Skip to main content
Log in

Cysteamine supplementation during in vitro maturation (IVM) of rabbit oocyte improves the developmental capacity after intracytoplasmic sperm injection

  • Original Article
  • Published:
Reproductive Medicine and Biology

Abstract

Purpose

Current approaches to in vitro maturation (IVM) may result in low efficiency and inadequate quality of the oocytes due to insufficient cytoplasmic maturation. Although positive effects of the cysteamine supplementation in IVM medium for oocyte nuclear maturation or male pronuclear formation have been confirmed, it is still controversial whether the cysteamine addition affects embryo development after IVM. We aimed here to confirm the effect of cysteamine addition into IVM medium for subsequent embryo development in vitro.

Methods

We administered the cysteamine to the IVM culture of rabbit immature oocytes at various concentrations and observed the developmental rate, speed to reach blastocyst stage and cell numbers at the blastocyst stage.

Results

Cysteamine supplementation improved developmental rate to blastocyst stage of the IVM oocytes. On the other hand, addition of glutathione (GSH) inhibitor buthionine sulfoximine inhibited GSH accumulation in the oocytes and subsequent embryo development to the blastocyst stage.

Conclusions

Controlling the GSH quantity of IVM oocytes may be an important factor for success of embryo development, and it is quite probable that a cysteamine supplementation can contribute to an increase of GSH content in oocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Roesner S, Von Wolff M, Eberhardt I, Beuter-Winkler P, Toth B, et al. In vitro maturation: a five-year experience. Acta Obstet Gynecol Scand. 2012;91:22–7.

    Article  PubMed  Google Scholar 

  2. Son WY, Chung JT, Demirtas E, Holzer H, Sylvestre C, et al. Comparison of in vitro maturation cycles with and without in vivo matured oocytes retrieved. Reprod Biomed Online. 2008;17:59–67.

    Article  PubMed  Google Scholar 

  3. Son WY, Tan SL. Laboratory and embryological aspects of hCG-primed in vitro maturation cycles for patients with polycystic ovaries. Hum Reprod Update. 2010;16:675–89.

    Article  PubMed  CAS  Google Scholar 

  4. de Matos DG, Furnus CC. The importance of having high glutathione (GSH) level after bovine in vitro maturation on embryo development effect of beta-mercaptoethanol, cysteine and cystine. Theriogenology. 2000;53:761–71.

    Article  PubMed  Google Scholar 

  5. Funahashi H, Cantley TC, Stumpf TT, Terlouw SL, Day BN. Use of low-salt culture medium for in vitro maturation of porcine oocytes is associated with elevated oocyte glutathione levels and enhanced male pronuclear formation after in vitro fertilization. Biol Reprod. 1994;51:633–9.

    Article  PubMed  CAS  Google Scholar 

  6. Meister A, Anderson ME. Glutathione. Annu Rev Biochem. 1983;52:711–60.

    Article  PubMed  CAS  Google Scholar 

  7. Lafleur MV, Hoorweg JJ, Joenje H, Westmijze EJ, Retel J. The ambivalent role of glutathione in the protection of DNA against singlet oxygen. Free Radic Res. 1994;21:9–17.

    Article  PubMed  CAS  Google Scholar 

  8. Circu ML, Aw TY. Glutathione and apoptosis. Free Radic Res. 2008;42:689–706.

    Article  PubMed  CAS  Google Scholar 

  9. Yoshida M, Ishigaki K, Nagai T, Chikyu M, Pursel VG. Glutathione concentration during maturation and after fertilization in pig oocytes: relevance to the ability of oocytes to form male pronucleus. Biol Reprod. 1993;49:89–94.

    Article  PubMed  CAS  Google Scholar 

  10. Sutovsky P, Schatten G. Depletion of glutathione during bovine oocyte maturation reversibly blocks the decondensation of the male pronucleus and pronuclear apposition during fertilization. Biol Reprod. 1997;56:1503–12.

    Article  PubMed  CAS  Google Scholar 

  11. Eppig JJ. Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod Fertil Dev. 1996;8:485–9.

    Article  PubMed  CAS  Google Scholar 

  12. Calvin HI, Medvedovsky C, Worgul BV. Near-total glutathione depletion and age-specific cataracts induced by buthionine sulfoximine in mice. Science. 1986;233:553–5.

    Article  PubMed  CAS  Google Scholar 

  13. Yoshida M, Ishigaki K, Pursel VG. Effect of maturation media on male pronucleus formation in pig oocytes matured in vitro. Mol Reprod Dev. 1992;31:68–71.

    Article  PubMed  CAS  Google Scholar 

  14. Luberda Z. The role of glutathione in mammalian gametes. Reprod Biol. 2005;5:5–17.

    PubMed  Google Scholar 

  15. Bannai S. Transport of cystine and cysteine in mammalian cells. Biochim Biophys Acta. 1984;779:289–306.

    Article  PubMed  CAS  Google Scholar 

  16. Sagara J, Miura K, Bannai S. Cystine uptake and glutathione level in fetal brain cells in primary culture and in suspension. J Neurochem. 1993;61:1667–71.

    Article  PubMed  CAS  Google Scholar 

  17. Zhou P, Wu YG, Li Q, Lan GC, Wang G, et al. The interactions between cysteamine, cystine and cumulus cells increase the intracellular glutathione level and developmental capacity of goat cumulus-denuded oocytes. Reproduction. 2008;135:605–11.

    Article  PubMed  CAS  Google Scholar 

  18. Oyamada T, Fukui Y. Oxygen tension and medium supplements for in vitro maturation of bovine oocytes cultured individually in a chemically defined medium. J Reprod Dev. 2004;50:107–17.

