Advertisement

High pressure metaophiolite polished stone implements found in Hungary

  • Zsolt Bendő
  • György Szakmány
  • Zsolt Kasztovszky
  • Katalin T. Biró
  • István Oláh
  • Anett Osztás
  • Ildikó Harsányi
  • Veronika Szilágyi
Original Paper
  • 33 Downloads

Abstract

Good quality high pressure (HP) metaophiolite rock types (e.g. Na-pyroxenite/jade, eclogite) suitable for making prehistoric polished stone implements were unknown among Hungarian findings for a long time. Nowadays they are still among the rarest types of polished stone implements found in Hungary in the respect of raw material. After the first discovery of Neolithic stone tools made of HP metaophiolites in the records of Hungarian archaeological assemblages, detailed petrological investigations of large stone implement collections revealed their presence in a relatively large number. According to our current knowledge, 25 HP metaophiolite stone implements are known as found in Hungary. Unfortunately, most of them are stray finds, but 11 pieces from four localities have a known archaeological context. They were mainly located in Transdanubia (except for one piece from Tiszántúl) and are mostly attributable to the Late Neolithic Lengyel Culture and secondarily to the Late Neolithic Tisza Culture. In this study, we used only non-destructive analytical methods (macroscopic observation, magnetic susceptibility measurements, non-destructive SEM-EDX, and Prompt Gamma Activation Analysis). As a result of this study, the prehistoric stone implements were classified into raw material types. Based on our data, the high pressure-low temperature (HP-LT) metaophiolite stone implements found in Hungary probably originated from the same raw material sources as the Italian HP-LT metaophiolite stone tools (sourcing from North-western Italy). According to the literature on the topic, both primary (Western Alps in the vicinity of the Monviso in Piedmont or the Voltri Massif in Liguria) and secondary occurrences (in Quaternary deposits of the rivers Po, Staffora and Curone) are potential sources. These analyses confirmed the existence of long-distance trade routes connecting the Po Valley and its vicinity with the Carpathian Basin during the Vth Millennium BC.

Keywords

Neolithic polished stone tools Na-pyroxenite Jade Eclogite Provenance Non-destructive PGAA and SEM-EDX 

Notes

Acknowledgements

Szilvia Honti, Ferenc Horváth, Erzsébet Nagy, Marcella Nagy, Judit Regenye, István Zalai-Gaál† and Ernő Wolf are kindly acknowledged for providing samples. Elisabetta Starnini and Jesse Weil are thanked for their useful help in improving the quality of the manuscript.

Funding information

This research was supported by the Hungarian Scientific Research Fund (OTKA) K 100385 and JADE2 program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12520_2018_618_MOESM1_ESM.xlsx (96 kb)
ESM 1 (XLSX 95 kb)
12520_2018_618_MOESM2_ESM.xlsx (19 kb)
ESM 2 (XLSX 18 kb)

References

  1. Anderson DL, Kasztovszky Zs (2004) Applications of PGAA with neutron beams. In: Molnár GL (ed) Handbook of prompt gamma activation analysis with neutron beams. Kluwer Academic Publishers, Dordrecht, pp 137–172CrossRefGoogle Scholar
  2. Angiboust S, Agard P, Raimbourg H, Yamato P, Huet B (2011) Subduction interface processes recorded by eclogitefacies shear zones (Monviso, W. Alps). Lithos 127:222–238CrossRefGoogle Scholar
