Skip to main content

Advertisement

Log in

Imaging coprolite taphonomy and preservation

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

The impact of coprolite taphonomy on parasite remains and aDNA recovery has been recognized. In general, coprolites from sites protected by geologic features such as caves and rock shelters exhibit the best preservation. In contrast, coprolites from open sites can be badly affected by taphonomic processes as shown by analyses of parasite eggs. For eggs, the impact of mites and free-living nematodes has been quantified. Mites are associated with poor pinworm egg preservation. In other studies, percolation of water through sediments has a negative impact on egg recovery. We note that dietary remains can also decompose at open sites. Through scanning electron microscopy (SEM), we present examples of screened but chemically untreated microscopic remains. “Panorama” SEM images provide an excellent visual overview of the taphonomy of dietary remains. For this study, our focus is on Southwestern coprolites as a demonstration of diversity within a single region. Examples from caves and rock shelters were examined first to describe the taphonomic challenges for protected sites. Then, attention was turned to coprolites from open sites. In general, the challenges noted for parasite preservation are seen for other microfossils. However, the preservation of lignin, sporopollenin, calcium oxalate, and siliceous microfossils is generally better than cellulose structures. These observations are relevant to the selection process of samples for aDNA analysis and immunological study. This is especially relevant for the gut microbiome since decomposer fungi and bacteria molecular signals could be recovered in metagenomic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Battillo JM (2017) Supplementing maize agriculture in Basketmaker II Subsistence: dietary analysis of human paleofeces from Turkey Pen Ruin (42SA3714). Dissertation, Southern Methodist University.

  • Battillo JM (2018) The role of corn fungus in Basketmaker II diet: a paleonutrition perspective on early corn farming adaptations. J Archaeol Sci Rep 21:64–70. https://doi.org/10.1016/j.jasrep.2018.07.003

    Article  Google Scholar 

  • Beilstein MA, Al-Shehbaz IA, Mathews S, Kellogg EA (2008) Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. Am J Botany 95:1307–1327. https://doi.org/10.3732/ajb.0800065

    Article  Google Scholar 

  • Black SL, Thoms AV (2014) Hunter-gatherer earth ovens in the archaeological record: fundamental concepts. Amer Antiq 79:204–226. https://doi.org/10.7183/0002-7316.79.2.204

    Article  Google Scholar 

  • Bobich EG, Nobel PS (2001) Biomechanics and anatomy of cladode junctions for two Opuntia (Cactaceae) species and their hybrid. Amer J Bot 88:391–400. https://doi.org/10.2307/2657103

    Article  Google Scholar 

  • Boyd CE (2003) Rock Art of the Lower Pecos (No. 8). Texas A&M University Press

  • Boyd CE, Cox K (2016) The White Shaman Mural: an enduring creation narrative in the Rock Art of the Lower Pecos. University of Texas Press, Austin

    Google Scholar 

  • Boyd CE, Dering JP (1996) Medicinal and hallucinogenic plants identified in the sediments and pictographs of the Lower Pecos, Texas Archaic. Antiq 70:256–275. https://doi.org/10.1017/S0003598X00083265

    Article  Google Scholar 

  • Bryant VM, Reinhard KJ (2012) Coprolites and archaeology: the missing links in understanding human health. In: Hunt A (ed) Vertebrate Coprolites. New Mexico Museum of Natural History and Science Bulletin 51. Albuquerque, pp. 379–387

  • Camacho M, Leles D, Santiago JD, Ramos RRC, Uchôa C, Bastos OMP, Nunes VHB, de Souza SM, Araújo A (2016) Investigation of biodegradation in three different sediment cores from a shellmound (sambaqui) of Brazil, using Ascaris lumbricoides eggs as a model. J Archaeol Sci Rep 9:358–365. https://doi.org/10.1016/j.jasrep.2016.08.021

    Article  Google Scholar 

  • Camacho M, Iniguez A, Reinhard KJ (2018a) Taphonomic considerations on pinworm prevalence in three Ancestral Puebloan latrines. J Archaeol Sci Rep 20:791–798. https://doi.org/10.1016/j.jasrep.2018.06.024

    Article  Google Scholar 

  • Camacho M, Araújo A, Morrow JJ, Reinhard KJ (2018b) Recovering parasites from mummies and coprolites: establishing an epidemiological approach. Parasit Vectors 11:248. https://doi.org/10.1186/s13071-018-2729-4

    Article  Google Scholar 

  • Castetter EF, Bell WH (1951) Yuma Indian agriculture; primitive subsistence on the Lower Colorado and Gila Rivers. University of New Mexico Press, Albuquerque

    Google Scholar 

  • Crandall B, Stahl P (1995) Human digestive effects on a micro-mammalian skeleton. J Archaeol Sci 22:789–797. https://doi.org/10.1016/0305-4403(95)90008-X

    Article  Google Scholar 

  • Dahl K (2009) Corn Soot Woman’s timeless lesson: eat your smut. Etnobiol 7:94–99

    Google Scholar 

  • Danielson DR, Reinhard KJ (1998) Human dental microwear caused by calcium oxalate phytoliths in prehistoric diet of the lower Pecos region, Texas. Amer J Phys Anthropol 107:297–304. https://doi.org/10.1002/(SICI)1096-8644(199811)107:3<297::AID-AJPA6>3.0.CO;2-M

    Article  Google Scholar 

  • Denevan WM (1995) 2 Prehistoric agricultural methods as models for sustainability. Adv Plant Pathol 11:21–43. https://doi.org/10.1016/S0736-4539(06)80004-8

    Article  Google Scholar 

  • Fowler CS, Liljeblad S (1986) Northern Paiute. In: D’Zaevedo WL (ed) Handbook of North American Indians 11. Smithsonian Institution, Washington, D.C., pp 435–465

    Google Scholar 

  • Fry GF (1977) Analysis of Prehistoric Coprolites from Utah. University of Utah Press, Salt Lake City

    Google Scholar 

  • Fugassa MH, Reinhard KJ, Johnson KL, Vieira M, Araújo A (2011) Parasitism of prehistoric humans and companion animals from Antelope Cave Mojave County, Arizona. J Parasitol 97:862–867. https://doi.org/10.1645/GE-2459.1

    Article  Google Scholar 

  • Geib PR, Heitman CC (2015) The relevance of maize pollen for assessing the extent of maize production in Chaco Canyon. In: Heitmann CC, Plog S (eds) Chaco revisited: new research on the prehistory of Chaco Canyon, New Mexico. University of Arizona Press, Tucson, pp 66–95

    Google Scholar 

  • Geib PR, Jolie EA (2008) The role of basketry in early Holocene small seed exploitation: Implications of a ca. 9,000 year-old basket from Cowboy Cave, Utah. Amer Antiq 73:83–102. https://doi.org/10.1017/S0002731600041299

    Article  Google Scholar 

  • Geib PR, Jolie EA (2010) Direct evidence of early holocene dietary expansion on the Colorado plateau: interpreting the constituents of dated human feces. Presented at the 75th Annual Meeting, Society for American Archaeology, St. Louis.

  • Geib PR, Keller DR (2002) Bighorn Cave: test excavation of a stratified dry shelter, Mohave County, Arizona. Northern Arizona University, Flagstaff

    Google Scholar 

  • Gonçalves MLC, Araújo A, Duarte R, da Silva JP, Reinhard K, Bouchet F, Ferreira LF (2002) Detection of Giardia duodenalis antigen in coprolites using a commercially available enzyme-linked immunosorbent assay. Trans Roy Soc Trop Med Hyg 96:640–643. https://doi.org/10.1016/S0035-9203(02)90337-8

    Article  Google Scholar 

  • Hammerl EE, Baier MA, Reinhard KJ (2015) Agave chewing and dental wear: evidence from quids. PLoS One. 10(7):e0133710. https://doi.org/10.1371/journal.pone.0133710

    Article  Google Scholar 

  • Hampson J (2016) Embodiment, transformation and ideology in the rock art of Trans-Pecos Texas. Camb Archaeol J 26:217–241. https://doi.org/10.1017/S0959774315000505

    Article  Google Scholar 

  • Holden T (1990) The rehydration of coprolites using trisodium phosphate solution: colour reaction and smell. Paleopath Newsl 71:4

    Google Scholar 

  • Isendahl C, Smith ME (2013) Sustainable agrarian urbanism: the low-density cities of the Mayas and Aztecs. Cities 31:132–143. https://doi.org/10.1016/j.cities.2012.07.012

    Article  Google Scholar 

  • Jiménez FA, Gardner SL, Araújo A, Fugassa M, Brooks RH, Racz E, Reinhard KJ (2012) Zoonotic and human parasites of inhabitants of Cueva de Los Muertos Chiquitos, Rio Zape Valley, Durango, México. J Parasitol 98:304–309. https://doi.org/10.1645/GE-2915.1

    Article  Google Scholar 

  • Jones AKG (1986) Fish bone survival in the digestive systems of the pig, dog, and man: some experiments. In: Brinkhuizen DC, Clason AT (eds) Fish and Archaeology: Studies in Osteometry, Taphonomy, Seasonality, and Fishing Methods. BAR International Series 294, Oxford, pp 53–61

    Google Scholar 

  • Kirkland F, Newcomb WW (1996) The Rock Art of Texas Indians. University of Texas Press, Austin.

    Google Scholar 

  • Koenig CW (2012) Burned rock middens, settlement patterns, and bias in the Lower Pecos Canyonlands of Texas. Thesis. Department of Anthropology. Texas State University-San Marcos

  • Lord KJ (1984) The Zooarchaeology of Hinds Cave (41 VV 456). Dissertation. The University of Texas Austin

  • Marlar RA, Leonard BL, Billman BR, Lambert PM, Marlar JE (2000) Biochemical evidence of cannibalism at a prehistoric Puebloan site in southwestern Colorado. Nature 407:74–78. https://doi.org/10.1038/35024064

    Article  Google Scholar 

  • McGregor R (2013) Basketry and other perishable arts. In: Shafer HJ (ed) Painters in prehistory: archaeology and art of the Lower Pecos Canyonlands. Trinity University Press, San Antonio, pp 153–170

    Google Scholar 

  • Mock SB (2013) Painted pebbles: Lower Pecos women take charge. In: Shafer HJ (ed) Painters in Prehistory: Archaeology and Art of the Lower Pecos Canyonlands. Trinity University Press, San Antonio, pp 223–240

    Google Scholar 

  • Morrow JJ, Reinhard KJ (2016) Cryptosporidium parvum among coprolites from La Cueva de los Muertos Chiquitos (600–800 CE), Rio Zape Valley, Durango, Mexico. J Parasitol 102:429–436. https://doi.org/10.1645/15-916

    Article  Google Scholar 

  • Morrow JJ, Newby J, Piombino-Mascali D, Reinhard KJ (2016) Taphonomic considerations for the analysis of parasites in archaeological materials. Int J Paleopathol 13:56–64. https://doi.org/10.1016/j.ijpp.2016.01.005

    Article  Google Scholar 

  • Munkacsi AB, Stoxen S, May G (2008) Ustilago maydis populations tracked maize through domestication and cultivation in the Americas. Proc Roy Soc London B: Biol Sci 275:1037–1046. https://doi.org/10.1098/rspb.2007.1636

    Article  Google Scholar 

  • Park SJ, Timmins PR, Quiring DT, Jui PY (1994) Inheritance of leaf area and hooked trichome density of the first trifoliolate leaf in common bean (Phaseolus vulgaris L.). Can J Plant Sci 74:235–240. https://doi.org/10.4141/cjps94-048

    Article  Google Scholar 

  • Perrotta VG, Arambarri AM (2018) Anatomía de los cladodios de Opuntia (Cactaceae) de la provincia de Buenos Aires, Argentina. Bol Soc Argent Bot 53:345–357 https://revistas.unc.edu.ar/index.php/BSAB/article/view/21310

    Article  Google Scholar 

  • Poinar HN, Kuch M, Sobolik KD, Barnes I, Stankiewicz AB, Kuder T, Spaulding WG, Bryant VM, Cooper A, Pääbo S (2001) A molecular analysis of dietary diversity for three archaic Native Americans. PNAS 98:4317–4322. https://doi.org/10.1073/pnas.061014798

    Article  Google Scholar 

  • Rácz SE, Pucu E, Jensen E, Mostek C, Morrow JJ, Van Hove ML, Bianucci R, Willems D, Heller F, Reinhard KJ (2015) Parasitology in an archaeological context: analysis of medieval burials in Nivelles, Belgium. J Archaeol Sc 53:304–315. https://doi.org/10.1016/j.jas.2014.10.023

    Article  Google Scholar 

  • Raff JA, Reynolds AW, Turpin S, Rohland N, David R, Bolnick DA (2018) Paleogenomic investigations of the ancient inhabitants of the Lower Pecos region of Texas and Northern Mexico. Amer J PhysAnthrop 165:217–218. https://doi.org/10.1080/2052546.1991.11909637

    Article  Google Scholar 

  • Reinhard KJ (1985) Recovery of helminths from prehistoric feces: the cultural ecology of prehistoric parasitism. Thesis, Northern Arizona University.

  • Reinhard KJ (1988) Diet, parasitism, and anemia in the prehistoric Southwest. Dissertation, Texas A&M University.

  • Reinhard KJ (1992) Patterns of diet, parasitism, and anemia in prehistoric west North America. In: Stuart-Macadam P, Kent S (eds) Diet, Demography, and Disease: Changing Perspectives on Anemia. Aldine de Gruyter, New York, pp 219–258

    Google Scholar 

  • Reinhard KJ (2006) A coprological view of Anasazi cannibalism. Am Sci 94:254–262. https://doi.org/10.1511/2006.3.254

    Article  Google Scholar 

  • Reinhard KJ (2017) Reestablishing rigor in archaeological parasitology. Int J Paleopathol 19:124–134. https://doi.org/10.1016/j.ijpp.2017.06.002

    Article  Google Scholar 

  • Reinhard KJ, Araujo A (2015) Prehistoric earth oven facilities and the pathoecology of Chagas disease in the Lower Pecos Canyonlands. J Archaeol Sci 53:227–234. https://doi.org/10.1016/j.jas.2014.09.022

    Article  Google Scholar 

  • Reinhard KJ, Clary KH (1986) Parasite analysis of prehistoric coprolites from Chaco Canyon, New Mexico. In: Akins NJ (ed) A bioarchaeological approach to human burials from Chaco Canyon. New Mexico. National Park Service, Santa Fe, pp 214–222

    Google Scholar 

  • Reinhard KJ, Danielson DR (2005) Pervasiveness of phytoliths in prehistoric Southwestern diet and implications for regional and temporal trends for dental microwear. J Archaeol Sci 32:981–988. https://doi.org/10.1016/j.jas.2005.01.014

    Article  Google Scholar 

  • Reinhard KJ, Ambler JR, McGuffie M (1985) Diet and parasitism at Dust Devil Cave. Amer Antiq 50:819–824. https://doi.org/10.2307/280170

    Article  Google Scholar 

  • Reinhard KJ, Hamilton DL, Hevly RH (1991) Use of pollen concentration in paleopharmacology: coprolite evidence of medicinal plants. J Ethnobiol 11:117–134

    Google Scholar 

  • Reinhard K, Danielson M, Daniels DR, Miranda Chaves S (2003) Chapter 7: multidisciplinary coprolite analysis. In (PR Geib and DR Keller eds) Bighorn Cave: test excavation of a stratified dry shelter, Mojave County, Arizona. Bilby Research Center Occasional Papers 1. Northern Arizona University, Flagstaff, pp.135–152

  • Reinhard KJ, Edwards SK, Damon TR, Meier DK (2006) Pollen concentration analysis of Ancestral Pueblo dietary variation. Palaeogeogr Palaeoclimatol Palaeoecol 237:92–109. https://doi.org/10.1016/j.palaeo.2005.11.030

    Article  Google Scholar 

  • Reinhard KJ, Szuter C, Ambler JR (2007) Hunter-gatherer use of small animal food resources. Int J Osteoarchaeol 17:416–428. https://doi.org/10.1002/oa.883

    Article  Google Scholar 

  • Reinhard KJ, Chaves SAM, Iñiguez AM (2008) Chloroplast aDNA in prehistoric Texas coprolites: evidence of contamination, medicine, and diet. J Archaeol Sci 35:1748–1755. https://doi.org/10.1016/j.jas.2007.11.013

    Article  Google Scholar 

  • Reinhard KJ, Johnson KL, LeRoy-Toren S, Wieseman K, Teixeira-Santos I, Vieira M (2012) Understanding the pathoecological relationship between ancient diet and modern diabetes through coprolite analysis: a case example from Antelope Cave, Mojave County, Arizona. Cur Anthropol 53:506–512. https://doi.org/10.1086/665923

    Article  Google Scholar 

  • Rhode D, Madsen DB, Jones KT (2006) Antiquity of early Holocene small-seed consumption and processing at Danger Cave. Antiq 80:328–339. https://doi.org/10.1017/S0003598X00093650

    Article  Google Scholar 

  • Riley T (2008) Diet and seasonality in the Lower Pecos: Evaluating coprolite data sets with cluster analysis. J Archaeol Sci. 35:2726–2741. https://doi.org/10.1016/j.jas.2008.04.022

    Article  Google Scholar 

  • Riley T (2010) Assessing diet and seasonality in the Lower Pecos Canyonlands: an evaluation of coprolite specimens as records of individual dietary decisions. (Dissertation) Texas A&M University.

  • Shafer HJ (1975) Clay figurines from the Lower Pecos region, Texas. Amer Antiq 40:148–158. https://doi.org/10.1080/2052546.1974.11908679

    Article  Google Scholar 

  • Shafer HJ (2013) Cultural and stylistic through time in the lower Pecos. In: Shafer HJ (ed) Painters in Prehistory: Archaeology and Art of the Lower Pecos Canyonlands. Trinity University Press, San Antonio, pp. 59–91.

  • Shillito LM, Blong JC, Jenkins DL, Stafford TW Jr, Whelton H, McDonough K, Bull ID (2018) New research at Paisley Caves: applying new integrated analytical approaches to understanding stratigraphy, taphonomy, and site formation processes. PaleoAmerica 4(1):82–86. https://doi.org/10.1080/20555563.2017.1396167

    Article  Google Scholar 

  • Sobolik KD, Gremillion KJ, Whitten PL, Watson PJ (1996) Sex determination of prehistoric human paleofeces. Amer J Phys Anthropol 101:283–290. https://doi.org/10.1002/(SICI)1096-8644(199610)101:2<283::AID-AJPA10>3.0.CO;2-W

    Article  Google Scholar 

  • Sonderman EM, Dozier CA, Smith MF (2019) Analysis of a coprolite from Conejo Shelter, Texas: potential ritualistic viperous snake consumption. J Archaeol Sci Rep 25:85–93. https://doi.org/10.1016/j.jasrep.2019.03.032

    Article  Google Scholar 

  • Sparkman PS (1908) The culture of the Luiseno Indians (Vol. 8, No. 4). University Press, Berkeley

    Google Scholar 

  • Spicer EH (1954) Potam, a Yaqui Village in Sonora. American Anthropological Association, Menasha

    Google Scholar 

  • Sutton MQ, Reinhard KJ (1995) Cluster analysis of the coprolites from Antelope House: implications for Anasazi diet and cuisine. J Archeol Sci 22:741–750. https://doi.org/10.1016/0305-4403(95)90004-7

    Article  Google Scholar 

  • Taylor A, Hutson JM, Bryant VM, Jenkins DL (2019) Dietary items in Early to Late Holocene human coprolites from Paisley Caves, Oregon, USA. Palynol. https://doi.org/10.1080/01916122.2018.1530699

  • Tito RY, Macmil S, Wiley G, Najar F, Cleeland L, Qu C, Wang P, Romagne F, Leonard S, Ruiz AJ, Reinhard KJ (2008) Phylotyping and functional analysis of two ancient human microbiomes. PLoS One, 3(11), p.e3703. https://doi.org/10.1371/journal.pone.0003703

    Article  Google Scholar 

  • Tito RY, Belknap SL III, Sobolik KD, Ingraham RC, Cleeland LM, Lewis CM Jr (2011) Brief communication: DNA from early Holocene American dog. Amer J Phys Anthropol 145(4):653–657. https://doi.org/10.1002/ajpa.21526

    Article  Google Scholar 

  • Tito RY, Kights D, Mecal J, Obregon-Tito AJ, Cleeland L, Fares N, Roe B, Reinhard KJ, Sobolik K, Aufderheide A, Foster M, Spicer P, Knight R, Lewis CM (2012) New insights from characterizing extinct human gut microbiomes. PLoS ONE 7(12):e51146. https://doi.org/10.1371/journal.pone.0051146

    Article  Google Scholar 

  • Turpin SA (1996) Painting on bones and other unusual media in the lower and transpecos region of Texas and Coahuila. Plains Anthropol 41:261–272

    Article  Google Scholar 

  • Van Ness MA (1986) Desha complex macrobotanical fecal remains: an Archaic diet in the in the American Southwest. Thesis, Northern Arizona University.

  • Van Ness MA, Hansen E (1996) Archaic subsistence in Glen Canyon. In: Geib PR (ed) Glen Canyon Revisited, Anthropological Papers No. 119. University of Utah Press, Salt Lake City, pp 117–125

    Google Scholar 

  • Verostick KA, Teixeira-Santos I, Bryant VM Jr, Reinhard KJ (2018) The Skiles Mummy: care of a debilitated hunter-gatherer evidenced by coprolite studies and stable isotopic analysis of hair. International Journal of Paleopathology. https://doi.org/10.1016/j.ijpp.2018.08.004

    Article  Google Scholar 

  • Williams-Dean G (1986) Pollen analysis of human coprolites. In: Morris DP (ed) Archeological Investigations at Antelope House. National Printing Office, Washington, D.C., pp 189–205

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq (AMI, grant number 307932/2014-1) and the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ (AMI, grant number CNE 2/2016). The University of Nebraska School of Natural Resources provided logistical support. We especially thank the directorship and archeological staff of Aztec Ruins National Monument (U.S. National Park Service) for granting us permission, providing logistical support, and dating of the coprolite strata.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Reinhard.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Coprolite Research: Archaeological and Paleoenvironmental Potentials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinhard, K., Camacho, M., Geyer, B. et al. Imaging coprolite taphonomy and preservation. Archaeol Anthropol Sci 11, 6017–6035 (2019). https://doi.org/10.1007/s12520-019-00946-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-019-00946-w

Keywords

Navigation