J. M. (1989). Spectral mapping of Alaskan ophiolites using landsat thematic mapper data. Remote Sensing of Environment, 28, 219–232.

    Article  Google Scholar 

  • Haselwimmer, C. E., Riley, T. R., & Liu, J. G. (2011). Lithologic mapping in the Oscar II Coast area, Graham Land, Antarctic Peninsula using ASTER data. International Journal of Remote Sensing, 32(7), 2013–2035. https://doi.org/10.1080/01431161003645824.

    Article  Google Scholar 

  • Hubbard, B. E., & Crowley, J. K. (2005). Mineral mapping on the Chilean– Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions. Remote Sensing Environment, 99, 173–186.

    Article  Google Scholar 

  • Hunt, G. R., & Salisbury, J. W. (1970). Visible and near-infrared spectra of minerals and rocks. Modern Geology, 1, 283–300.

    Google Scholar 

  • Jensen, J. R. (2005). Introductory digital image processing. Upper Saddle River: Person Prentice Hall.

    Google Scholar 

  • Kalinowski, A., & Oliver, S. (2004). ASTER mineral index processing manual. http://www.ga.gov.au/image_cache/GA7833.pdf.

  • Khan, S. D., Mahmood, K., & Casey, J. F. (2007). Mapping of Muslim Bagh ophiolite complex (Pakistan) using new remote sensing, and field data. Journal of Asian Earth Science, 30, 333–343.

    Article  Google Scholar 

  • Mars, J. C., & Rowan, L. C. (2010). Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sensing Environment, 114, 2011–2025.

    Article  Google Scholar 

  • Mukhopadhyay, D., Baral, M. C., & Ghosh, D. (1981). A tectonostratigraphic model of the Chitradurga schist belt, Karnataka, India. Journal of the Geological Society of India, 22, 22–31.

    Google Scholar 

  • Mukhopadhyay, D., & Ghosh, D. (1983). Superposed deformation in the Dharwar rocks of the Southern part of the Chitradurga schist belt near Dodguni, Karnataka. Geological Science India Memoir, 4, 275–292.

    Google Scholar 

  • Mukhopadhyay, J., Ghosh, G., Nandi, Ajoy K., & Chaudhuri, A. K. (2006). Depositional setting of the Kolhan Group: Its implications for the development of a Meso to Neoproterozoic deep-water basin on the South Indian Craton. South African Journal of Geology, 109, 183–192.

    Article  Google Scholar 

  • Philip, G., Ravindran, K. V., & Mathew, J. (2003). Mapping the Nidar ophiolite complex of the Indus suture zone, Northwestern-Trans Himalaya using IRS-1C/1D data. International Journal of Remote Sensing, 24, 4979–4994.

    Article  Google Scholar 

  • Pour, A. B., & Hashim, M. (2011a). Spectral transformation of ASTER data and the discrimination of hydrothermal alteration minerals in a semi-arid region, SE Iran. International Journal of the Physical Sciences, 6(8), 2037–2059.

    Google Scholar 

  • Pour, B. A., & Hashim, M. (2011b). Application of advanced spaceborne thermal emission and reflection radiometer (ASTER) data in geological mapping. International Journal of Physical Sciences, 6, 7657–7668.

    Google Scholar 

  • Pournamdari, M., Hashim, M., & Pour, A. B. (2014a). Spectral transformation of ASTER and Landsat TM bands for lithological mapping of Soghan ophiolite complex, South Iran. Advances in Space Research, 54, 694–709.

    Article  Google Scholar 

  • Pournamdari, M., Hashim, M., & Pour, A. B. (2014b). Application of ASTER and Landsat TM data for geological mapping of Esfandagheh ophiolite complex, southern Iran. Resource Geology, 64, 233–246.

    Article  Google Scholar 

  • Radhakrishna, B. P. (1952). Proceedings of the Indian Science Congress 39th Session, IV (p 181).

  • Rajendran, S., Al-Khirbash, S., Pracejus, B., Nasir, S., Al-Abri, A. H., Kusky, T. M., & Ghulam, A. (2012). ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountain: Exploration strategy. Ore Geology Reviews, 44, 121–135.

    Article  Google Scholar 

  • Rajendran, S., Hersi, O. S., Al-Harthy, A., et al. (2011). Capability of advanced spaceborne thermal emission and reflection radiometer (ASTER) on discrimination of carbonates and associated rocks and mineral identification of eastern mountain region (Saih Hatat window) of Sultanate of Oman. Carbonates and Evaporites, 26, 351. https://doi.org/10.1007/s13146-011-0071-4.

