Skip to main content

Obsidian sources from the southern Andean highlands (Laguna del Diamante, Argentina and Chile): geochemical insights on geological complexity and human biogeography

Abstract

New geochemical results for two obsidian types, Laguna del Diamante and Arroyo Paramillos, naturally available in the Laguna del Diamante locality, a seasonally accessible highland wetland emplaced in the current border between Argentina and Chile at 3300 masl (34°S), are presented. A total of 1219 archeological artifacts from 41 sites located on both sides of the Andes have been assigned to these sources. The artifacts were analyzed by non-destructive, energy-dispersive X-ray fluorescence (ED-XRF). Archeological distributions of these obsidian types are assessed through GIS spatial analysis. Results show a great asymmetry in the distribution of these sources toward the two Andean slopes: the Laguna de Diamante chemical type shows a fairly local use pattern, being concentrated almost entirely in Cordillera sites, but the Paramillos shows a less homogeneous distribution and tends to be more concentrated in the sites that are in the western natural corridor. Although these lands were accessed and occupied from diverse demographic nodes in lower-altitude settings, the spatial analysis of obsidian artifacts reinforces the argument of dominant geographic vectors of access connecting with the western valleys and lowlands of Chile.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aldenderfer M (1998) Montane foragers: Asana and the south-central Andean Archaic. University of Iowa Press, Iowa City

    Google Scholar 

  2. Barberena R, Fernández MV, Rughini AA, Borrazzo K, Garvey R, Lucero G, Della Negra C, Romero G, Durán V, Cortegoso V, Giesso M, Klesner C, MacDonald BL, Glascock MD (2019) Deconstructing a complex obsidian ‘source-scape’: a geoarchaeological and geochemical approach in northwestern Patagonia. Geoarchaeology 34:30–41

    Google Scholar 

  3. Binford LR (2001) Constructing frames of reference. In: An analytical method for archaeological theory building using ethnographic and environmental data sets. University of California Press, California

    Google Scholar 

  4. Börgel R (1983) Geomorfología. Colección Geografía de Chile. Instituto Geográfico Militar, Santiago

    Google Scholar 

  5. Burger RL, Mohr Chavez KL, Chavez SJ (2000) Through the glass darkly: prehispanic obsidian procurement and exchange in southern Peru and northern Bolivia. J World Prehist 14(3):267–362

    Google Scholar 

  6. Campbell R, Stern CR, Peñaloza A (2017) Obsidian in archaeological sites on Mocha Island, southern Chile: implications of its provenience. J Archaeol Sci Rep 13:617–624

    Google Scholar 

  7. Capriles JM, Albarracin-Jordan J, Lombardo U, Osorio D, Maley B, Goldstein ST, Herrera KA, Glascock MD, Domic AI, Veit H, Santoro CM (2016) High-altitude adaptation and late Pleistocene foraging in the Bolivian Andes. J Archaeol Sci Rep 6:463–474

    Google Scholar 

  8. Clapperton C (1993) Quaternary geology and geomorphology of South America. Elsevier, Amsterdam

    Google Scholar 

  9. Cobean RH (2002) Un Mundo de Obsidiana: Minería y comercio de un vidrio volcánico en el México antiguo (A World of Obsidian: The Mining and Trade of a Volcanic. Glass in Ancient Mexico). University of Pittsburgh, Pittsburgh

    Google Scholar 

  10. Cornejo L (2010) Arqueología de cazadores recolectores en Chile Central: Una síntesis de lo avanzado, las limitaciones y las aspiraciones. Werken 13:69–84

    Google Scholar 

  11. Cornejo L (2014) Sobre la cronología de la imposición cuzqueña en Chile. Estud Atacameños 47:101–116

    Google Scholar 

  12. Cornejo L (2017) Cazadores Recolectores tardíos en Chile Central: una historia de continuidad y cambio. Unpublished PhD thesis. Universidad Nacional de Cuyo, Argentina

