Skip to main content
Log in

Quaternion-Based Sparse Model for Pan-Sharpening of IRS Satellite Images

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

This paper considers the pan-sharpening problem of the IRS satellite images from the perspective of vector sparse representation model using quaternion matrix analysis. It selects the sparse basis in quaternion space, which uniformly transforms the color channels into an orthogonal color space. Moreover, the proposed quaternion model for pan-sharpening is more efficient than the conventional sparse model as the hyper-complex representation of color channels conserves the interrelationship among the chromatic channels. This paper also proposes a quaternion forward–backward pursuit algorithm that preserves the inherent chromatic structures in terms of spatial and spectral details during the vector reconstruction. The experimental result validates the efficacy of the proposed quaternion model and shows its potential as a powerful pan-sharpening tool for IRS data even for cloudy multispectral data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aiazzi, B., Alparone, L., Baronti, S., Garzelli, A., & Selva, M. (2003). An MTF-based spectral distortion minimizing model for pan-sharpening of very high resolution multispectral images of urban areas. In 2nd GRSS/ISPRS joint workshop on remote sensing and data fusion over urban areas, 2003 (pp. 90–94). IEEE.

  • Aiazzi, B., Baronti, S., & Selva, M. (2007). Improving component substitution pansharpening through multivariate regression of MS + Pan data. IEEE Transactions on Geoscience and Remote Sensing, 45(10), 3230–3239.

    Article  Google Scholar 

  • Amolins, K., Zhang, Y., & Dare, P. (2007). Wavelet based image fusion techniques—An introduction, review and comparison. ISPRS Journal of Photogrammetry and Remote Sensing, 62(4), 249–263.

    Article  Google Scholar 

  • Chavez, P., Sides, S. C., & Anderson, J. A. (1991). Comparison of three different methods to merge multiresolution and multispectral data- Landsat TM and SPOT panchromatic. Photogrammetric Engineering and Remote Sensing, 57(3), 295–303.

    Google Scholar 

  • Cheng, M., Wang, C., & Li, J. (2014). Sparse representation based pansharpening using trained dictionary. IEEE Geoscience and Remote Sensing Letters, 11(1), 293–297.

    Article  Google Scholar 

  • Choi, J., Yu, K., & Kim, Y. (2011). A new adaptive component-substitution-based satellite image fusion by using partial replacement. IEEE Transactions on Geoscience and Remote Sensing, 49(1), 295–309.

    Article  Google Scholar 

  • Garzelli, A., Nencini, F., Alparone, L., Aiazzi, B., & Baronti, S. (2004). Pan-sharpening of multispectral images: a critical review and comparison. In Geoscience and remote sensing symposium, 2004. IGARSS’04. Proceedings, 2004 IEEE International (Vol. 1). IEEE.

  • Garzelli, A., Nencini, F., & Capobianco, L. (2008). Optimal MMSE pan sharpening of very high resolution multispectral images. IEEE Transactions on Geoscience and Remote Sensing, 46(1), 228–236.

    Article  Google Scholar 

  • Gillespie, A. R., Kahle, A. B., & Walker, R. E. (1987). Color enhancement of highly correlated images. II. Channel ratio and “chromaticity” transformation techniques. Remote Sensing of Environment, 22(3), 343–365.

    Article  Google Scholar 

  • Guo, M., Zhang, H., Li, J., Zhang, L., & Shen, H. (2014). An online coupled dictionary learning approach for remote sensing image fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(4), 1284–1294.

    Article  Google Scholar 

  • Jiang, C., Zhang, H., Shen, H., & Zhang, L. (2012). A practical compressed sensing-based pan-sharpening method. IEEE Geoscience and Remote Sensing Letters, 9(4), 629–633.

    Article  Google Scholar 

  • Jiang, C., Zhang, H., Shen, H., & Zhang, L. (2014). Two-step sparse coding for the pan-sharpening of remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(5), 1792–1805.

    Article  Google Scholar 

  • Joshi, M. V., Bruzzone, L., & Chaudhuri, S. (2006). A model-based approach to multiresolution fusion in remotely sensed images. IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2549–2562.

    Article  Google Scholar 

  • Karahanoglu, N. B., & Erdogan, H. (2013). Compressed sensing signal recovery via forward–backward pursuit. Digital Signal Processing, 23(5), 1539–1548.

    Article  Google Scholar 

  • Laben, C. A., & Brower, B. V. (2000). U.S. Patent No. 6,011,875. Washington, DC: U.S. Patent and Trademark Office.

  • Li, S., & Yang, B. (2011). A new pan-sharpening method using a compressed sensing technique. IEEE Transactions on Geoscience and Remote Sensing, 49(2), 738–746.

    Article  Google Scholar 

  • Li, S., Yin, H., & Fang, L. (2013). Remote sensing image fusion via sparse representations over learned dictionaries. IEEE Transactions on Geoscience and Remote Sensing, 51(9), 4779–4789.

    Article  Google Scholar 

  • Li, Z., & Leung, H. (2009). Fusion of multispectral and panchromatic images using a restoration-based method. IEEE Transactions on Geoscience and Remote Sensing, 47(5), 1482–1491.

    Article  Google Scholar 

  • Ranchin, T., & Wald, L. (2000). Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation. Photogrammetric Engineering and Remote Sensing, 66(1), 49–61.

    Google Scholar 

  • Rao, C. V., Rao, J. M., Kumar, A. S., Jain, D. S., & Dadhwal, V. K. (2016). High spatial and spectral details retention fusion and evaluation. Journal of the Indian Society of Remote Sensing, 44(2), 167–175.

    Article  Google Scholar 

  • Tu, T. M., Su, S. C., Shyu, H. C., & Huang, P. S. (2001). A new look at IHS-like image fusion methods. Information Fusion, 2(3), 177–186.

    Article  Google Scholar 

  • Vicinanza, M. R., Restaino, R., Vivone, G., Dalla Mura, M., & Chanussot, J. (2015). A pansharpening method based on the sparse representation of injected details. IEEE Geoscience and Remote Sensing Letters, 12(1), 180–184.

    Article  Google Scholar 

  • Vivone, G., Alparone, L., Chanussot, J., Dalla Mura, M., Garzelli, A., Licciardi, G. A., et al. (2015). A critical comparison among pansharpening algorithms. IEEE Transactions on Geoscience and Remote Sensing, 53(5), 2565–2586.

    Article  Google Scholar 

  • Wald, L. (2002). Data fusion: Definitions and architectures: Fusion of images of different spatial resolutions. Paris: Presses des MINES.

    Google Scholar 

  • Wang, Z., & Bovik, A. C. (2002). A universal quality index. IEEE Signal Processing Letters, 20, 1–4.

    Google Scholar 

  • Xu, Y., Yu, L., Xu, H., Zhang, H., & Nguyen, T. (2015). Vector sparse representation of color image using quaternion matrix analysis. IEEE Transactions on Image Processing, 24(4), 1315–1329.

    Article  Google Scholar 

  • Yu, M., Xu, Y., & Sun, P. (2014, May). Single color image super-resolution using quaternion-based sparse representation. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5804–5808). IEEE.

  • Yuhas, R. H., Goetz, A. F., & Boardman, J. W. (1992). Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm.

  • Zhang, L., Shen, H., Gong, W., & Zhang, H. (2012). Adjustable model-based fusion method for multispectral and panchromatic images. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(6), 1693–1704.

    Article  Google Scholar 

  • Zhu, X. X., & Bamler, R. (2013). A sparse image fusion algorithm with application to pan-sharpening. IEEE Transactions on Geoscience and Remote Sensing, 51(5), 2827–2836.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Synthiya Vinothini.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Synthiya Vinothini, D., Sathya Bama, B. Quaternion-Based Sparse Model for Pan-Sharpening of IRS Satellite Images. J Indian Soc Remote Sens 46, 2069–2079 (2018). https://doi.org/10.1007/s12524-018-0878-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-018-0878-8

Keywords

Navigation