Skip to main content
Log in

3D analysis of cut marks using a new geometric morphometric methodological approach

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

The arrival of new methodological approaches to study microscopic qualities in cut mark morphology has been a major improvement in our understanding of butchering activities. Micro-morphological differences can be detected in multiple different taphonomic alterations on bone cortical surfaces that can later be used to compare different trace mark types. Through this, we can generate studies that are able to diagnose the specific taphonomic agents and activities that produce said traces that can be found on osteological surfaces. This paper presents experimental data that have been studied using micro-photogrammetry and geometric morphometrics, successfully distinguishing morphological differences in cut marks produced by different lithic tool types as well as different raw materials. The statistical results and methodologies presented here can later be applied to archaeological sites; aiding in our understanding of raw material exploitation, tool production as well as the different butchering activities that are present in faunal assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Bibliography

  • Aramendi J, Maté-González MA, Yravedra J, Cruz Ortega M, Arriaza MC, González-Aguilera D, Baquedano E, Domínguez-Rodrigo M (2017) Discerning carnivore agency through the three-dimensional study of tooth pits: revisiting crocodile feeding behaviour at FLK-Zinj and FLK NN3 (Olduvai Gorge, Tanzania). Palaeogeogr Palaeoclimatol Palaeoecol. https://doi.org/10.1016/j.palaeo.2017.05.021

  • Arriaza MC, Yravedra J, Domínguez-Rodrigo M, Mate-González MA, García Vargas E, Palomeque-González JF, Aramendi J, González-Aguilera D, Baquedano E (2017) On applications of micro-photogrammetry and geometric morphometrics to studies of tooth mark morphology: the modern Olduvai carnivore site (Tanzania). Paleo

  • Bartosiewicz L (2009) Skin and bones: taphonomy of a medieval tannery in Hungary. J Taphon 7(2):91–107

    Google Scholar 

  • Batram L, Marean C (1999) Explaining the “Klasies Pattern”: Kua ethnoarchaeology, the Die Kelders Middle Stone Age Archaeofauna, long bone fragmentation and carnivore ravaging. J Archaeol Sci 26:9–29

    Article  Google Scholar 

  • Behrensmeyer AK, Gordon K, Yangi GT (1986) Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature 319:768–773

    Article  Google Scholar 

  • Bello S (2011) New results from the examination of cut-marks using three-dimensional imaging. In: Ashoton NM, Lewis SG, Stringer CB (eds) The ancient human occupation of Britain. Elsevier, Amsterdam, pp 249–262

    Chapter  Google Scholar 

  • Bello S, Soligo C (2008) A new method for the quantitative analysis of cutmark micromorphology. J Archaeol Sci 35:1542–1552

    Article  Google Scholar 

  • Bello S, Parfitt S, Stringer C (2009) Quantitative micromorphological analyses of cut marks produced by ancient and modern handaxes. J Archaeol Sci 36:1869–1880

    Article  Google Scholar 

  • Bello S, Groote I, Delbarre G (2013) Application of 3-dimensional microscopy and micro-CT scanning to the analysis of Magdalenian portable art on bone antler. J Archaeol Sci 40:2464–2476

    Article  Google Scholar 

  • Binford L (1967) Smudge pits and hide smoking. The use of analogy in archaeological reasoning. Am Antiq 32(1):2–12

    Article  Google Scholar 

  • Binford L (1968) Archaeological perspectives, new perspectives in archaeology. Aldine, New York, pp 5–32

    Google Scholar 

  • Binford L (1981) Bones: ancient men and modern myths. Academic Press Inc, New York

    Google Scholar 

  • Blasco R, Rosell J, Fernández Peris J, Cáceres I, María Vergès J (2008) A new element of trampling: an experimental application on the level XII faunal record of Bolomor cave (Valencia, Spain). J Archaeol Sci 35:1605–1618

    Article  Google Scholar 

  • Blumenschine RJ, Marean WC, Capaldo SD (1996) Blind tests of inter-analyst correspondence and accuracy in the identification of cut marks, percussion marks, and carnivore tooth marks on bone surfaces. J Archaeol Sci 23:493–507