    Google Scholar 

  13. Cornejo L, Sanhueza L (2011) Caminos que cruzan la cordillera: El rol del paso del Maipo en la ocupación de la cordillera en Chile Central. Rev Chil Antropología 23:101–122

    Google Scholar 

  14. Cortegoso V (2005) Mid-Holocene hunters in Cordillera: environment, resources and technological strategies. Quat Int 132:71–80

    Google Scholar 

  15. Cortegoso V, Glascock MD, De Francesco AM, Durán V, Neme G, Gil A, Giesso M, Sanhueza L, Cornejo L, Barberena R, Bocci M (2014) Chemical characterization of obsidian in Central Western Argentina and Central Chile: archaeological problems and perspectives. In: Kligmann D, Morales M (eds) Physical, chemical and biological markers in argentine archaeology: theory, methods and applications. British archaeological reports, vol 2678. Archaeopress, Oxford, pp 17–26

    Google Scholar 

  16. Cortegoso V, Barberena R, Durán V, Lucero G (2016) Geographic vectors of human mobility in the Andes (34-36°S): comparative analysis of ‘minor’ obsidian sources. Quat Int 422:81–92

    Google Scholar 

  17. Cortegoso V, Yebra L, Castro S, Durán V (2019) La presencia de obsidiana en contextos arqueológicos del Norte de Mendoza: interacciones humanas en una región andina sin fuentes volcánicas. Intersecciones en Antropología. In press

  18. De Francesco A, Durán V, Bloise A, Neme G (2006) Caracterización y procedencia de obsidianas de sitios arqueológicos del área natural protegida Laguna del Diamante (Mendoza Argentina) con metodología no destructiva por fluorescencia de rayos (XRF). An Arqueología Etnología 61:53–67

    Google Scholar 

  19. De Francesco A, Barca D, Bocci M, Cortegoso V, Barberena R, Yebra L, Durán V (2018) Provenance of obsidian artifacts from the Natural Protected Area Laguna del Diamante (Mendoza, Province Argentina) and upper Maipo valley (Chile) by LA-ICP-MS method. Quat Int 466:134–140

    Google Scholar 

  20. Dixon JE, Cann JR, Renfrew C (1968) Obsidian and the origins of trade. Sci Am 218(3):38–46

    Google Scholar 

  21. Durán V, Giesso M, Glascock MD, Neme G, Gil A, Sanhueza L (2004) Estudio de fuentes de aprovisionamiento y redes de distribución de obsidiana durante el Holoceno Tardío en el sur de Mendoza (Argentina). Estud Atacameños 28:25–43

    Google Scholar 

  22. Durán V, Neme G, Gil A, Cortegoso V (2006) Arqueología del Área Natural Protegida Laguna del Diamante (Mendoza, Argentina). An Arqueología Etnología 61:81–134

    Google Scholar 

  23. Durán V, Cortegoso V, Barberena R, Frigolé C, Novellino P, Lucero G, Yebra L, Gasco A, Winocur D, Benítez A, Knduson K (2018) ‘To and fro’ the southern Andean highlands (Argentina and Chile): Archaeometric insights on geographic vectors of mobility. J Archaeol Sci Rep 18:668–678

    Google Scholar 

  24. Eerkens JW, Spurling AM, Gras MA (2008) Measuring prehistoric mobility strategies based on obsidian geochemical and technological signatures in the Owens Valley, California. J Archaeol Sci 35:668–680

    Google Scholar 

  25. Frigolé C, Gasco A (2016) Potters and herders at the southern edge of the Andean world: risk management and mobility in Northwestern Mendoza, Argentina. Quat Int 422:152–162

    Google Scholar 

  26. Gambier M (1988) La fase cultural Punta del Barro. Instituto de Investigaciones Arqueológicas y Museo, San Juan

    Google Scholar 

  27. García A (2003) La ocupación temprana de los andes centrales argentinos (ca. 11.000–8.000 años C14 AP). Relac Soc Argent Antropología 28:153–165

