Skip to main content
Log in

Assessing raw material’s role in bipolar and freehand miniaturized flake shape, technological structure, and fragmentation rates

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

This paper concludes a long-term experimental study to examine the role of bipolar and freehand reduction as strategies for lithic miniaturization on milky quartz and flint. The experiments provide clear quantifiable guidelines for identifying bipolar reduction in archeological assemblages. They suggest that with bipolar reduction—a straightforward and time-efficient strategy to learn—toolmakers could easily surpass the cutting edge/mass efficiency levels of more derived lithic reduction strategies such as pressure blade production. Here we compared the efficiency and technological attributes on the experiment’s milky quartz and flint flakes. The results show few practically significant differences between the two flake samples. The strongest differences are in the flakes’ ventral surface and platform features. Otherwise, we concur with previous experimental studies that show certain types of milky quartz behave in essentially the same way as other brittle materials such as flint. Our results aid the identification of bipolar reduction with a focus on cores and flakes. They contribute to a growing body of literature showing the importance of simple, but not simplistic, technological strategies in prehistoric human decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahler SA (1989) Experimental knapping with KRF and mid continental cherts: overview and applications. In: Amick DS, Mauldin RP (eds) Experiments in lithic technology. Archaeopress, Oxford, pp 199–234

    Google Scholar 

  • Arthur KW (2010) Feminine knowledge and skill reconsidered: women and flaked stone tools. Amer Anthrop 112:228–243

    Google Scholar 

  • Barham LS (1987) The bipolar technique in southern Africa: a replication experiment. S Afr Arc Bul 42:45–50

    Google Scholar 

  • Bar-Yosef O, Eren MI, Yuan J, Cohen DJ, Li Y (2012) Were bamboo tools made in prehistoric Southeast Asia? An experimental view from South China. Quatern Int 269:9–21

    Google Scholar 

  • Bernstein D, Lenardi MJ, Merwin D (1993) Archaeological investigations at Eagles Nest, Mount Sinai, Town of Brookhaven, Suffolk County, New York. The Institute for Long Island Archaeology, Stony Brook

    Google Scholar 

  • Binford LR, Quimby GI (1963) Indian sites and chipped stone materials in the Northern Lake Michigan area. Fieldiana Anthropol 36:277–307

    Google Scholar 

  • Bleed P (2008) Skill matters. J Archaeol Method Theory 15:154–166. https://doi.org/10.2307/40345999

    Article  Google Scholar 

  • Bradbury AP, Carr PJ (2012) Examining the role of blade and bipolar technologies in the organization of early archaic lithic technology. In: Carr PJ, Bradbury AP, Price SE (eds) Contemporary lithic analysis in the southeast: problems, solutions, and interpretations. University of Alabama Press, Montgomery, pp 79–95

    Google Scholar 

  • Brantingham PJ, Gao X, Madsen DB, Bettinger RL, Elston RG (2004) The initial upper Paleolithic at Shuidonggou, Northwestern China. In: Brantingham PJ, Kuhn SL, Kerry KW (eds) The Early Upper Paleolithic beyond Western Europe, vol Berkeley. University of California Press, Berkeley, pp 223–241

    Google Scholar 

  • Brown KS (2011) The sword in the stone: lithic raw material exploitation in the middle stone age at pinnacle point site 5–6, Southern Cape, South Africa. Unpublished PhD Thesis. University of Cape Town

  • Le Brun-Ricalens F (1989) Contribution à l’étude des pièces esquillées: La présence de percuteurs à ‘cupules. BSPF 86:196–200

    Google Scholar 

  • Le Brun-Ricalens F (2006) Les pièces esquillées: état des connaissances après un siècle de reconnaissance. Paléo: Rev D'archaeol Préhisorique 18:95–114 http://paleo.revues.org/index181.html

    Google Scholar 

  • Buchanan B, O’Brien MJ, Collard M (2014) Continent-wide or region-specific? A geometric morphometrics-based assessment of variation in Clovis point shape. Archaeol Anthropol Sci 6:145–162