    Article  Google Scholar 

  • Blumenschine RJ, Masao FT, Tactikos JC, Ebert JI (2008) Effects of distance from stone source on landscape-scale variation in Oldowan artifact assemblages in the paleo-Olduvai Basin, Tanzania. J Archaeol Sci 35:76–86

    Article  Google Scholar 

  • Bonney H (2014) An investigation of the use of discriminant analysis for the classification of blade edge type from cut marks made by metal and bamboo blades. American J Phys Anthr 154:575–584

    Article  Google Scholar 

  • Bookstein F (1989) Principal warps: thin-plate spline and the decomposition of deformations. Transactions on Pattern Analysis and Machine Intelligence 11(6):567–585

    Article  Google Scholar 

  • Bookstein F (1991) Types of landmarks, morphometric tools for landmark data: geometry and biolog. Cambridge University Press, New York, pp 63–64

    Google Scholar 

  • Braun D, Pobiner B, Thompson J (2008) An experimental investigation of cut mark production and stone tool attrition. J Archaeol Sci 35:1216–1223

    Article  Google Scholar 

  • Braun D, Plummer T, Ferraro J, Ditchfield P, Bishop L (2009) Raw material quality and Oldowan hominin toolstone preferences: evidence from Kanjera South, Kenya. J Archaeol Sci 36:1605–1614

    Article  Google Scholar 

  • Braun DR, Pante M, Archer W (2016) Cut marks on bone surfaces: influences on variation in the form of traces of ancient behaviour. Interface Focus 6. https://doi.org/10.1098/rsfs.2016.0006

  • Bunge M (1981) Analogy between systems. Int J Gen Syst 7:221–223

    Article  Google Scholar 

  • Charlin J, Harnández Llosas I (2016) Morfometría Geométrica y Representciones Rupestres: Explorando las Aplicaciones de los Métodos Basados en Landmarks. Arqueología 22(1):103–125

    Google Scholar 

  • Choi K, Driwantoro D (2007) Shell tool use by early members of Homo erectus in Sangiran central java, Indonesia: cut mark evidence. J Archaeol Sci 34:48–58

    Article  Google Scholar 

  • Cooney J, Van Gelder L (2011) Child labour in the past: children as economic contributors and consumers. Annual Society for the Study of Childhood in the Past, University of Cambridge, Conference

    Google Scholar 

  • Core-Team R (2015) A language and environment for statistical computing. R Foundation for statistical computing. https://www.Rproject.org/. Accessed the 14th of May, 2017

  • Dewbury A, Russell N (2007) Relative frequency of butchering cutmarks produced by obsidian and flint: an experimental approach. J Archaeol Sci 34:354–357

    Article  Google Scholar 

  • Diez-Martín F, Sánchez P, Domínguez-Rodrigo M, Mabulla A, Barba R (2009) Were Olduvai hominins making butchering tools or battering tools? Analysis of a recently excavated lithic assemblage from BK (bed II, Olduvai Gorge, Tanzania). J Anthr Archaeol 28:274–289

    Article  Google Scholar 

  • Domínguez-Rodrigo M, de la Torre I, Luque L, Alcalá L, Mora R, Serralonga J, Medina V (2002) The ST site complex at Peninj, West Lake Natron, Tanzania: implications for early hominid behavioural models. J Archaeol Sci 29(12):639–665

    Article  Google Scholar 

  • Domínguez-Rodrigo M, Juana S, Galán AB, Rodríguez M (2009) A new protocol to differentiate trampling marks from butchery cut marks. J Archaeol Sci 36:2643–2654

    Article  Google Scholar 

  • Dryden IL, Mardia KV (1998) Statistical shape analysis. John Wiley & Sons, Chichester

    Google Scholar 

  • Faith T, Marean C, Behrensmeyer A (2006) Carnivore competition, bone destruction and bone density. J Archaeol Sci 34:2025–2034

    Article  Google Scholar 

  • Fernández-Jalvo Y, Andrews P (2016) Linear marks, atlas of taphonomic identifications. Springer Science+Buisness Media Dordrecht, Vertebrate Paleobiology and Paleoanthropology Series, London, pp 35–100

  • Galán AB, Domínguez-Rodrigo M (2013a) An experimental study of the anatomical distribution of cut marks created by filleting and disarticulation on long bone ends. Archaeometry 55(6):1132–1149