    Google Scholar 

  28. Gasco A (2013) Caza y Pastoreo de Camélidos en la Frontera Meridional del “Mundo” Andino. In: Una Aproximación Osteométrica. Unpublished PhD thesis. Universidad Nacional de Córdoba, Córdoba

    Google Scholar 

  29. Giesso M, Durán V, Neme G, Glascock MD, Cortegoso V, Gil A, Sanhueza L (2011) A study of obsidian source usage in the central Andes of Argentina and Chile. Archaeometry 53:1–21

    Google Scholar 

  30. Gil A, Tykot R, Neme G, Shelnut N (2006) Maize on the frontier. Isotopic and macrobotanical data from Central-Western Argentina. In: Staller J, Tykot R, Benz B (eds) Histories of maize. Academic Press, London, pp 199–214

    Google Scholar 

  31. Gil A, Giardina MA, Neme G, Ugan A (2015) Demografía humana e incorporación de cultígenos en el centro occidente argentino: explorando tendencias en las fechas radiocarbónicas. Rev Esp Antropología Am 44:523–553

    Google Scholar 

  32. Glascock MD, Ferguson JR (2012) Report on the analysis of obsidian source samples by multiple analytical methods. Archaeometry Laboratory, University of Missouri-Columbia.

  33. Glascock MD, Braswell GE, Cobean RH (1998) A systematic approach to obsidian source characterization. In: Shackley MS (ed) Archaeological obsidian studies: method and theory, Advances in Archaeological and Museum Science, vol 3. Plenum Press, New York, pp 15–65

    Google Scholar 

  34. Harrington R (1989) The Diamante Caldera and Maipo Caldera Complex in the Southern Andes of Argentina and Chile (24° 10′ south). Rev Asoc Geol Argent 44(1–4):186–193

    Google Scholar 

  35. Herzog I, Yepez A (2010) Least-cost kernel density estimation and interpolation-based density analysis applied to survey data. In: Melero J, Revelles J (eds) Fusion of cultures. Abstracts of the XXXVIII Conference on Computer Applications and Quantitative Methods in Archaeology, Granada

    Google Scholar 

  36. Hughes R (1998) On reliability, validity, and scale in obsidian sourcing research. In: Ramenofsky AF, Steffen A (eds) Unit issues in archaeology: measuring time, space, and material. University of Utah Press, Salt Lake City, pp 103–114

    Google Scholar 

  37. Hughes RE (2010) Determining the geologic provenance of tiny obsidian flakes in archaeology using nondestructive EDXRF. Am Lab 42(7):27–31

    Google Scholar 

  38. Kelly RL (2011) Obsidian in the Carson Desert: mobility or trade? In: Hughes RE (ed) Perspectives on prehistoric trade and exchange in California and the Great Basin. University of Utah Press, Salt Lake City, pp 189–200

    Google Scholar 

  39. Kuhn SL (2004) Upper Paleolithic raw material economies at Üçağızlı Cave, Turkey. J Anthropol Archaeol 23(4):431–448

    Google Scholar 

  40. Lagiglia H (2001) Los orígenes de la agricultura en la Argentina. In: Berberián E, Nielsen A (eds) Historia Argentina Prehispánica. Brujas, Córdoba, pp 41–81

    Google Scholar 

  41. Lara L, Wall R, Stockli D (2008) La Ignimbrita Pudahuel (Asociación Piroclástica Pumícea) y la caldera Diamante (35°S): Nuevas edades U-Th-He. 17° Congreso Geológico Argentino. Actas CD: 1365, San Salvador de Jujuy.

