Reporting atmospheric CO2 pressure corrected results of stable carbon isotope analyses of cereals remains from the archaeological site of Peñalosa (SE Iberian Peninsula): agricultural and social implications

  • Adrián Mora-González
  • Ricardo Fernandes
  • Francisco Contreras Cortés
  • Arsenio Granados-Torres
  • Eva Alarcón García
  • Antonio Delgado-Huertas
Original Paper
  • 18 Downloads

Abstract

The practice of agriculture across the Mediterranean basin has had significant social and economic consequences, including the development of social inequalities. To inform on plant water status and thus on agricultural management techniques and environmental conditions during the first half of the second millennium BCE, we measured stable carbon isotopes in a set of 280 seeds of Hordeum vulgare L. and Pisum sativum from the archaeological site of Peñalosa (Baños de la Encina, southern Iberian Peninsula). The ranges in stable carbon isotope values for archaeological samples were wider than those observed for modern reference samples collected in 2014 and 2015, suggesting that archaeological samples experienced more varied water status conditions. This variability was associated with the location of the seeds within the site and could be a consequence of the cultivation of different plots and/or from temporal variations in local environmental conditions. For absolute comparisons of water status between modern and past samples, we introduced a novel correction to account for temporal changes in the concentration of atmospheric CO2 in addition to the usual adjustment that accounts for the variability in atmospheric CO2 stable carbon isotope values. This comparison showed that past samples had greater water availability than modern references, and thus, irrigation or intentional selection of naturally irrigated soils was practiced at the site.

Keywords

Early agriculture Carbon stable isotopes Irrigation Argaric culture 

Notes

Acknowledgements

This work was supported by a FPU grant at the Spanish Ministerio de Educación, Cultura y Deporte (AP2012-1353) and part of this research is included in the PhD Thesis of Adrián Mora-González “Irrigación y secano en el Mediterráneo Occidental (III-I milenio A.N.E.): un estudio isotópico”. This research has been conducted within the framework of the R&D Project HAR2011-30131-CO2-01 “La minería en el Alto Guadalquivir. Formas de construcción históricas en la Antigüedad a partir de la producción, consumo y distribución de los metales” funded by the Spanish Ministerio de Economía y Competitividad and the Project RNM-8011 and the research groups RNM309 and HUM274 (Junta de Andalucía). We thank the assistance of Leonor Peña-Chocarro, Esther Checa Gómez, Elena López-Romero and Cristina Criado at the Archaeobiology Laboratory of the Center for Humanities and Social Sciences (CSIC) in sample preparation and to Jose María Cantarero for his help in sampling at Baños de la Encina. Finally, we thank the helpful comments made by the editor and two anonymous reviewers.

Supplementary material

12520_2018_650_MOESM1_ESM.xlsx (18 kb)
ESM 1 (XLSX 18 kb)