    Article  Google Scholar 

  • Rajendran, S., & Nasir, S. (2013). ASTER spectral analysis of ultramafic lamprophyres (carbonatites and aillikites) within the Batain nappe, northeastern margin of Oman: A proposal developed for spectral absorption. International Journal of Remote Sensing, 34(8), 2763–2795.

    Article  Google Scholar 

  • Rajendran, S., & Nasir, S. (2014a). Hydrothermal altered serpentinized zone and a study of Ni-magnesioferrite-magnetite-awaruite occurrences in Wadi Hibi, Northern Oman Mountain: Discrimination through ASTER mapping. Ore Geology Reviews, 62, 211–226.

    Article  Google Scholar 

  • Rajendran, S., & Nasir, Sobhi. (2014b). ASTER mapping of limestone formations and study of caves, springs and depressions in parts of Sultanate of Oman. Environmental Earth Sciences, 71, 133–146.

    Article  Google Scholar 

  • Rajendran, S., & Nasir, Sobhi. (2014c). ASTER spectral sensitivity of carbonate rocks: Study in Sultanate of Oman. Advances in Space Research, 53, 656–673.

    Article  Google Scholar 

  • Ramakrishna, B. P., & Vaidyanadhan, R. (2008). Geology of Karnataka. India: Geol Soc.

    Google Scholar 

  • Rowan, L. C., & Mars, J. C. (2003). Lithologic mapping in the Mountain Pass, California area using Advanced Speceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, 84, 350–366.

    Article  Google Scholar 

  • Rowan, L. C., & Mars, J. C. (2005). Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote Sensing of Environment, 99, 105–126.

    Article  Google Scholar 

  • Sanjeevi, S. (2008). Targeting limestone and bauxite deposits in southern India by spectral unmixing of hyperspectral image data. In The international archives of the photogrammetry, remote sensing and spatial information sciences ISPRS congress Beijing, Vol. XXXVII, Part B8, Commission VIII, Beijing, p. 1189.

  • Srinivasan, R., Shukla, M., Naqvi, S. M., Yadav, V. K., Venkatachala, B. S., Uday Raj, B., et al. (1989). Archaean stromatolites from the Chitradurga schist belt, Dharwar craton, South India. Precambrian Research, 43, 239–250.

    Article  Google Scholar 

  • Srinivasan, R., & Srinivas, B. L. (1972). Dharwar stratigraphy. Journal of the Geological Society of India, 13, 72–83.

    Google Scholar 

  • Swaminath, J., Ramakrishnan, M., & Viswanatha, M. N. (1976). Dharwar stratigraphic model and Karnataka craton evolution. Records of the Geological Survey of India, 107(2), 149–175.

    Google Scholar 

  • Van der Meer, F. (1994). Extraction of mineral absorption features from high spectral resolution data using non parametric geostatistical techniques. International Journal of Remote Sensing, 15(11), 2193–2214.

    Article  Google Scholar 

  • Van der Meer, F. (1995). Spectral reflectance of carbonate mineral mixtures and bidirectional reflectance theory: Quantitative analysis techniques for application in remote sensing. Remote Sensing Reviews, 13, 67–94.

    Article  Google Scholar 

  • Yamaguchi, Y. I., Fujisada, H., Kudoh, M., Kawakami, T., Tsu, H., Kahle, A. B., et al. (1999). ASTER instrument characterization and operation scenario. Advances in Space Research, 23(8), 1415–1424.

    Article  Google Scholar 

  • Zhang, X., Pazner, M., & Duke, N. (2007). Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). ISPRS Journal of Photogrammetry and Remote Sensing, 62, 271–282.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Japan Space Systems and ERSDAC (Japan) for providing ASTER data and UGC RGNF funding agency for the financial support to do this research. Authors are very much thankful to the Chairman, Department of Studies in Earth Science, Center for Advance Studies in Precambrian geology, University of Mysore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. Basavarajappa.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basavarajappa, H.T., Jeevan, L., Rajendran, S. et al. Aster Mapping of Limestone Deposits and Associated Lithounits of Parts of Chikkanayakanahalli, Southern Part of Chitradurga Schist Belt, Dharwar Craton, India. J Indian Soc Remote Sens 47, 693–703 (2019). https://doi.org/10.1007/s12524-018-0925-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-018-0925-5

Keywords

Navigation