  42. Llano C (2015) On optimal use of a patchy environment: archaeobotany in the Argentinean Andes (Argentina). J Archaeol Sci 54:182–192

    Google Scholar 

  43. Llano C, Corteogoso V, Marsh E (2017) Producción hortícola a baja escala en el límite continental del desarrollo andino: un aporte desde la arqueobotánica. Darwiniana 5(2):109–125

    Google Scholar 

  44. Marsh EJ (2017) La fecha de la cerámica más temprana en los Andes sur. Una perspectiva macrorregional mediante modelos bayesianos. Rev Museo Antropología 10:83–94

    Google Scholar 

  45. Méndez C, Gil A, Neme G, Nuevo Delaunay A, Cortegoso V, Huidobro C, Durán V, Maldonado A (2015) Mid Holocene radiocarbon ages in the Subtropical Andes (∼29°–35° S), climatic change and implications for human space organization. Quat Int 356:15–26

    Google Scholar 

  46. Miotti L, Terranova E, Barberena R, Hermo D, Giesso M, Glascock MD (2012) Geochemical sourcing of obsidian fishtail projectile points: studies for the Somuncurá Plateau (Río Negro, Argentina). In: Miotti L, Salemme M, Flegenheimer N, Goebel T (eds) Southbound: Late Pleistocene peopling of Latin America. Current Research in the Pleistocene Special Edition, pp 127–131

    Google Scholar 

  47. Morgan C, Neme G, Sugrañes N, Salgán L, Gil A, Otaola C, Giardina M, Llano C (2017) Late prehistoric high-altitude hunter-gatherer residential occupations in the Argentine Southern Andes. J Field Archaeol 42:1–14

    Google Scholar 

  48. Nami H, Durán V, Cortegoso V, Giesso M (2015) Análisis morfológico-experimental y por fluorescencia de Rayos X de las puntas de proyectil de obsidiana de un ajuar del Periodo Agropecuario Tardío del NO de Mendoza, Argentina. Bol Soc Chil Arqueología 45:7–37

    Google Scholar 

  49. Neme G, Sugrañes N, Salgán L, Gil A, Otaola C, Giardina M, Morgan C, Llano C (2016) Risco de los indios: Ocupaciones humanas de altura en la cuenca del río Diamante. Relac Soc Argent Antropología 41:101–130

    Google Scholar 

  50. Núñez L, Varela J, Casamiquela R, Schiappacasse V, Niemeyer H, Villagrán C (1994) Cuenca de Taguatagua en Chile: El ambiente del Pleistoceno Superior y ocupaciones humanas. Rev Chil Hist Nat 67:503–519

    Google Scholar 

  51. Peralta P, Salas C (2004) Funcionalidad de asentamientos cordilleranos durante el Arcaico Tardío y el Agroalfarero Temprano (Chile Central). Chungará 36(2):923–933

    Google Scholar 

  52. Planella MT, Scherson R, McRostie V (2011) Sitio El Plomo y nuevos registros de cultígenos iniciales en cazadores del Arcaico IV en alto Maipo, Chile Central. Chungará 43:189–202

    Google Scholar 

  53. Puig S, Rosi MI, Videla F, Mendez E (2011) Summer and winter diet of the guanaco and food availability for a High Andean migratory population (Mendoza, Argentina). Mamm Biol Zeitschrift Säugetierkunde 76(6):727–734

    Google Scholar 

  54. Rademaker K, Hodgins G, Moore K, Zarrillo S, Miller C, Bromley GR, Leach P, Reid DA, Álvarez WY, Sandweiss DH (2014) Paleoindian settlement of the high-altitude Peruvian Andes. Science 346:466–469

    Google Scholar 

  55. Salgán L, Garvey R, Neme G, Gil A, Giesso M, Glascock MD, Durán V (2015) Las Cargas: Characterization and prehistoric use of a southern Andean obsidian source. Geoarchaeology 30:139–150

    Google Scholar 

  56. Sanhueza L, Falabella F (2009) Descomponiendo el Complejo Llolleo: hacia una propuesta de sus niveles mínimos de integración. Chungara 41:229–239

    Google Scholar 

  57. Seelenfreund A, Rees C, Bird R, Bailey G, Bárcena R, Durán V (1996) Trace element analysis of obsidian sources and artifacts of central Chile (Maule River basin) and western Argentina (Colorado river). Lat Am Antiq 7(1):7–20