References

  1. Adams RM (1966) The evolution of urban society. Aldine, ChicagoGoogle Scholar
  2. Afonso Marrero JA (2000) Estudio técnico de la Producción Lítica Tallada de Peñalosa. In: Contreras Cortés F (ed) Análisis histórico de las comunidades de la Edad del Bronce del Piedemonte meridional de Sierra Morena y Depresión Linares-Bailén. Proyecto Peñalosa. Dirección General de Bienes Culturales, Sevilla, pp 135–140Google Scholar
  3. Alarcón García E (2010) Continuidad y cambio social. Las actividades de mantenimiento en el poblado argárico de Peñalosa (Baños de la Encina, Jaén). Granada, GranadaGoogle Scholar
  4. Aranda G, Molina González F (2005) Intervenciones Arqueológicas en el yacimiento de la Edad del Bronce del Cerro de la Encina (Monachil, Granada). Trab Prehist 62, n°1:165–179Google Scholar
  5. Araus JL, Buxó R, Febrero A, Camalich MD, Martin D, Molina F, Rodríguez-Ariza MO, Voltas J (1997) Identification of ancient irrigation practise based on the carbon isotope discrimination of plant Sedds: a case study from south-east Iberian peninsula. JAS 24:729–740Google Scholar
  6. Arnanz AM (1991) Materiales carpológicos del yacimiento de Peñalosa (Baños de la Encina, Jaén). Trab Prehist 48:405–418CrossRefGoogle Scholar
  7. Ayala Juan MM (1989) La irrigación y desarrollo agrícola de la comunidad argárica del poblado de llanura “el Rincón de Almendricos” (Murcia). In: Cara Barrionuevo L (ed) El agua en zonas áridas. Arqueología e historia hidráulica tradicional de la provincia de Almería. Instituto de Estudios Almerienses, Almería, pp 1–27Google Scholar
  8. Barker G (1985) Prehistoric farming in Europe. New studies in archaeology. Cambridge University Press, CambridgeGoogle Scholar
  9. Benítez de Lugo L, Mejías Moreno M (2015) La prehistórica cultura de Las Motillas: nuevas propuestas para un viejo problema. Veleia (32):111–124Google Scholar
  10. Bogaard A, Fraser R, Heaton THE, Wallace M, Vaiglova P, Charles M, Jones G, Evershed RP, Styring AK, Andersen NH, Arbogast RM, Bartosiewicz L, Gardeisen A, Kanstrup M, Maier U, Marinova E, Ninov L, Schäfer M, Stephan E (2013) Crop manuring and intensive land management by Europe’s first farmers. Proc Natl Acad Sci 110(31):12589–12594CrossRefGoogle Scholar
  11. Bogaard A, Hodgson J, Nitsch E, Jones G, Styring A, Diffey C, Pouncett J, Herbig C, Charles M, Ertuğ F, Tugay O, Filipovic D, Fraser R (2016) Combining functional weed ecology and crop stable isotope ratios to identify cultivation intensity: a comparison of cereal production regimes in Haute Provence, France and Asturias, Spain. Veg Hist Archaeobot 25(1):57–73.  https://doi.org/10.1007/s00334-015-0524-0 CrossRefGoogle Scholar
  12. Brinkkemper O, Braadbaart F, van Os B, van Hoesel A, van Brussel AAN, Fernandes R (2018) Effectiveness of different pre-treatments in recovering pre-burial isotopic ratios of charred plants. Rapid Commun Mass Spectrom 32(3):251–261.  https://doi.org/10.1002/rcm.8033 CrossRefGoogle Scholar
  13. Buxó R (1997) Arqueología de las Plantas. Crítica, BarcelonaGoogle Scholar
  14. Buxó R, Piqué i Huerta R (2008) Arqueobotánica. El uso de las plantas en la península Ibérica. Ariel, BarcelonaGoogle Scholar
  15. Carrión Méndez F (2000) La industria de piedra trabajada de Peñalosa. In: Contreras Cortés F (ed) Análisis histórico de las comunidades de la Edad del Bronce del Piedemonte meridional de Sierra Morena y Depresión Linares-Bailén. Proyecto Peñalosa. Dirección General de Bienes Culturales, Sevilla, pp 141–158Google Scholar
  16. Castro PV, Chapman RW, Gili S, Lull V, Micó R, Rihuete C, Risch P, Sanahuja Yll ME (1999) Agriculture production and social change in the Bronze Age of South-east Spain: the Gatas Project. Antiquity 73:846–856CrossRefGoogle Scholar