    Article  PubMed  CAS  Google Scholar 

  19. Anand T, Kumar D, Chauhan MS, Manik RS, Palta P. Cysteamine supplementation of in vitro maturation medium, in vitro culture medium or both media promotes in vitro development of buffalo (Bubalus bubalis) embryos. Reprod Fertil Dev. 2008;20:253–7.

    Article  PubMed  CAS  Google Scholar 

  20. Singhal S, Prasad S, Singh B, Prasad JK, Gupta HP. Effect of including growth factors and antioxidants in maturation medium used for in vitro culture of buffalo oocytes recovered in vivo. Anim Reprod Sci. 2009;113:44–50.

    Article  PubMed  CAS  Google Scholar 

  21. Kobayashi M, Asakuma S, Fukui Y. Blastocyst production by in vitro maturation and development of porcine oocytes in defined media following intracytoplasmic sperm injection. Zygote. 2007;15:93–102.

    Article  PubMed  CAS  Google Scholar 

  22. Deleuze S, Dubois CS, Caillaud M, Bruneau B, Goudet G, et al. Influence of cysteamine on in vitro maturation, in vitro and in vivo fertilization of equine oocytes. Reprod Domest Anim. 2010;45:1–7.

    Article  PubMed  CAS  Google Scholar 

  23. Chen N, Liow SL, Yip WY, Tan LG, Ng SC. Influence of cysteamine supplementation and culture in portable dry-incubator on the in vitro maturation, fertilization and subsequent development of mouse oocytes. Theriogenology. 2005;63:2300–10.

    Article  PubMed  CAS  Google Scholar 

  24. de Matos DG, Nogueira D, Cortvrindt R, Herrera C, Adriaenssens T, et al. Capacity of adult and prepubertal mouse oocytes to undergo embryo development in the presence of cysteamine. Mol Reprod Dev. 2003;64:214–8.

    Article  PubMed  Google Scholar 

  25. Grupen CG, Nagashima H, Nottle MB. Cysteamine enhances in vitro development of porcine oocytes matured and fertilized in vitro. Biol Reprod. 1995;53:173–8.

    Article  PubMed  CAS  Google Scholar 

  26. Smitz JE, Thompson JG, Gilchrist RB. The promise of in vitro maturation in assisted reproduction and fertility preservation. Semin Reprod Med. 2011;29:24–37.

    Article  PubMed  CAS  Google Scholar 

  27. Lee SF, Pervaiz S. Assessment of oxidative stress-induced DNA damage by immunofluorescent analysis of 8-oxodG. Methods Cell Biol. 2011;103:99–113.

    Article  PubMed  CAS  Google Scholar 

  28. Kobayashi CI, Suda T. Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol. 2012;227:421–30.

    Article  PubMed  CAS  Google Scholar 

  29. Petrova I, Sedmikova M, Petr J, Vodkova Z, Pytloun P, et al. The roles of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) in aged pig oocytes. J Reprod Dev. 2009;55:75–82.

    Article  PubMed  CAS  Google Scholar 

  30. Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol. 2010;42:1634–50.

    Article  PubMed  CAS  Google Scholar 

  31. Chaube SK, Prasad PV, Thakur SC, Shrivastav TG. Hydrogen peroxide modulates meiotic cell cycle and induces morphological features characteristic of apoptosis in rat oocytes cultured in vitro. Apoptosis. 2005;10:863–74.

    Article  PubMed  CAS  Google Scholar 

  32. Dalvit GC, Cetica PD, Pintos LN, Beconi MT. Reactive oxygen species in bovine embryo in vitro production. Biocell. 2005;29:209–12.

    PubMed  CAS  Google Scholar 

  33. Curnow EC, Ryan JP, Saunders DM, Hayes ES. Oocyte glutathione and fertilisation outcome of Macaca nemestrina and Macaca fascicularis in in vivo- and in vitro-matured oocytes. Reprod Fertil Dev. 2010;22:1032–40.

    Article  PubMed  CAS  Google Scholar 

  34. Van Soom A, Van Vlaenderen I, Mahmoudzadeh AR, Deluyker H, de Kruif A. Compaction rate of in vitro fertilized bovine embryos related to the interval from insemination to first cleavage. Theriogenology. 1992;38:905–19.

    Article  PubMed  Google Scholar 

  35. Dominko T, First NL. Timing of meiotic progression in bovine oocytes and its effect on early embryo development. Mol Reprod Dev. 1997;47:456–67.

    Article  PubMed  CAS  Google Scholar 

  36. van Soom A, Ysebaert MT, de Kruif A. Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos. Mol Reprod Dev. 1997;47:47–56.

    Article  PubMed  Google Scholar 

  37. Gutierrez-Adan A, Rizos D, Fair T, Moreira PN, Pintado B, et al. Effect of speed of development on mRNA expression pattern in early bovine embryos cultured in vivo or in vitro. Mol Reprod Dev. 2004;68:441–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Ms. Naomi Backes Kamimura, Department of Biology-Oriented Science and Technology, Kinki University, for English editing.

Conflict of interest

We have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Teramura.

About this article

Cite this article

Izumi, H., Miyamoto, Y., Mori, T. et al. Cysteamine supplementation during in vitro maturation (IVM) of rabbit oocyte improves the developmental capacity after intracytoplasmic sperm injection. Reprod Med Biol 12, 179–185 (2013). https://doi.org/10.1007/s12522-013-0157-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12522-013-0157-x

Keywords

Navigation