    Article  Google Scholar 

  • Galán AB, Domínguez-Rodrigo M (2013b) Testing the efficiency of simple flakes, retouched flakes and small handaxes during butchery. Archaeometry. https://doi.org/10.1111/arcm.12064

  • Gifford-Gonzalez D (1991) Bones are not enough: analogues, knowledge, and interpretive strategies in zooarchaeology. J Anthr Archaeol 10:215–254

    Article  Google Scholar 

  • Goodall C (1991) Procrustes methods in the statistical analysis of shape. J R Stat Soc Ser B Methodol 53(2):285–339

    Google Scholar 

  • Goodall C, Mardia K (1993) Multivariate aspects of shape theory. Ann Stat 21(2):848–866

    Article  Google Scholar 

  • Greenfield HJ (1999) The origins of metallurgy: distinguishing stone from metal cut-marks on bones from archaeological sites. J Archaeol Sci 26:797–808

    Article  Google Scholar 

  • Greenfield HJ (2008) Metallurgy in the near east, a zooarchaeological perspective on the origins of metallurgy in the near east: analysis of stone and metal cut marks on bone from Israel. In: Selin H (ed) Encyclopedia of the history of science, technology, and medicine in non-western cultures. Springer, Netherlands, pp 1639–1647

    Chapter  Google Scholar 

  • Güth A (2012) Using 3D scanning in the investigation of upper Palaeolithic engravings: first results of a pilot study. J Archaeol Sci 39(10):3105–3114

    Article  Google Scholar 

  • Hall B (2003) Descent with modification: the unity underlying homology and homoplasy as seen through an analysis of development and evolution. Bio Rev 78(3):409–433

    Article  Google Scholar 

  • Hutton J (1794) Experience considered as the cause of knowledge, or as an operation in which the human intellect is made to proceed, an investigation of the principles of knowledge: and of the progress of reason, from sense to science and philosophy. Strahan T Cadell Lond 2(3):105–120

    Google Scholar 

  • Hiscock P (2007) Looking the other way: a materialist/technological approach to classifying tools and implements, cores and retouched flakes. In: McPherron S, Lindley J (eds) Tools or cores? The identification and study of alternative core technology in lithic assemblages. University of Pennsylvania Museum, Philadelphia, pp 189–222

    Google Scholar 

  • Juana S, Galán AB, Domínguez-Rodrigo M (2009) Taphonomic identification of cut marks made with lithic handaxes: an experimental study. J Archaeol Sci 37:1841–1850

    Article  Google Scholar 

  • Kendall D (1989) A survey of the statistical theory of shape. Stat Sci 4(2):87–120

    Article  Google Scholar 

  • Klingenberg C (2008) Novelty and “homology-free” morphometrics: what’s in a name? Evol Bio 35:186–190

    Article  Google Scholar 

  • Klingenberg C (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    Article  Google Scholar 

  • Lam Y, Chen X, Marean C, Frey C (1998) Bone density and long bone representation in archaeological faunas: comparing results from CT and photon densitometry. J Archaeol Sci 25:559–570

    Article  Google Scholar 

  • Lam Y, Xingbin C, Pearson O (1999) Intertaxonomic variability in patterns of bone density and the differential representation of bovid, cervid and equid elements in the archaeological record. Society American Archaeol 64(2):343–362

    Google Scholar 

  • Lam Y, Pearson O, Marean C, Chen X (2003) Bone density studies in zooarchaeology. J Archaeol Sci 30:1701–1708

    Article  Google Scholar 

  • Leakey M (1971) Olduvai Gorge, volume 3: excavations in beds 1 and II, 1960–1963. Cambridge University Press, Cambridge

    Google Scholar 

  • Lewis J (2008) Identifying sword marks on bone: criteria for distinguishing between cut marks made by different classes of bladed weapons. J Archaeol Sci 35:2001–2008

    Article  Google Scholar 

  • Lyell C (1830) Principles of geology: being an attempt to explain the former changes of the Earth’s surface, by reference to causes now in operation. Penguin Classics, Wiltshire

    Google Scholar 

  • Machin AJ, Hosfield RT, Mithen SJ (2006) Why are some handaxes symmetrical? Testing the influence of handaxe morphology on butchery effectiveness. J Archaeol Sci. https://doi.org/10.1016/j.jas.2006.09.008