  17. Chapman R (1990) Emerging complexity: the later prehistory of south-east Spain, Iberia and the west Mediterranean. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. Contreras Cortés FC (2000) Análisis histórico de las comunidades de la Edad del Bronce del Piedemonte meridional de Sierra Morena y Depresión Linares-Bailén. Proyecto Peñalosa. Arqueología. Monografías vol 10. Dirección General de Bienes Culturales, SevillaGoogle Scholar
  19. Contreras Cortés F, Cámara Serrano JA (2002) La jerarquización en la Edad del Bronce del Alto Guadalquivir (España). El poblado de Peñalosa (Baños de la Encina, Jaén). B.A.R. International Series 1025, OxfordGoogle Scholar
  20. Contreras Cortés F, Nocete Calvo F, Sánchez Ruiz M (1987) Análisis histórico de las comunidades de la Edad del Bronce de la depresión Linares-Bailén y estribaciones meridionales de Sierra Morena. Sondeo en el Cerro de Plaza de Armas de Sevilleja (Espeluy, Jaén). Anuario Arqueológico de Andalucía, 141–149Google Scholar
  21. Contreras Cortés F, Moreno A, Arboledas Martínez L, Alarcón García E, Mora-González A, Padilla Fernández JJ, García García A (2014) Un poblado de la Edad del Bronce que tiene mucho que decir, Peñalosa: últimas novedades en la Acrópolis Oriental. CPAG 24:347-390Google Scholar
  22. DeNiro MJ, Hastorf CA (1985) Alteration of 15N/14N and 13C/12C ratios of plant matter during the initial stages of diagenesis: studies utilizing archaeological specimens from Peru. Geochim Cosmochim Acta 49:97–115CrossRefGoogle Scholar
  23. Duque Espino DM (2004) La gestión del paisaje vegetal en la Prehistoria Reciente y Protohistoria en la Cuenca Media del Guadiana a partir de la Antracología. Universidad de Extremadura, CáceresGoogle Scholar
  24. Earle T (2000) Archaeology, property, and prehistory. Annu Rev Anthropol 29:39–60CrossRefGoogle Scholar
  25. Farquhar GD, Richards R (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct Plant Biol 11:539–552Google Scholar
  26. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137CrossRefGoogle Scholar
  27. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  28. Ferrio Díaz JP, Araus JL, Buxó R, Voltas J, Bort J (2005) Water management practices and climate in ancient agriculture: inference from the stable isotope composition of archaeobotanical remains. Veg Hist Archaeobot 14:510–517CrossRefGoogle Scholar
  29. Fiorentino G, Caracuta V, Casiello G, Longobardi F, Sacco A (2012) Studying ancient crop provenance: implications from δ13C and δ15N values of charred barley in a Middle Bronze Age Silo at Ebla (NW Syria). Rapid Commun Mass Spectrom 26:327-335Google Scholar
  30. Fiorentino G, Ferrio JP, Bogaard A, Araus JL, Riehl S (2015) Stable isotopes in archaeobotanical research. Veg Hist Archaeobot 24(1):215–227.  https://doi.org/10.1007/s00334-014-0492-9 CrossRefGoogle Scholar
  31. Flohr P, Müldner G, Jenkins E (2011) Carbon stable isotope analysis of cereal remains as a way to reconstruct water availability: preliminary results. Water History 3 (2):121–144Google Scholar
  32. Fuentes N, Carrión JS, Fernández S, Nocete Calvo F, Lizcano Prestel R, Pérez Bareas C (2007) Análisis polínico de los yacimientos arqueológicos Cerro del Alcázar de Baeza y Eras del Alcázar de Úbeda (Jaén). An Biol 29:85–93Google Scholar
  33. Gepts P (2004) Crop domestication as a long-term selection experiment. In: Janick J (ed) Plant Breeding Reviews. John Wiley & Sons, New York, pp 1–44Google Scholar
  34. Gibaja Bao JF, Peña-Chocarro L, Ibáñez JJ, Zapata L, Rodríguez A, Linstädter J, Pérez G, Morales J, Gassin B, Carvalho AF, González JE, Clemente I (2012) A los dos lados del Estrecho: las primeras hoces líticas y evidencias de agricultura en el sur de la Península Ibérica y el Norte de Marruecos. Una perspectiva de futuro. Rubricatum 5:87–93Google Scholar