    Google Scholar 

  • Callahan E (1987) An evaluation of the lithic technology in Middle Sweden during the Mesolithic and Neolithic. Societas Archaeologica Upsaliensis, Upsalla

    Google Scholar 

  • Clarkson C (2010) Regional diversity within the core technology of the Howiesons Poort techno-complex. In: Lycett SJ, Chauhan PR (eds) New perspectives on old stones. Springer, New York, pp 43–59

    Google Scholar 

  • Costa AG (2010) A geometric morphometric assessment of plan shape in bone and stone Acheulean bifaces from the Middle Pleistocene site of Castel di Guido, Latium, Italy. In: Lycett S, Chauhan P (eds) New perspectives on old stones. Springer, New York, pp 23–41

    Google Scholar 

  • Cotterell B, Kamminga J (1987) The formation of flakes. AmerAnt 52:675–708

    Google Scholar 

  • Curtoni RP (1996) Experimentando con bipolares: indicadores e implicancias arqueológicas. Relaciones Soc Argent Antropol 21:187–214

    Google Scholar 

  • Deacon J (1984) The later stone age of southernmost Africa. Archaeopress, BAR International Series, Oxford

    Google Scholar 

  • de la Peña P (2011) Sobre la identificación macroscópica de las piezas astilladas: propuesta experimental. Trab Prehist 68:79–98

    Google Scholar 

  • de la Peña P (2015a) The interpretation of bipolar knapping in African Stone Age studies. CurrAnthr 56:911–923

    Google Scholar 

  • de la Peña P (2015b) A qualitative guide to recognize bipolar knapping for flint and quartz. Lith Technol 4:1–16

    Google Scholar 

  • Dibble HL, Rezek Z (2009) Introducing a new experimental design for controlled studies of flake formation: results for exterior platform angle, platform depth, angle of blow, velocity, and force. JAS 36:1945–1954

    Google Scholar 

  • Díez-Martín F et al (2009a) The Middle to Later Stone Age technological transition in East Africa. New data from Mumba Rockshelter Bed V (Tanzania) and their implications for the origin of modern human behavior. J Afr Archaeol 7:147–173

    Google Scholar 

  • Diez-Martin, FP, Yustos M, Dominguez-Rodrigo A, Mabulla R, Barba (2009b) Were olduvai mominins making butchering tools or battering tools? Analysis of a recently excavated lithic assemblage from BK (Bed II, Olduvai Gorge, Tanzania). J Afr Archaeol 28:274-289

    Google Scholar 

  • Díez-Martín F, Yustos P, Domínguez-Rodrigo M, Prendergast M (2011) An experimental study of bipolar and freehand knapping of Naibor Soit quartz from Olduvai Gorge (Tanzania). AmerAnt 76:690–708

    Google Scholar 

  • Driscoll K (2010) Understanding quartz technology in early prehistoric Ireland. PhD, University College Dublin

  • Driscoll K (2011) Vein quartz in lithic traditions: an analysis based on experimental archaeology. JAS 38:734–745. https://doi.org/10.1016/j.jas.2010.10.027

    Article  Google Scholar 

  • Duke H, Pargeter J (2015) Weaving simple solutions to complex problems: an experimental study of skill in bipolar cobble-splitting. Lith Tech 40(4):349–366

    Google Scholar 

  • Eren MI, Greenspan A, Sampson GC (2008) Are upper paleolithic blade cores more productive than middle paleolithic discoidal cores? a replication experiment. Journal of Human Evolution. 55(6):952–961

    Google Scholar 

  • Eren MI (2010) Anvil reduction at the early paleoindian site of paleo Crossing (33ME274), Northeast Ohio. Curr Res Pleistocene 27

  • Eren MI, Bradley B, Sampson CG (2011a) Middle Paleolithic skill level and the individual knapper: an experiment. AmerAnt 76:229–251