  3. Angiboust S, Langdon R, Agard P, Waters D, Chopin C (2012) Eclogitization of the Monviso ophiolite and implications on subduction dynamics. J Metamorph Geol 30:37–61CrossRefGoogle Scholar
  4. Antoni J (2012) Útmutató a csiszolt kőeszközök világához. Újkőkori eszközkészítés és használat: a Lengyel kultúra eszközanyaga és technológiai párhuzamai Óceániából. MNM-NÖK, Budapest (in Hungarian)Google Scholar
  5. Beard BL, Medaris LG, Johnson C, Brueckner HK, Mísař Z (1992) Petrogenesis of Variscan high-T Group A Eclogites from the Moldanubian Zone of the Bohemian Massif, Czechoslovakia. Contrib Mineral Petrol 111:468–483CrossRefGoogle Scholar
  6. Beltrando M, Compagnoni R, Lombardo B (2010) (Ultra-) high-pressure metamorphism and orogenesis: an Alpine perspective. Gondwana Res 18:147–166CrossRefGoogle Scholar
  7. Bendő Zs, Oláh I, Péterdi B, Horváth E (2012) Case studies on a non-destructive SEM-EDX analytical method for polished stone tools and gems. In: Braekmans D, Honings J, Degryse P (eds) Programme and abstracts of the 39th international symposium on archaeometry. Leuven, Belgium, p 136Google Scholar
  8. Bendő Zs, Oláh I, Péterdi B, Horváth E (2013) Csiszolt kőeszközök és ékkövek roncsolásmentes SEM-EDX vizsgálata: lehetőségek és korlátok. Archeometriai Műhely X/1:51–66. (in Hungarian)Google Scholar
  9. Bendő Zs, Szakmány Gy, Kasztovszky Zs, Maróti B, Szilágyi Sz, Szilágyi V, Biró TK (2014) Results of non-destructive SEM-EDX and PGAA analyses of jade and eclogite polished stone tools in Hungary. Archeometriai Műhely XI/4:187–206Google Scholar
  10. Biró TK, Schléder Zs, Antoni J, Szakmány Gy (2003) Petroarchaeological studies on polished stone artifacts from Baranya County, Hungary II. Zengővárkony: notes on the production, use and circulation of polished stone tools. A Janus Pannonius Múzeum Évkönyve 46/47: 37–76Google Scholar
  11. Biró TK, Pétrequin P, Errera M, Prĭchystal A, Trnka G, Zalai-Gaál I, Osztás A (2017) Ch.18. Des Alpes à l’Europe centrale (Autriche, République tchèque, Slovaquie et Hongrie). In: Pétrequin P, Gauthier E, Pétrequin A-M (eds) JADE. Tome 3. Objets-signes et interprétations sociales des jades alpins dans l’Europe néolithique, Cahiers de la MSHE Ledoux no. 27, Dynamiques territoriales no. 10, Presses universitaires de Franche-Comté et Centre de Recherche Archéologique de la Vallée de l’Ain, Besançon, pp 431–466Google Scholar
  12. Bordes F (1961) Typologie du Paléolithique ancien et moyen. Bordeaux, CNRSGoogle Scholar
  13. Bradák B, Szakmány Gy, Józsa S (2005) Mágneses szuszceptibilitás mérések—új módszer alkalmazása csiszolt kőeszközök vizsgálatában. Magnetic susceptibility measurements of polished stone tools—application of new method in archeometry. Archeometriai Műhely II/1:13–22. (in Hungarian)Google Scholar
  14. Bradák B, Szakmány Gy, Józsa S, Přichystal A (2009) Application of magnetic susceptibility on polished stone tools from western Hungary and the eastern part of the Czech Republic (Central Europe). J Arch Sci 36/10:2437–2444CrossRefGoogle Scholar
  15. Brézillon M (1971) Le dénomination des objects de pierre taillée. V. suppl. a Gallia-Préhistoire 2 edn. CNRS ParisGoogle Scholar
  16. Bröcker M, Enders M (1999) U-Pb zircon geochronology of unusual eclogite-facies rocks from Syros and Tinos (Cyclades, Greece). Geol Mag 136:111–118CrossRefGoogle Scholar
  17. Bröcker M, Keasling A (2006) Ion probe U-Pb zircon ages from the high-pressure/low-temperature mélange of Syros, Greece: age diversity and the importance of pre-eocene subduction. J Metamorph Geol 24:615–631CrossRefGoogle Scholar
  18. Bröcker M, Kreuzer H, Matthews A, Okrusch M (1993) 40Ar/39Ar and oxygen isotope studies of polymetamorphism from Tinos Island, Cycladic blueschist belt. J Metamorph Geol 11:223–240CrossRefGoogle Scholar
  19. Bulle F, Bröker M, Gärtner C, Keasling A (2010) Geochemistry and geochronology of HP mélange from Tinos and Andros, Cycladic blueschist belt, Greece. Lithos 117:61–81CrossRefGoogle Scholar
  20. Busch K (1970) Die Eklogitvorkommen des kristallinen Grindgebirges in NE-Bayern. – IV. Die Eklogite der Oberpfalz und ihr metamorpher Abbau. Neues Jb Mineral Abh 113:138–178Google Scholar
  21. Carpenter MA (1979) Omphacites from Greece, Turkey, and Guatemala: composition limits of cation ordering. Am Mineral 64:102–108Google Scholar
  22. Castelli D, Rostagno C, Lombardo B (2002) Jd-Qtz-bearing metaplagiogranite from the Monviso meta-ophiolite (Western Alps). Ofioliti 27:81–90Google Scholar
  23. Compagnoni R, Rolfo F, Manavella F, Salusso F (2007) Jadeitite in the Monviso meta-ophiolite, Piemonte Zone, Italian western Alps. Periodico di Mineralogia 76:79–89Google Scholar
  24. Compagnoni R, Rolfo F, Castelli D (2012) Jadeitite from the Monviso meta-ophiolite, western Alps: occurrence and genesis. Eur J Min 24:333–343CrossRefGoogle Scholar
  25. D’Amico C (2012) Jades and other greenstones from the Western Alps. A petrographic study of the geological sampling jade. In: Pétrequin P, Cassen S, Errera M, Klassen L, Sheridan A, Pétrequin A-M (eds) JADE. Grandes haches alpines du Néolithique européen, Ve au IVe millénaires av. J.-C. Presses Universitaires de Franche-Comté, Besançon, pp 420–439Google Scholar
  26. D’Amico C, Starnini E (2006) L’atelier di Rivanazzano (PV): un’ associazione litologica insolita nel quadro della “pietra verde” levigata in Italia. In: Pessina A, Visentini P (eds) Preistoria dell’Italia settentrionale. Studi in riccordo di Bernardino Bagolini. Edizioni del Museo Friulano di Storia Naturale, Udine, pp 37–54Google Scholar
  27. D’Amico C, Starnini E (2012) Circulation and provenance of the Neolithic “greenstone” in Italy. In: Pétrequin P, Cassen S, Errera M, Klassen L, Sheridan A, Pétrequin A-M (eds) JADE. Grandes haches alpines du Néolithique européen, Ve et IVe millénaires av. J.-C. Presses Universitaires de Franche-Comté, Besançon, pp 728–743Google Scholar
  28. D’Amico C, Starnini E, Gasparotto G, Ghedini M (2003) Eclogites, jades and other HP-metamorphites employed for prehistoric polished stone implements in Italy and Europe. Periodico di Mineralogia 73:17–42Google Scholar
  29. D’Amico C, Nenzioni G, Fabris S, Ronchi S, Lenzi F (2013) Neolithic tools in S. Lazzaro di Savena (Bologna): a petro-archaeometric study. Rendiconti Lincei Sceinze Fisiche e Naturali 28/1:23–38CrossRefGoogle Scholar
  30. Davis PB, Whitney DL (2006) Petrogenesis of lawsonite and epidote eclogite and blueschist, Sivrihisar Massif, Turkey. J Metamorph Geol 24:823–849Google Scholar
  31. Diaconescu D (2014) Remarks on the chronology of the Lengyel culture in the western half of the Carpathian Basin based on the analysis of funerary assemblages. Praehist Z 89(1):12–39CrossRefGoogle Scholar
  32. Dixon JE, Ridley JR (1987) Syros. In: Helgeson HC (ed) Chemical transport in metasomatic processes. D. Reidel, Dordrecht, pp 489–501Google Scholar
  33. Domínguez-Bella S, Cassen S, Pétrequin P, Přichystal A, Martinez J, Ramos J, Medina N (2016) Aroche (Huelva, Andalucía): a new Neolithic axehead of Alpine jade in the southwest of the Iberian Peninsula. Archaeol Anthropol Sci 8(1):205–222CrossRefGoogle Scholar
  34. Dudek A, Fediuková E (1974) Eclogites of the Bohemian Moldanubicum. N Jahrb Mineral Abh 121:127–159Google Scholar
  35. Ebenhöch F (1876) Győr vidékének kőkorszaki leletei. Magyar Orvosok és Természetvizsgálók Nagygyűléseinek Munkálatai, pp 249–260. (in Hungarian)Google Scholar
  36. Errera M, Hauzer A, Pétrequin P, Tsonchev T (2006) Etude spectroradiométrique d’une lame de hache trouvée dans le district de Chirpan (Bulgarie). Interdisciplinary Studies 19. Archaeological Institute and Museum, Sofia, pp 7–24Google Scholar
  37. Friedel O, Bradák B, Szakmány Gy, Szilágyi V, Biró TK (2008) Összefoglaló az Ebenhöch csiszolt kőeszköz gyűjtemény archeometriai vizsgálati eredményeiről. Archeometriai Műhely V/3:1–11. (in Hungarian)Google Scholar
  38. Friedel O, Bradák B, Szakmány Gy, Szilágyi V, Biró TK (2011) Archaeometric processing of polished stone artefacts from the Ebenhöch Collection (Hungarian National Museum, Budapest, Hungary). In: Turbanti-Memmi I (ed) Proceedings of the 37th International Symposium on Archaeometry, Springer-Verlag, Berlin, pp 211–219Google Scholar
  39. Fu B, Paul B, Cliff J, Bröcker M, Bulle F (2012) O-Hf isotope constraints on the origin of zircon in high-pressure mélange blocks and associated matrix rocks from Tinos and Syros, Greece. Eur J Min 24:277–287CrossRefGoogle Scholar
  40. Füri J, Szakmány Gy, Kasztovszky Zs, Biró TK (2004) The origin of the raw material of basalt polished stone tools in Hungary. Slovak Geol Mag 10:97–104Google Scholar
  41. Giacomini F, Braga R, Tiepolo M, Tribuzio R (2007) New constraints on the origin and age of Variscan eclogitic rocks (Ligurian Alps, Italy). Contrib Mineral Petrol 153:29–53CrossRefGoogle Scholar
  42. Giustetto R, Compagnoni R (2014) Petrographic classifcation of unusual high-pressure metamorphic rocks of archaeometric interest. Eur J Min 26:635–642CrossRefGoogle Scholar
  43. Giustetto R, Perrone U, Compagnoni R (2016) Neolithic polished greenstone industry from Castello di Annone (Italy): minero-petrographic study and archaeometric implications. Eur J Min 28:889–905.  https://doi.org/10.1127/ejm/2016/0028-2558 CrossRefGoogle Scholar
  44. Giustetto R, Venturino M, Barale L, d'Atri A, Compagnoni R (2017) The Neolithic greenstone industry of Brignano Frascata (Italy): archaeological and archaeometric study, implications and comparison with coeval sites in the Grue, Ossona and Curone valleys. J Archaeol Sci Rep 14:662–691Google Scholar
  45. Groppo C, Castelli D (2010) Prograde P-T evolution of a lawsonite eclogite from the Monviso meta-ophiolite (Western Alps): dehydration and redox reactions during subduction of oceanic FeTi-oxide gabbro. J Pet 51:2489–2514CrossRefGoogle Scholar
  46. Harlow GE, Tsujimori T, Sorensen SS (2015) Jadeitites and plate tectonics. Annu Rev Earth Planet Sci 43:105–138CrossRefGoogle Scholar
  47. Horváth F (1987) Hódmezővásárhely-Gorzsa, a settlement of the Tisza culture. In: Raczky P, Tálas L (eds) The late neolithic of the Tisza region. Szolnok County Museums, Budapest-Szolnok, pp 31–46Google Scholar
  48. Horváth F (2005) Gorzsa. Előzetes eredmények az újkőkori tell 1987 és 1996 közötti feltárásából. In: Bende L, Lőrinczy G (eds) Hétköznapok Vénuszai. Tornyai János Museum, Hódmezővásárhely, pp 51–83. (in Hungarian)Google Scholar
  49. Horváth T (2001) Polished stone tools of the Miháldy-collection, Laczkó Dezső Museum, Veszprém. (Archaeological investigation). In: Regenye J (ed) Sites and stones: Lengyel culture in Western Hungary and beyond. Veszprém County Museums, Veszprém, pp 87–107Google Scholar
  50. Horváth P, Józsa S, Szakmány Gy (2005) Petrography and geochemistry of eclogite pebbles from Pleistocene conglomerates at Dunavarsány, Hungary. Abstract of 7th International Eclogite Conference (3-9 July 2005, Seggau, Austria), Mitt.Österr. Miner. Ges. 150, p 54Google Scholar
  51. Hovorka D, Illášová Ľ (2002) Anorganické suroviny doby kamennej (Abiotic raw materials of the Stone Age). Nitra, Univerzita Konštantína Filozofa v Nitre, 2002. p.187.Google Scholar
  52. Hovorka D, Spišiak J, Mikuš T (2008) Aeneolithic jadeitite axes from Western Slovakia. Archäologisches Korrespondenzblatt 38:33–44Google Scholar
  53. Hovorka D, Méres Š, Ivan P (1994) Pre-Alpine Western Carpathians basement complexes: lithology and geodynamic setting. Mitt Österr Geol Ges 86:33–44Google Scholar
  54. Hovorka D, Farkaš Z, Spišiak J (1998) Neolithic jadeitite axe from Sobotište (western Slovakia). Geol Carpath 49(4):301–304Google Scholar
  55. IGCP 442 (1999–2002) International Geological Collaboration Project, Raw materials of the Neolithic/Aeneolithic polished stone artefacts (1999–2002, project co-ordinator: Prof. Dr. Dušan Hovorka, Prof. Dr. Gerhard Trnka)Google Scholar
  56. Ilon G (2007) Szombathely-Oladi plató. In: Ilon G (ed) Százszorszépek. Emberábrázolás az őskori Nyugat-Magyarországon. Wonderful beauties. Human representations in prehistoric Western Hungary. Szombathely, pp 148–245Google Scholar
  57. JADE1 Jade (2007–2010) Grandes haches alpines du Néolithique européen (2007–2010, project co-ordinator: Pierre Pétrequin)Google Scholar
  58. JADE2 (2013–2017) Objets-signes et interprétations sociales des jades alpins dans l’Europe néolithique (2013–2017, project co-ordinator: Pierre Pétrequin)Google Scholar
  59. Janák M, Méres Š, Ivan P (2007) Petrology and metamorphic P-T conditions of eclogites from the northern Veporic Unit (Western Carpathians, Slovakia). Geologica Carpathica 58(2):121–131Google Scholar
  60. Kalicz N (2007) Az őskori agyagszobrászat kezdetei a Nyugat-Dunántúlon (Kr. e. 6000 - Kr. e. 3000). The beginning of the prehistoric figurine making in western Transdanubia, Hungary (6000–3000 BC). In: Ilon G (ed) Százszorszépek. Emberábrázolás az őskori Nyugat-Magyarországon. Wonderful beauties. Human representations in prehistoric Western Hungary. Szombathely, pp 8–17Google Scholar
  61. Kasztovszky Zs, Maróti B, Harsányi I, Párkányi D, Szilágyi V (2017) A comparative study of PGAA and portable XRF used for non-destructive provenancing archaeological obsidians. Quat Int.  https://doi.org/10.1016/j.quaint.2017.08.004
  62. Klassen L (2012) Axes of Alpine jade from southern Scandinavia and northernmost Germany. Dan J Arch 1/1:86–89Google Scholar
  63. Kozhoukharova E (1980) Eclogites in the Precambrian from the Eastern Rhodope block. C R Acad Bulg Sci 33(3):375–378Google Scholar
  64. Kozhoukharova E (1996) Eclogitized layered serpentinites in the East Rhodope block. C R Acad Bulg Sci 49(6):69–71Google Scholar
  65. Kozhoukharova E (2010) Metaophiolite association in the Rhodope Massif as a stratigraphic marker. Proceedings of the XIX CBGA Congress, Scientific Annals, School of Geology, Aristotele University of Thessaloniki, Special Volume 100, pp 165–171Google Scholar
  66. Lindstrom RM, Paul RL, Vincent DH, Greenberg RR (1994) Measuring hydrogen by cold-neutron prompt-gamma activation analysis. J Radioanal Nucl Chem 180:271CrossRefGoogle Scholar
  67. Lozano JA, Puga E, Garcia-Casco A, Martínez-Sevilla F, Contreras Cortés F, Carrasco Rus J, Martín-Algarra A (2017) First evidence of prehistoric eclogite quarrying for polished tools and their circulation on the Iberian Peninsula. Geoarchaeology 2017(00):1–22Google Scholar
  68. Messiga B, Tribuzio R, Caucia F (1992) Amphibole evolution in Variscan eclogite-amphibolites from the Savona crystalline massif (western Ligurian Alps, Italy) controls on the decompressional P-T-t path. Lithos 27:215–230CrossRefGoogle Scholar
  69. Milošević A (1999) Archäologische Probe Untersuchungen im Flussbett der Cetina (Kroatien) zwischen 1990 und 1994. Archäologische Korrespondenzblatt 29:203–210Google Scholar
  70. Molnár GL, Révay Zs, Belgya T (2002) Wide energy range efficiency calibration for Ge detectors. Nucl Instrum Methods A 489:140–159CrossRefGoogle Scholar
  71. Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Min 73:1123–1133Google Scholar
  72. O’Brien PJ (1989) The petrology of retrograde eclogites of the Oberpfalz Forest, northeastern Bavaria, West Germany. Tectonophysics 157:195–212CrossRefGoogle Scholar
  73. Okrusch M, Bröcker M (1990) Eclogites associated with high-grade blueschists in the Cyclades archipelago, Greece: a review. Eur J Min 2:451–478CrossRefGoogle Scholar
  74. Okrusch M, Matthes S, Klemd R, O’Brien P, Schmidt K (1991) Eclogites at the north-western margin of the Bohemian Massif: a review. Eur J Min 3:707–730CrossRefGoogle Scholar
  75. Paul RL, Lindstrom RM (2012) Preparation and certification of hydrogen in titanium alloy standard reference materials. Metall Mater Trans A Phys Metall Mater Sci 43A(12):4888–4895CrossRefGoogle Scholar
  76. Pétrequin P, Errera M, Cassen S, Gauthier E, Hovorka D, Klassen L, Sheridan A (2011) From Mont Viso to Slovakia: the two axeheads of Alpine jade from Golianovo. Acta Arch Acad Sci Hung 62:243–268Google Scholar
  77. Pétrequin P, Cassen S, Errera M, Klassen L, Sheridan A, Pétrequin A-M (eds) (2012a) JADE. Grandes haches alpines du Néolithique européen, Tomes 1 et 2. Ve et IVe millénaires av. J.-C. Cahiers de la MSHE C.N. Ledoux. Presses Universitaires de Franche-Comté, BesançonGoogle Scholar
  78. Pétrequin P, Cassen S, Errera M, Tsonev T, Dimitrov L, Mitkova R (2012b) Les haches en roches alpines en Bulgarie. In: Pétrequin P, Cassen S, Errera M, Klassen L, Sheridan A (eds) Jade. Grandes haches alpines du Néolithique européen. Ve et IVe millénaires av. J.-C. Cahiers de la MSHE C.N. Ledoux. Presses Universitaires de Franche-Comté, Besançon, pp 1231–1279Google Scholar
  79. Pétrequin P, Cassen S, Gauthier E, Klassen L, Pailler Y, Sheridan A, Desmeulles J, Gillioz PA, Le Maux N, Milleville A, Pétrequin A-M, Prodéo F, Samzun A, Fábregas Valcarce R (2012c) Typologie, chronologie et répartition des haches alpines en Europe occidentale. In: Pétrequin P, Cassen S, Errera M, Klassen L, Sheridan A (eds) Jade. Grandes haches alpines du Néolithique européen. Ve et IVe millénaires av. J.-C. Cahiers de la MSHE C.N. Ledoux. Presses Universitaires de Franche-Comté, Besançon, 574–727Google Scholar
  80. Pétrequin P, Gauthier E, Pétrequin A-M (eds) (2017a) JADE. Objets-signes et interprétations sociales des jades alpins dans l’Europe néolithique. Tomes 3 et 4. Presses universitaires de Franche-Comté Centre de Recherche Archéologique de la Vallée de l’Ain. Cahiers de la MSHE C.N. Ledoux, 27, Série ‘Dynamiques territoriales’, 10, BesançonGoogle Scholar
  81. Pétrequin P, Pétrequin A-M, Errera M, Přichystal A (2017b) Les jadéitites de Syros (Cyclades, Grèce). In: Pétrequin P, Gauthier E, Pétrequin A-M (eds) JADE. Objets-signes et interprétations sociales des jades alpins dans l’Europe néolithique. Tomes 3 et 4. Presses universitaires de Franche-Comté Centre de Recherche Archéologique de la Vallée de l’Ain. Cahiers de la MSHE C.N. Ledoux, 27, Série ‘Dynamiques territoriales’, 10, Besançon, pp 25–45Google Scholar
  82. Petrić N (1995) Jade and nephrite axes in Croatian prehistory. Hist Archaeol 26:5–27Google Scholar
  83. Petrić N (2004) The Gudnja culture and examples of imports in neolithic Dalmatia. Pril Inst Archeol Zagrebu 21:197–207Google Scholar
  84. Přichystal A (2009) Lithic raw materials in prehistoric times of Eastern Central Europe. Masaryk University, Munipress, Brno. (In Czech)Google Scholar
  85. Přichystal A, Kuča M, Kovář JJ, Škrdla P (2011) New finds of nephrite and jadeitite axes in Moravia and Silesia. In: Drápalová R, Petřík J, Přichystal A, Valová P (eds) 5th International Petroarchaeological Workshop, Volume of Abstracts, Brno, pp 18–19Google Scholar
  86. Puga E, Díaz de Federico A, Bargossi GM, Morten L (1989) The Nevado-Filabride metaophiolithic association in the Cobdar region (Betic Cordillera SE Spain): preservation of pillow structures and development of coronitic eclogites. Geodin Acta 3:17–36CrossRefGoogle Scholar
  87. Puga E, Díaz de Federico A, Rodríguez Martínez-Conde JA, Lozano JA, Díaz Puga MA (2013) The patrimonial value of the Betic Ophiolites: rocks from the Jurassic Ocean floor of the Tethys. Seminario SEM 10:112–129Google Scholar
  88. Putlitz B, Cosca MA, Schumacher JC (2005) Prograde mica 40Ar/39Ar growth ages recorded in high pressure rocks (Syros, Cyclades, Greece). Chem Geol 214:79–98CrossRefGoogle Scholar
  89. Regenye J (ed) (2001) Sites and stones: Lengyel culture in Western Hungary and beyond, VeszprémGoogle Scholar
  90. Révay Zs (2009) Determining elemental composition using prompt γ activation analysis. Anal Chem 81:6851–6859CrossRefGoogle Scholar
  91. Révay Zs, Belgya T, Molnár GL (2005) Application of Hypermet-PC in PGAA. J Radioanal Nucl Chem 265:261–265CrossRefGoogle Scholar
  92. Schmidt J, Štelcl J (1971) Jadeites from Moravian Neolithic period. Acta Univ Carol Andean Geol 1(2):141–152Google Scholar
  93. Seck HA, Kötz J, Okrusch M, Seidel E, Stosch H-G (1996) Geochemistry of a meta-ophiolite suite: an association of metagabbros, eclogites and glaucophanites on the island of Syros, Greece. Eur J Min 8:607–623CrossRefGoogle Scholar
  94. Starnini E, Szakmány Gy, Józsa S, Kasztovszky Zs, Szilágyi V, Maróti B, Voytek B, Horváth F (2015) Lithics from the Tell Site Hódmezővásárhely-Gorzsa (Southeast Hungary): typology, technology, use and raw material strategies during the Late Neolithic (Tisza Culture). In: Hansen S, Raczky P, Anders A, Reinburger A (eds) Neolithic and Copper Age between the Carpathians and the Aegean Sea; chronologies and technologies from the 6th to the 4th millennium BCE, Archäologie in Eurasien 31, pp 105–128Google Scholar
  95. Szakmány GY (2009) Magyarországi csiszolt kőeszközök nyersanyagtípusai az eddigi archeometriai kutatások eredményei alapján. Archeometriai Műhely VI/1:11–29. (in Hungarian)Google Scholar
  96. Szakmány Gy, Starnini E, Horváth F, Bradák B (2008) Gorzsa késő neolit tell településről előkerült kőeszközök archeometriai vizsgálatának előzetes eredményei (Tisza kultúra, DK Magyarország). Archeometriai Műhely V/3:13–25. (in Hungarian)Google Scholar
  97. Szakmány Gy, Kasztovszky Zs, Szilágyi V, Starnini E, Friedel O, Biró KT (2011) Discrimination of prehistoric polished stone tools from Hungary with non-destructive chemical Prompt Gamma Activation Analyses (PGAA). Eur J Min 23:883–893CrossRefGoogle Scholar
  98. Szakmány Gy, Biró TK, Kristály F, Bendő Zs, Kasztovszky Zs, Zajzon N (2013) Távolsági import csiszolt kőeszközök nagynyomású metamorfitokból Magyarországon. Archeometriai Műhely X/1:83–92. (in Hungarian)Google Scholar
  99. Szentmiklósi L, Belgya T, Révay Zs, Kis Z (2010) Upgrade of the prompt gamma activation analysis and the neutron-induced prompt gamma spectroscopy facilities at the Budapest Research Reactor. J Rad Nuc Chem 286:501–505CrossRefGoogle Scholar
  100. Tsonchev D (1946) New found antiquities in the Plovdiv region. Proc Archaeol Inst 15:209Google Scholar
  101. Tsujimuri T, Harlow GE (2012) Petrogenetic relations between jadeitite and associated high-pressure and low-temperature metamorphic rocks in worldwide jadeitite localities: a review. Eur J Min 24:371–390CrossRefGoogle Scholar
  102. Turkoglu D, Chen-Mayer H, Paul R, Zeisler R (2017) Assessment of PGAA capability for low-level measurements of H in Ti alloys. Analyst 142(20):3822–3829CrossRefGoogle Scholar
  103. Virág Zs (2003) Early Metallurgy in the Carpathian Basin. In: Visy Zs (ed) Hungarian Archaeology at the turn of the Millennium. Ministry of National Cultural Heritage, Teleki László Foundation, Budapest, pp 129–132Google Scholar
  104. Visy Zs (ed) (2003) Hungarian Archaeology at the turn of the Millennium. Ministry of National Cultural Heritage, Teleki László Foundation, BudapestGoogle Scholar
  105. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187CrossRefGoogle Scholar
  106. Williams-Thorpe O, Jones MC, Webb PC, Rigby IJ (2000) Magnetic susceptibility thickness corrections for small artefacts and comments on the effects of ‘background’ materials. Archaeometry 42(1):101–108CrossRefGoogle Scholar
  107. Wright WI (1938) The composition and occurrence of garnets. Am Min 23:436–449Google Scholar
  108. Zalai-Gaál I (2001) Typologie und Chronologie des lengyelzeitlichen geschliffenen Steingeratbestandes im südlichen Transdanubien anhand der Merkmalanalyse. In: Regenye J (ed) Sites and stones: Lengyel culture in Western Hungary and beyond. A review of the current research. Lengyel'99 and IGCP-442 Conference, Veszprém, pp 81–87Google Scholar
  109. Zalai-Gaál I, Gál E, Köhler K, Osztás A (2011) Das Steingerätedepot aus dem Häuptlingsgrab 3060 der Lengyel Kultur von Alsónyék, Südtransdanubien. Beitr. z. Ur- u. Frühgesch. Mitteleuropas 63, Varia Neolithica VII, pp 65–83Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zsolt Bendő
    • 1
  • György Szakmány
    • 1
  • Zsolt Kasztovszky
    • 2
  • Katalin T. Biró
    • 3
  • István Oláh
    • 1
  • Anett Osztás
    • 4
  • Ildikó Harsányi
    • 2
  • Veronika Szilágyi
    • 2
  1. 1.Department of Petrology and GeochemistryEötvös Loránd UniversityBudapestHungary
  2. 2.Centre for Energy ResearchHungarian Academy of SciencesBudapestHungary
  3. 3.Hungarian National MuseumBudapestHungary
  4. 4.Institute of Archaeology, Research Centre for the HumanitiesHungarian Academy of SciencesBudapestHungary

Personalised recommendations