  35. Gilman A (1987) El análisis de clase en la Prehistoria del Sureste. Trab Prehist 44:27–34Google Scholar
  36. Gilman A (1997) Cómo valorar los sistemas de propiedad a partir de datos arqueológicos. Trab Prehist 54(2):81–92CrossRefGoogle Scholar
  37. Gilman A, Thornes JB (1985) Land-use and prehistory in south-east Spain. George Allen & Unwin, LondonGoogle Scholar
  38. Gupta AK (2004) Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration. Curr Sci 87(1):54–59Google Scholar
  39. Hare VJ, Loftus E, Jeffrey A, Ramsey CB (2018) Atmospheric CO2 effect on stable carbon isotope composition of terrestrial fossil archives. Nat Commun 9(1):252.  https://doi.org/10.1038/s41467-017-02691-x CrossRefGoogle Scholar
  40. Heaton THE, Jones G, Halstead P, Tsipropoulos T (2009) Variations in the 13C/12C ratios of modern wheat grain, and implications for interpreting data from Bronze Age Assiros Toumba, Greece. Journal of Archaeological Science 36 (10):2224–2233Google Scholar
  41. Hernando A (1993) El proceso de Neolitización, perspectivas teóricas para el estudio del Neolítico. Zephyrus 46Google Scholar
  42. Hernando A (1999) Los primeros agricultores de la Península Ibérica. Arqueología Prehistórica, vol 2. Síntesis, MadridGoogle Scholar
  43. Hillman GC (1981) Reconstructing crop husbandry practices from charred remains crops. In: Mercer R (ed) Farming practice in British prehistory. Edinburgh University Press, EdimburgoGoogle Scholar
  44. Hillman GC (1984) Interpretation of archaeological plants remains: the application of ethnographic models from Turkey. In: Van Zeist W, Casparie WA (eds) Plants and ancient man. A. A. Balkema, Rotterdam, pp 1–43Google Scholar
  45. Igamberdiev AU, Mikkelsen TN, Ambus P, Bauwe H, Lea PJ, Gardeström P (2004) Photorespiration contributes to stomatal regulation and carbon isotope fractionation: a study with barley, potato and Arabidopsis plants deficient in glycine decarboxylase. Photosynth Res 81(2):139–152.  https://doi.org/10.1023/B:PRES.0000035026.05237.ec CrossRefGoogle Scholar
  46. Indermuhle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398(6723):121–126CrossRefGoogle Scholar
  47. Jalut G, Amat AE, Bonnet L, Gauquelin T, Fontugne M (2000) Holocene climatic changes in the Western Mediterranean from south-east France to south-east Spain. Palaeogeagr Palaeoclimatol Palaeoecol 160:255–290CrossRefGoogle Scholar
  48. Jalut G, Dedoubat JJ, Fontugne M, Otto T (2009) Holocene circum-Mediterranean vegetation changes: climate forcing and human impact. Quat Int 200:4–18CrossRefGoogle Scholar
  49. Leuenberger M, Siegenthaler U, Langway C (1992) Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core. Nature 357 (6378):488-490Google Scholar
  50. Lightfoot E, Stevens RE (2012) Stable isotope investigations of charred barley (Hordeum Vulgare) and wheat (Triticum spelta) grains from Danebury Hillfort: implications for palaeodietary reconstructions. JAS 39:656–662Google Scholar
  51. Lillios KT, Blanco-González A, Drake BL, López-Sáez JA (2016) Mid-late Holocene climate, demography, and cultural dynamics in Iberia: a multi-proxy approach. Quat Sci Rev 135:138–153.  https://doi.org/10.1016/j.quascirev.2016.01.011 CrossRefGoogle Scholar
  52. López Sáez JA, Alba Sánchez F, Nájera Colino T, Molina González F, Pérez Díaz S, Sabariego Ruiz S (2014) Paleoambiente y sociedad en la Edad del Bronce de la Mancha: la Motilla del Azuer. CPAG 24:391-422Google Scholar
  53. Lull V (1983) La cultura del Argar. Un modelo para el estudio de las formaciones sociales prehistóricas. Akal, BarcelonaGoogle Scholar
  54. Lull V, Micó R, Rihuete C, Risch P (2010) Las relaciones políticas y económicas de El Argar. Menga 01:11–36Google Scholar
  55. Lull V, Micó R, Rihuete C, Risch P (2015) La gestión del agua durante el Argar: el caso de la Bastida (Totana, Murcia). Minius 23:91–130Google Scholar
  56. Martín-Puertas C, Valero-Garcés BL, Pilar Mata M, González-Sampériz P, Bao R, Moreno A, Stefanova V (2008) Arid and humid phases in southern Spain during the last 4000 years: the Zoñar Lake record, Córdoba. The Holocene 18(6):907–921.  https://doi.org/10.1177/0959683608093533 CrossRefGoogle Scholar
  57. Masi A, Sadori L, Balossi R, Baneschi I, Zanchetta G (2014) Stable carbon analysis as a crop management indicator at Arslantepe (Malatya, Turkey) during the Late Chalcolithic and Early Bronze Age. Veg Hist Archaeobot 23(6):751–760CrossRefGoogle Scholar
  58. Mora-González A (2017) Irrigación y secano en el Mediterráneo Occidental (III-I milenio A.N.E.): un estudio isotópico. Universidad de Granada, GranadaGoogle Scholar
  59. Mora-González A, Delgado-Huertas A, Granados-Torres A, Contreras Cortés F, Jover Maestre FJ, López Padilla JA (2016) The isotopic footprint of irrigation in the western Mediterranean basin during the Bronze Age: the settlement of Terlinques, southeast Iberian Peninsula. Veg Hist Archaeobot 25(5):459–468.  https://doi.org/10.1007/s00334-016-0560-4 CrossRefGoogle Scholar
  60. Moreno A, Contreras Cortés F (2010) La organización social de la producción metalúrgica en las sociedades argáricas: El poblado de Peñalosa. Menga 01:53–76Google Scholar
  61. Moreno Onorato MA, Haro Navarro M (2008) Castellón Alto (Galera, Granada). Puesta en valor de un yacimiento argárico. CPAG 18:371-395Google Scholar
  62. Moreno A, Contreras Cortés F, Cámara Serrano JA, Arboledas Martínez L, Sánchez Romero M (2008) Nuevas aportaciones al estudio del control del agua en la Edad del Bronce. La cisterna de Peñalosa (Baños de la Encina, Jaén). CPAG 18:265-296Google Scholar
  63. Pearsall D (1989) Paleoethnobotany: a handbook of procedures. Academic Press Inc., San DiegoGoogle Scholar
  64. Peña Chocarro L (1999) Prehistoric agriculture in southern Spain during the Neolithic and the Bronze Age. B.A.R International Series, 818, OxfordGoogle Scholar
  65. Peña Chocarro L (2000a) Agricultura y alimentación vegetal en el poblado de la Edad del Bronce de Peñalosa (Baños de la Encina, Jaén). Complutum 11:209–219Google Scholar
  66. Peña Chocarro L (2000b) El estudio de las semillas de Peñalosa. In: Contreras Cortés F (ed) Análisis histórico de las comunidades de la Edad del Bronce del Piedemonte meridional de Sierra Morena y Depresión Linares-Bailén. Proyecto Peñalosa. Dirección General de Bienes Culturales, Sevilla, pp 237–256Google Scholar
  67. Pérez-Obiol RP, Jalut G, Julià R, Pèlachs A, Iriarte MJ, Otto T, Hernández-Beloqui B (2011) Mid-Holocene vegetation and climatic history of the Iberian Peninsula. The Holocene 21(1):75–93CrossRefGoogle Scholar
  68. Pingel V, Schubart H, Arteaga O, Roos AM, Kunst M (2003) Excavaciones arqueológicas en la ladera sur de Fuente Álamo. Campaña de 1999. Spal 12:179–229CrossRefGoogle Scholar
  69. Piperno D, Flanney K (2001) The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectometry dates and their implications. Proc Natl Acad Sci 98:2101–2103CrossRefGoogle Scholar
  70. Polley HW, Johnson HB, Marinot BD, Mayeux HS (1993) Increase in C3 plant water-use efficiency and biomass over Glacial to present C02 concentrations. Nature 361:61-64.  https://doi.org/10.1038/361061a0
  71. Polley HW, Johnson HB, Mayeux HS (1995) Tischler CR impacts of rising CO2 concentration on water use efficiency of woody grassland invaders. In: Barrow JR, McArthur ED, Sosebee RE, Tausch RJ (eds) Proceedings: shrubland ecosystem dynamics in a changing environment. Intermountain Research Station, Forest Service, U.S. Department of Agriculture, Las Cruces, NM, pp 189–194Google Scholar
  72. Pustovoytov K, Riehl S (2016) The Early Bronze Age/Middle Bronze Age transition and the aquifer geography in the Near East. JAS 69:1–11.  https://doi.org/10.1016/j.jas.2016.02.005 Google Scholar
  73. Renfrew JM (1973) Paleoethnobotany. The prehistoric food plants of the Near East and Europe. Columbia University Press, New YorkGoogle Scholar
  74. Riehl S, Pustovoytov k, Weippert H, Klett S, Hole F (2014) Drought stress variability in ancient Near Eastern agricultural systems evidenced by δ13C in barley grain. Proc Natl Acad Sci U S A 111 (34):12348-12353Google Scholar
  75. Risch R (2002) Recursos naturales, medios de producción y explotación social. Un análisis económico de la industria lítica de Fuente Álamo (Almería), 2250–1400 antes de nuestra era. Iberia Archaeologica, 3. MainzGoogle Scholar
  76. Rodriguez Ariza MO (1992) Las relaciones hombre-vegetación en el Sureste de la Península Ibérica durante las Edades del Cobre y Bronce a partir del análisis antracológico de siete yacimientos arqueológicos. Universidad de Granada, GranadaGoogle Scholar
  77. Shubart H, Pingel V, Arteaga O (2001) Fuente Álamo. Las excavaciones arqueológicas 1977–1991 en el poblado de la Edad del bronce. Junta de Andalucía, SevillaGoogle Scholar
  78. Stokes H, Müldner G, Jenkins E (2011) An investigation into the archaeological application of carbon stable isotope analysis used to establish crop water availability: solutions and ways forwards. In: Mithen S, Black E (eds) Water, life and civilisation: climate, environment, and society in the Jordan Valley. Cambridge University Press, Cambridge, pp 373–380Google Scholar
  79. Styring AK, Manning H, Fraser RA, Wallace M, Jones G, Charles M, Heaton THE, Bogaard A, Evershed RP (2013) The effect of charring and burial on the biochemical composition of cereal grains: investigating the integrity of archaeological plant material. JAS 40(12):4767–4779.  https://doi.org/10.1016/j.jas.2013.03.024 Google Scholar
  80. Vaiglova P, Snoeck C, Nitsch E, Bogaard A, Lee-Thorp JA (2014) Impact of contamination and pre-treatment on stable carbon and nitrogen isotopic composition of charred plant remains. Rapid Commun Mass Spectrom 28:2497–2510CrossRefGoogle Scholar
  81. Riehl S, Pustovoytov k, Weippert H, Klett S, Hole F (2014) Drought stress variability in ancient Near Eastern agricultural systems evidenced by δ13C in barley grain. Proc Natl Acad Sci U S A 111 (34):12348-12353Google Scholar
  82. Wallace M, Jones GEM, Charles M, Fraser R, Halstead P, Heaton THE, Bogaard A (2013) Stable carbon isotope analysis as a direct means of inferring crop water status and water management practices. World Arch 45(3):388–409.  https://doi.org/10.1080/00438243.2013.821671 CrossRefGoogle Scholar
  83. Willcox G (1998) Archaeobotanical evidence for the beginnings of agriculture in South west Asia. In: Damania A, Valkoun J, Willcox G, Qualset CO (eds) The origins of agriculture and crop domestication, Aleppo, Siria. ICARDA, pp 25–38Google Scholar
  84. Zapata L, Peña-Chocarro L, Pérez-Jordá G, Stika HP (2004) Early Neolithic agriculture in the Iberian Peninsula. J World Prehist 18(4):283–325CrossRefGoogle Scholar
  85. Zhao Z (1998) The Middle Yangtze region in China is one place where rice was domesticated: phytolit evidence from Diaotonghuan Cave, Northern Jiangxi. Antiquity 72:885–897CrossRefGoogle Scholar
  86. Zohary D, Hopf M (1988) Domestications of plants in the Old World. Clarendon Press, OxfordGoogle Scholar
  87. Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the Old World: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Prehistoria y ArqueologíaUniversidad de Granada, Facultad Filosofía y LetrasGranadaSpain
  2. 2.Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR)ArmillaSpain
  3. 3.Department of ArchaeologyMax Planck Institute for the Science of Human HistoryJenaGermany
  4. 4.School of ArchaeologyUniversity of OxfordOxfordUK

Personalised recommendations