    Google Scholar 

  • Eren MI, Lycett SJ, Roos CI, Sampson CG (2011b) Toolstone constraints on knapping skill: Levallois reduction with two different raw materials. JAS 38:2731–2739

    Google Scholar 

  • Eren MI, Díez-Martin F, Dominguez-Rodrigo M (2013) An empirical test of the relative frequency of bipolar reduction in Beds VI, V, and III at Mumba Rockshelter, Tanzania: implications for the East African Middle to Late Stone Age transition. JAS 40:248–256

    Google Scholar 

  • Eren MI, Roos CI, Story BA, von Cramon-Taubadel N, Lycett SJ (2014) The role of raw material differences in stone tool shape variation: an experimental assessment. JAS 49:472–487

    Google Scholar 

  • Eren MI, Buchanan B, O'Brien MJ (2015) Social learning and technological evolution during the Clovis colonization of the New World. J Hum Evol 80:159–170

    Google Scholar 

  • Eren MI, Lycett SJ, Patten RJ, Buchanan B, Pargeter J, O'Brien MJ (2016) Test, model, and method validation: the role of experimental stone artifact replication in hypothesis-driven archaeology. Ethnoarchaeology 8:103–136. https://doi.org/10.1080/19442890.2016.1213972

    Article  Google Scholar 

  • Flenniken JJ (1981) Replicative systems analysis: a model applied to the vein quartz artifacts from the Hoko River site. Washington State University Laboratory of Anthropology, Pullman

    Google Scholar 

  • Goodyear AC (1993) Tool kit entropy and bipolar reduction: a study of interassemblage lithic variability among Paleo-Indian sites in the northeastern United States. N Amer Archaeol 14:1–23

    Google Scholar 

  • Gurtov AN, Eren MI (2014) Lower Paleolithic bipolar reduction and hominin selection of quartz at Olduvai Gorge, Tanzania: what’s the connection? Quatern Int 322:285–291

    Google Scholar 

  • Gurtov AN, Buchanan B, Eren MI (2015) “Dissecting” quartzite and basalt bipolar flake shape: a morphometric comparison of experimental replications from Olduvai Gorge, Tanzania. Lith Technol 4:1–10

    Google Scholar 

  • Hayden B (1973) Analysis of a “Taap” composite knife. Archaeol Phys Anthropol Oceania 8:116–126

    Google Scholar 

  • Hayden B (1980) Confusion in the bipolar world: bashed pebbles and splintered pieces. Lith Technol 9:2–7

    Google Scholar 

  • Hiscock P (2015) Making it small in the Palaeolithic: bipolar stone-working, miniature artefacts and models of core recycling. WorldArch 47:158–169

    Google Scholar 

  • Jennings TA, Pevny CD, Dickens WA (2010) A biface and blade core efficiency experiment: implications for Early Paleoindian technological organization. JAS 37:2155–2164

    Google Scholar 

  • Jeske RJ, Lurie R (1993) The archaeological visibility of bipolar technology: an example from the Koster site. Midcont J Archaeol 18:131–160

    Google Scholar 

  • Knutsson H, Knutsson K, Taipale N, Tallavaara M, Darmark K (2015) How shattered flakes were used: micro-wear analysis of quartz flake fragments. J Archaeol Sci Rep 2:517–531

    Google Scholar 

  • Kobayashi H (1975) The experimental study of bipolar flakes. In: Swanson E (ed) Lithic technology: making and using stone tools. Mouton Publishers, Paris, pp 115–127

    Google Scholar 

  • Kuhn SL, Miller DS (2015) Artifacts as patches: the marginal value theorem and stone tool life histories. In: Kuhn SL, Miller SD, Goodale N, Andrefsky W (eds) Lithic technological systems and evolutionary Theory, vol 172, pp 172–197

    Google Scholar 

  • Kuijt I, Prentiss WC, Pokotylo DL (1995) Bipolar reduction: an experimental study of debitage variability. Lith Technol 20:116–127