  • Manríquez G, González-Bergás F, Carlos Salinas J, Espoueys O (2006) Deformación Intencional del Cráneo en Poblaciones Arqueológicas de Arica, Chile: Análysis Preliminar de Morfometría Geométrica Con Uso de Radiografías Craneofacials. Revista de Antropología Chilena 38(1):13–34

    Google Scholar 

  • Marín-Monfront M, Pesquero M, Fernández-Jalvo Y (2013) Compressive marks from gravel substrate on vertebrate remains: a preliminary experimental study. Quat Int. https://doi.org/10.1016/j.quaint.2013.10.028

  • Maté-González MA, Yravedra J, González-Aguilera D, Palomeque-González JF, Domínguez-Rodrigo M (2015) Micro-photogrammetric characterization of cut marks on bones. J Archaeol Sci 62:128–142

    Article  Google Scholar 

  • Maté-González MA, Palomeque-González J, Yravedra J, González-Aguilera D, Domínguez-Rodrigo M (2016) Micro-photogrammetric and morphometric differentiation of cut marks on bones using metal knives, quartzite and flint flakes. Archaeol Anthro Sci. https://doi.org/10.1007/s12520-016-0401-5

  • Maté-González MA, Aramendi J, Yravedra J, Blasco R, González Aguilera D (2017a) Assessment of statistical agreement of three techniques for the study of cut marks: 3D digital microscope, laser scanning confocal microscopy and micro photogrammetry. J Microscopy 00(0):1–15

  • Maté-González MÁ, Yravedra J, Martín-Perea D, Palomeque-González J, San-Juan-Blazquez M, Estaca-Goméz V, Uribelarrea D, Álvarez-Alonso D, Gonzalez-Aguilera D (2017b) Flint and quartzite: distinguishing raw material through bone cut marks. Archaeometry. https://doi.org/10.1111/arcm.12327

  • Merrit S (2012) Factors affecting early stone age cut mark cross-sectional size: implications from actualistic butchery trails. J Archaeol Sci 39:2984–2994

    Article  Google Scholar 

  • Merton RK (1967) On theoretical sociology: five essay, old and new. The Free Press, New York

    Google Scholar 

  • Moclán Ramos A (2016) Marcas de Corte, Análisis Zooarqueológico y Tafonómico del Nivel F del Abrigo de Navalmaíllo (Pinilla del Valle, Madrid). Master’s Thesis, Universitat Rovira i Virgili, pp 103–109

  • Monteiro LR, Bordin B, Furtado dos Reism S (2000) Shape distances, shape spaces and the comparison of morphometric methods. TREE 15(6):217–220

    Google Scholar 

  • Moretti E, Arrighi S, Boschin F, Crezzini J, Aureli D, Ronchitelli A (2015) Using 3D microscopy to analyze experimental cut marks on animal bones produced with different stone tools. Ethnobio Lett 6(2):267–275

    Article  Google Scholar 

  • Nelson E, Hall J, Randolph-Quinney P, Sinclair A (2017) Beyond size: the potential of a geometric morphometric analysis of shape and form for the assessment of sex in hand stencils in rock art. J Archaeol Sci 78:202–213

    Article  Google Scholar 

  • O’Higgins P, Johnson D (1988) The quantitative description and comparison of biological forms. Critical reviews in anatomical. Sciences 1:149–170

    Google Scholar 

  • O’Higgins P, Jones N (1998) Facial growth in Cercocebus torquatus: an application of three dimensional geometric morphometric techniques to the study of morphological variation. J Anat 193:251–272

    Article  Google Scholar 

  • Olsen SL, Shipman P (1988) Surface modification on bone: trampling versus butchery. J Archaeol Sci 15:535–553

    Article  Google Scholar 

  • Palomeque-González J, Maté-González MA, Yraveda J, San Juan-Blazquez M, García-Vargas E, Martín-Perea D, Estaca-Gómez V, González-Aguilera D, Domínguez-Rodrigo M (2017) Pandora: a new morphometric and statistical software for Analysing and distinguishing cut marks on bones. Int J Archaeol Sci 13:60–66

    Google Scholar 

  • Pickering TR, Marena CW, