Skip to main content

Advertisement

Log in

Variations in the Ice Phenology and Water Level of Ayakekumu Lake, Tibetan Plateau, Derived from MODIS and Satellite Altimetry Data

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The alpine lakes on the Tibetan Plateau (TP) are highly sensitive to variations in climate changes, and the lake ice phenology and water level are considered to be direct indicators of regional climate variability. In this study, we first used 14 years of moderate resolution imaging spectroradiometer snow cover products to analyse the freeze dates, ablation dates, and ice coverage durations. The lake level changes during 2002–2015 were estimated, derived from satellite altimetry and Hydroweb data. Unexpectedly, the freeze dates of lake ice greatly advanced, and the ablation dates were markedly delayed. The complete freezing duration lengthened by approximately 77 days. As a result of the warm-wet climate in the northern TP, the lake area expanded from 770 to 995 km2 during 2002–2015, and the water levels rose by 4.2 m in total, at a rate of 0.3 m/year. The progressive expansion of Ayakekumu Lake profoundly affected the ice phenology. Larger water volume with larger thermal capacity likely led to the delaying of ablation dates, with the freezing point depression caused by decreasing salinity. Some new narrow and shallow bays located in southern and eastern Ayakekumu Lake were conducive to early freezing of ice. Additionally, the changes in air temperature, precipitation, potential evaporation, and sunshine duration may be related to the prolonged ice cover duration since 2002. In sum, accurate measurements of lake ice and water levels are critical for understanding the water resource balance and hydrologic cycle in arid or semi-arid regions of China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bamber, J. (1994). Ice sheet altimeter processing scheme. International Journal of Remote Sensing, 14, 925–938.

    Article  Google Scholar 

  • Batoula, S., Urien, S., Soulat, F., Muir, A., Roca, M., & Cotton, D. (2011). Envisat altimetry level 2 user manual. Issue, 1:4.

  • Bian, D., Yang, Z. G., Li, L., Chu, D., Zhuo, G., Bianba, C., et al. (2006). The response of lake area change to climate variations in North Tibetan Plateau during last 30 years. Acta Geographica Sinica, 61, 510–518.

    Google Scholar 

  • Birkett, C., & Beckley, B. (2010). Investigating the performance of the Jason-2/OSTM radar altimeterover lakes and reservoirs. Marine Geodesy, 33, 204–238.

    Article  Google Scholar 

  • Brown, G. S. (1977). The average impulse response of a rough surface and its applications. IEEE Journal of Oceanic Engineering, 25, 67–74.

    Article  Google Scholar 

  • Cai, Y., Ke, C. Q., & Duan, Z. (2017). Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive Microwave remote sensing data. Science of the Total Environment, 607–608, 120–131.

    Article  Google Scholar 

  • Connor, L. N., Laxon, S. W., Ridout, A. L., Krabill, W. B., & Mcadoo, D. C. (2009). Comparison of Envisat Radar and airborne laser altimeter measurements over Arctic sea ice. Remote Sensing of Environment, 113, 563–570.

    Article  Google Scholar 

  • Crétaux, J. F., Jelinski, W., Calmant, S., Kouraev, A., Vuglinski, V., Bergé-Nguyen, M., et al. (2011). Hydrolare/Hydroweb: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Advances in Space Research, 47, 1497–1507.

    Article  Google Scholar 

  • Dettmering, D., Schwatke, C., Boergens, E., & Seitz, F. (2016). Potential of ENVISAT radar altimetry for water level monitoring in the Pantanal Wetland. Remote Sensing, 8, 1–21.

    Article  Google Scholar 

  • Ding, Y. J., Liu, S. Y., Bai, Y. E., & Zhao, L. (2006). Climatic implications on variations of lakes in the cold and arid regions of china during the recent 50 years. Journal of Glaciology and Geocryology, 28, 623–632. (in Chinese).

    Google Scholar 

  • Dong, S. Y., Peng, F., Guo, J., You, Q. G., & Xue, X. (2017). Lake dynamics and its relationship to climate change on the Tibetan Plateau over the last four decades. Regional Environmental Change, 2017, 1–11.

    Google Scholar 

  • Dong, S. Y., Xue, X., You, Q. G., & Peng, F. (2014). Remote sensing monitoring of the lake area changes in the Qinghai-Tibet Plateau in recent 40 years. Journal of Lake Sciences, 26, 535–544. (in Chinese).

    Article  Google Scholar 

  • Duan, Z., & Bastiaanssen, W. G. M. (2013). Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sensing of Environment, 34, 403–416.

    Article  Google Scholar 

  • Frappart, F., Calmant, S., Cauhopé, M., Seyler, F., & Cazenave, A. (2006). Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sensing of Environment, 100, 252–264.

    Article  Google Scholar 

  • Gafurov, A., & Bárdossy, A. (2009). Cloud removal methodology from MODIS snow cover product. Hydrology and Earth System Sciences, 13, 1361–1373.

    Article  Google Scholar 

  • Gao, L., Liao, J. J., & Shen, G. Z. (2013). Monitoring lake-level changes in the Qinghai-Tibetan Plateau using radar altimeter data (2002–2012). Journal of Applied Remote Sensing, 7, 073470.

    Article  Google Scholar 

  • Gou, P., Ye, Q. H., Che, T., Feng, Q., Ding, B., & Lin, C. (2017). Lake ice phenology of Nam Co, Central Tibetan Plateau, China, derived from multiple MODIS data products. Journal of Great Lakes Research, 2017, 1–15.

    Google Scholar 

  • Gou, P., Ye, Q. H., & Wei, Q. F. (2015). Lake ice change at the Nam Co Lake on the Tibetan Plateau during 2000–2013 and influencing factors. Progress in Geography, 34(10), 1241–1249. (in Chinese).

    Article  Google Scholar 

  • Haginoya, S., Fujii, H., Kuwagata, T., Xu, J., Ishigooka, Y., Kang, S., et al. (2009). Air-lake interaction features found in heat and water exchanges over Nam Co on the Tibetan Plateau. Science Online Letter Atmosphere, 5, 172–175.

    Google Scholar 

  • Hall, D. K., & Riggs, G. A. (2007). Accuracy assessment of the MODIS snow products. Hydrological Processes, 21, 1534–1547.

    Article  Google Scholar 

  • Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E., & Bayr, K. J. (2002). MODIS snow-cover products. Remote Sensing of Environment, 83, 181–194.

    Article  Google Scholar 

  • Huang, X., Deng, J., Wang, W., Feng, Q., & Liang, T. (2017). Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau. Remote Sensing of Environment, 190, 274–288.

    Article  Google Scholar 

  • Jiang, Y. J., Li, S. J., & Shen, D. F. (2012). Climate change and its impact on the lake environment in the Tibetan Plateau in 1971–2008. Scientia Geographica Sinica, 32, 1503–1512. (in Chinese).

    Google Scholar 

  • Kang, K. K., Duguay, C. R., & Howell, S. E. L. (2012). Estimating ice phenology on large northern lakes from AMSR-E: algorithm development and application to Great Bear Lake and Great Slave Lake, Canada. Cryosphere, 5, 235–254.

    Article  Google Scholar 

  • Kang, S., Yi, Y., Xu, Y., Xu, B., & Zhang, Y. (2017). Water isotope framework for lake water balance monitoring and modelling in the Nam Co basin, Tibetan Plateau. Journal of Hydrology Regional Studies, 12, 289–302.

    Article  Google Scholar 

  • Ke, C. Q., Kou, C., Ludwig, R., & Qin, X. (2013a). Glacier velocity measurements in the eastern Yigong Zangbo basin, Tibet, China. Journal of Glaciology, 59, 1060–1068.

    Article  Google Scholar 

  • Ke, C. Q., Tao, A. Q., & Jin, X. (2013b). Variability in the ice phenology of Nam Co Lake in central Tibet from scanning multichannel microwave radiometer and special sensor microwave/imager: 1978 to 2013. Journal of Applied Remote Sensing, 7, 073477.

    Article  Google Scholar 

  • Kropácek, J., Maussion, F., Chen, F., & Hoerz, S. (2013). Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data. Cryosphere, 7, 287–301.

    Article  Google Scholar 

  • Laxon, S. (1994). Sea ice altimeter processing scheme at the EODC. International Journal of Remote Sensing, 15, 915–924.

    Article  Google Scholar 

  • Legrésy, B. (1995). Etude du retracking des surfaces des formes d’onde altimétriques au-dessus des calottes, rapport CNES, CT/ED/TU/UD96. 188, contrat no. 856/2/95/CNES/006.

  • Lei, Y., Yang, K., Wang, B., Sheng, Y., Bird, B. W., & Zhang, G. (2014). Response of inland lake dynamics over the Tibetan Plateau to climate change. Climatic Change, 125(2), 281–290.

    Article  Google Scholar 

  • Li, J. L., Bai, J., & Wang, Y. J. (2018). Time series lake area changes of Ayakul Lake and its responses to climate change. Arid Zone Research, 35(01), 85–95. (in Chinese).

    Article  Google Scholar 

  • Li, X., & Liu, W. (2017). Lake evolution and hydroclimate variation at Lake Qinghai (China) over the past 32 ka inferred from ostracods and their stable isotope composition. Journal of Paleolimnology, 58, 299–316.

    Article  Google Scholar 

  • Liao, J. J., Shen, G. Z., & Li, Y. K. (2013). Lake variations in response to climate change in the Tibetan Plateau in the past 40 years. International Journal of Digital Earth, 6, 534–549.

    Article  Google Scholar 

  • Lin, H., & Wu, Z. W. (2011). Contribution of the autumn Tibetan Plateau snow cover to seasonal prediction of North American winter temperature. Journal of Climate, 24(11), 2801–2813.

    Article  Google Scholar 

  • Lin, C. G., Yang, K., Qin, J., & Fu, R. (2013). Observed coherent trends of surface and upper-air wind speed over China since 1960. Journal of Climate, 26, 2891–2903.

    Article  Google Scholar 

  • Lin, H. B., You, Q. L., Zhang, Y. Q., Jiao, Y., & Fraedrich, K. (2016). Impact of large-scale circulation on the water vapour balance of the tibetan Plateau in summer. International Journal of Climatology, 36, 4213–4221.

    Article  Google Scholar 

  • Liu, X. D., & Chen, B. D. (2015). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20, 1729–1742.

    Article  Google Scholar 

  • Liu, Y., Yue, H., & Wang, H. R. (2016). Dynamic analysis of water level and area of Qinghai-Tibet Plateau Group lakes based on LEGOS HYDROWEB. Science Technology and Engineering, 16(30), 169–175. (in Chinese).

    Google Scholar 

  • Ma, R. H., Wang, S. M., Li, A. N., Wu, J. L., Yang, G. S., & Duan, H. T. (2011). China’s lakes at present: Number, area and spatial distribution. Science China Earth Sciences, 54, 283–289.

    Article  Google Scholar 

  • Okeowo, M. A., Lee, H., Hossain, F., & Getirana, A. (2017). Automated generation of lakes and reservoirs water elevation changes from satellite radar altimetry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 3465–3481.

    Article  Google Scholar 

  • Parajka, J., & Blochl, G. (2006). Validation of MODIS snow cover images over Austria. Hydrology and Earth System Sciences, 10, 679–689.

    Article  Google Scholar 

  • Parry, M. L., Canziani, O. F., & Palutikof, J. P. (2007). Climate change 2007: Impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Roca, M., Laxon, S., & Zelli, C. (2009). The EnviSat RA-2 instrument design and tracking performance. IEEE Transactions on Geoscience and Remote Sensing, 47, 3489–3506.

    Article  Google Scholar 

  • Song, C. Q., Huang, B., & Ke, L. H. (2013). Modeling and analysis of lake water storage changes on the tibetan plateau using multi-mission satellite data. Remote Sensing of Environment, 135(4), 25–35.

    Article  Google Scholar 

  • Song, C. Q., Huang, B., Ke, L. H., & Richards, K. S. (2014a). Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 26–37.

    Article  Google Scholar 

  • Song, C. Q., Huang, B., Richards, K., Ke, L. H., & Phan, V. H. (2014b). Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes? Water Resources Research, 50, 3170–3186.

    Article  Google Scholar 

  • Sørensen, L. S., Simonsen, S. B., Meister, R., Forsberg, R., Levinsen, J. F., & Flament, T. (2015). Envisat-derived elevation changes of the Greenland ice sheet, and a comparison with ICEsat results in the accumulation area. Remote Sensing of Environment, 160, 56–62.

    Article  Google Scholar 

  • Sorman, A. U., Akyurek, Z., Sensoy, A., Sorman, A. A., & Tekeli, A. E. (2007). Commentary on comparison of MODIS snow cover and albedo products with ground observations over the mountainous terrain of Turkey. Hydrology and Earth System Sciences, 11, 1353–1360.

    Article  Google Scholar 

  • Wang, S. T., Jin, X. M., Gao, M. M., & Liu, W. J. (2016). Dynamic change of Ayakekumu Lake and its response to glaciers melting. Yellow River, 38, 64–67. (in Chinese).

    Google Scholar 

  • Xie, H. J., Wang, X. W., & Liang, T. G. (2009). Development and assessment of combined Terra and Aqua snow cover products in Colorado Plateau, USA and northern Xinjiang, China. Journal of Applied Remote Sensing, 3, 033559.

    Article  Google Scholar 

  • Yanai, M., Li, C., & Song, Z. (1992). Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. Journal of the Meteorological Society of Japan, 70, 319–351.

    Article  Google Scholar 

  • Yao, X. J., Li, L., Zhao, J., Sun, M. P., Li, J., Gong, P., et al. (2016). Spatial-temporal variations of lake ice phenology in the Hoh Xil region from 2000 to 2011. Journal of Geographical Sciences, 26, 70–82.

    Article  Google Scholar 

  • Zhang, G. Q., Xie, H. J., Duan, S. Q., Tian, M. Z., & Yi, D. G. (2011). Water level variation of Lake Qinghai from satellite and in situ measurements under climate change. Journal of Applied Remote Sensing, 5, 053532.

    Article  Google Scholar 

  • Zhao, Y., Liao, J. J., & Shen, G. Z. (2017). Monitoring the water level changes in Qinghai Lake with satellite altimetry data. Journal of Remote Sensing, 21(4), 633–644. (in Chinese).

    Google Scholar 

  • Zheng, J. J., Ke, C. Q., Shao, Z. D., & Li, F. (2016). Monitoring changes in the water volume of Hulun lake by integrating Satellite Altimetry data and Landsat images between 1992 and 2010. Journal of Applied Remote Sensing, 10, 016029.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported financially by the Program for University Natural Sciences Research Project of Anhui Educational Committee (KJ2018JD08), and National Nature Science Foundation of China (No. 41371391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, Y., Cao, L. et al. Variations in the Ice Phenology and Water Level of Ayakekumu Lake, Tibetan Plateau, Derived from MODIS and Satellite Altimetry Data. J Indian Soc Remote Sens 46, 1689–1699 (2018). https://doi.org/10.1007/s12524-018-0824-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-018-0824-9

Keywords

Navigation