    Google Scholar 

  • Low M, Mackay A (2016) The late Pleistocene microlithic at Putslaagte 8 rockshelter in the Western Cape, South Africa. S Afr Archaeol Bull 71:146–159

    Google Scholar 

  • Lycett SJ, von Cramon-Taubadel N (2014) Toward a “quantitative genetic” approach to lithic variation. J Archaeol Method Theory 22(2):646–675. https://doi.org/10.1007/s10816-013-9200-9

    Google Scholar 

  • Mackay A (2008) A method for estimating edge length from flake dimensions: use and implications for technological change in the southern African MSA. JAS 35:614–622

    Google Scholar 

  • Manninen MA (2016) The effect of raw material properties on flake and flake-tool dimensions: a comparison between quartz and chert. Quatern Int 424:24–31. https://doi.org/10.1016/j.quaint.2015.12.096

    Article  Google Scholar 

  • Marwick B (2017) Computational reproducibility in archaeological research: basic principles and a case study of their implementation. J Archaeol Method Theory 24:424–450

    Google Scholar 

  • Morgan B, Eren MI, Khreisheh N, Hill G, Bradley B, Jennings T, Smallwood A (2015) Clovis bipolar lithic reduction at Paleo Crossing, Ohio: a reinterpretation based on the examination of experimental replications. In: Thomas J, Ashley S (eds) Clovis: current perspectives on technology, chronology, and adaptations. Texas A&M Press, College Station, pp 121–143

    Google Scholar 

  • Mourre V (2004) Le débitage sur enclume au Paléolithique moyen dans le Sud-Ouest de la France. In: Sd C (ed) Session 5: middle Paleolithic. Acts of the XIVth UISPP congress. BAR international series, vol S1239. Archaeopress, Oxford, pp 29–38

    Google Scholar 

  • Muller A, Clarkson C (2016) Identifying major transitions in the evolution of lithic cutting edge production rates. PLoS One 11:e0167244. https://doi.org/10.1371/journal.pone.0167244

    Article  Google Scholar 

  • O’Brien MJ et al (2015) Design space and cultural transmission: case studies from Paleoindian eastern North America. J Archaeol Method Theory 23:692–740

    Google Scholar 

  • Odell GH (2000) Stone tool research at the end of the millennium: procurement and technology. J Archaeol Res 9:269–331

    Google Scholar 

  • Pargeter J (2016) Lithic miniaturization in Late Pleistocene southern Africa. J Archaeol Sci Rep 10:221–236

    Google Scholar 

  • Pargeter J, de la Peña P (2017) Milky quartz bipolar reduction and lithic miniaturization: experimental results and archaeological implications. J Field Archaeol: Page numbers to follow

    Google Scholar 

  • Pargeter J, Eren MI (2017) Quantifying and comparing bipolar versus freehand flake morphologies, production currencies, and reduction energetics during lithic miniaturization. Lith Technol 42:90–108. https://doi.org/10.1080/01977261.2017.1345442

    Article  Google Scholar 

  • Pargeter J, Tweedie M.S. 2018. Bipolar reduction and behavioral variability during the mid-late holocene at eagle's nest, Mount Sinai Harbor, New York. The Journal of Island and Coastal Archaeology. (Forthcoming)

  • Porraz G, Igreja M, Schmidt P, Parkington JE (2016) A shape to the microlithic Robberg from Elands Bay Cave (South Africa). South Afr Humanit 29:203–247

    Google Scholar 

  • Prous A, Alonso M, Souza GNd, Lima AP, Amoreli F (2010) La place et les caractéristiques du débitage sur enclume (“bipolaire”) dans les industries brésiliennes. PALEO Rev D'archéol Préhistorique: 201–219

  • Sánchez-Yustos P, Garriga JG, Martínez K (2017) Experimental approach to the study of the European Mode 1 lithic record: the bipolar core technology at Vallparadís (Barcelona, Spain). EJA:1–24 doi:https://doi.org/10.1017/eaa.2016.9

    Google Scholar 

  • Schillinger K, Mesoudi A, Lycett SJ (2014) Considering the role of time budgets on copy-error rates in material culture traditions: an experimental assessment. PLoS One 9:e97157

    Google Scholar 

  • Schillinger K, Mesoudi A, Lycett SJ (2015) The impact of imitative versus emulative learning mechanisms on artifactual variation: implications for the evolution of material culture. Evol Hum Behav 36:446–455

    Google Scholar 

  • Schillinger K, Mesoudi A, Lycett SJ (2017) Differences in manufacturing traditions and assemblage-level patterns: the origins of cultural differences in archaeological data. J Archaeol Method Theory 24:640–658

    Google Scholar 

  • Shott MJ (1989a) Bipolar industries: ethnographic evidence and archaeological implications. N Amer Archaeol 10:1–24

    Google Scholar 

  • Shott MJ (1989b) Diversity, organization, and behavior in the material record: ethnographic and archaeological examples. CurrAnthr 30:283–315

    Google Scholar 

  • Shott MJ (1994) Size and form in the analysis of flake debris: review and recent approaches. J Archaeol Method Theory 1:69–110

    Google Scholar 

  • Shott MJ (1999) On bipolar reduction and splintered pieces. N Amer Archaeol 20:217–238

    Google Scholar 

  • Shott MJ, Tostevin G (2015) Diversity under the bipolar umbrella. Lith Technol 40:377–384

    Google Scholar 

  • Shott MJ, Bradbury AP, Carr PJ, Odell GH (2000) Flake size from platform attributes: predictive and empirical approaches. JAS 27:877–894

    Google Scholar 

  • Sollberger J, Patterson L (1976) The myth of bipolar flaking industries. Lith Technol 5:40–41

    Google Scholar 

  • Stout D (2002) Skill and cognition in stone tool production: an ethnographic case study from Irian Jaya. CurrAnthr 43:693–722

    Google Scholar 

  • Surovell TA (2012) Toward a behavioral ecology of lithic technology: cases from Paleoindian archaeology. University of Arizona Press, Tucson

    Google Scholar 

  • Tallavaara M, Manninen MA, Hertell E, Rankama T (2010) How flakes shatter: a critical evaluation of quartz fracture analysis. JAS 37:2442–2448. https://doi.org/10.1016/j.jas.2010.05.005

    Article  Google Scholar 

  • Torrence R (1983) Time-budgeting and hunter-gatherer technology. In: Bailey G (ed) Hunter-gatherer economy in prehistory: a European perspective. Cambridge University press, Cambridge, pp 11–22

    Google Scholar 

  • Weedman K (2006) An ethnoarchaeological study of hafting and stone tool diversity among the Gamo of Ethiopia. J Archaeol Method Theory 13:188–237

    Google Scholar 

  • White PJ (1968) Ston naip bilong tumbuna: the living stone age in New Guinea. In: Bordes F, de Sonneville-Bordes D (eds) La Préhistoire: Problèmes et Tendances. CNRS, Paris, pp 511–516

    Google Scholar 

  • Witthoft J (1966) A history of gunflints. Pennsylvania Archaeol 36:12–49

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank John Shea for comments on earlier versions of the text and data.

Funding

This study is supported by the Justin Pargeter’s National Science Foundation DDIG fellowship for financial support. The Leakey Foundation Mosher Baldwin Fellowship and the Dan David Prize>

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Pargeter.

Additional information

This article is part of the Topical Collection on Controlled experiments in lithic technology and function

Electronic supplementary material

ESM 1

(R 12 kb)

ESM 2

(CSV 3 kb)

ESM 3

(CSV 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pargeter, J., de la Peña, P. & Eren, M.I. Assessing raw material’s role in bipolar and freehand miniaturized flake shape, technological structure, and fragmentation rates. Archaeol Anthropol Sci 11, 5893–5907 (2019). https://doi.org/10.1007/s12520-018-0647-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-018-0647-1

Keywords

Navigation