    Google Scholar 

  58. Shackley MS (2002) Precision versus accuracy in the XRF analysis of archaeological obsidian: some lessons for archaeometry and archaeology. In: Archaeometry 98: Proceedings of the 31st International Symposium on Archaeometry, Budapest, pp 805–809 BAR International Series 1043

    Google Scholar 

  59. Shackley MS (2009) The topaz basin archaeological obsidian source in the transition zone of Central Arizona. Geoarchaeology 24(3):336–347

    Google Scholar 

  60. Sruoga P, Llambías EJ, Fauqué L, Schonwandt D, Repol D (2005) Volcanological and geochemical evolution of the Diamante Caldera-Maipo Volcano complex in the southern Andes of Argentina (34°10’S). J S Am Earth Sci 19:399–414

    Google Scholar 

  61. Sruoga P, Etcheverría M, Feineman M, Rosas M, Bukert C, Ibañes O (2012) Complejo Caldera Diamante-volcán Maipo (34°10’S, 69°50’O): Evolución volcanológica y geoquímica e implicancias en su peligrosidad. Rev Asoc Geol Argent 69(4):508–530

    Google Scholar 

  62. Stanish C (2003) Ancient Titicaca. In: The evolution of complex society in Southern Peru and Northern Bolivia. University of California Press, Los Angeles

    Google Scholar 

  63. Stern CR (2004) Active Andean volcanism: its geologic and seismic setting. Rev Geol Chile 31:161–206

    Google Scholar 

  64. Stern C, Amini H, Charrier R, Godoy E, Herve F, Varela J (1984) Petrochemistry and age of rhyolitic pyroclastic flows which occur along the drainage valleys of the rio Maipo and rio Cachapoal (Chile) and the río Yaucha and rio Papagayos (Argentina). Rev Geol Chile 23:39–52

    Google Scholar 

  65. Stern CR, Pereda I, Aguerre A (2012) Primary and secondary sources of a visually variable but chemically distinct obsidian from west-central Neuquén. Archeometry 54:442–453

    Google Scholar 

  66. Stewart BA, Parker AG, Dewar G, Morley MW, Allott LF (2016) Follow the senqu: Maloti-Drakensberg paleoenvironments and implications for early human dispersals into mountain systems. In: Jones SC, Stewart BA (eds) Africa from MIS 6-2: population dynamics and paleoenvironments. Springer, Dordrecht, pp 247–271

    Google Scholar 

  67. Tripcevich N, Contreras DA (2013) Archaeological approaches to obsidian quarries: investigations at the Quispisisa source. In: Tripcevich N, Vaughn KJ (eds) Mining and quarrying in the Ancient Andes. Interdisciplinary Contributions to Archaeology. Springer, New York, pp 23–44

    Google Scholar 

  68. Wheatley D, Gillings M (2002) Spatial technology and archaeology. In: The archaeological applications of GIS. Taylor & Francis, London

    Google Scholar 

Download references

Acknowledgments

The projects PICT 2014-0940 (Agencia Nacional de Promoción Científica y Tecnológica) and PIP 0301 (CONICET) from Argentina fund this research. The Archaeometry Laboratory at MURR is supported in part by a grant from the United States National Science Foundation (1621158).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Valeria Cortegoso.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 54 kb)

ESM 2

(XLSX 89 kb)

ESM 3

(XLSX 30 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cortegoso, V., Yebra, L., Durán, V. et al. Obsidian sources from the southern Andean highlands (Laguna del Diamante, Argentina and Chile): geochemical insights on geological complexity and human biogeography. Archaeol Anthropol Sci 12, 29 (2020). https://doi.org/10.1007/s12520-019-01009-w

Download citation

Keywords

  • Andean highlands
  • Diamante caldera
  • Obsidian geochemistry
  • GIS analysis
  • Human patterns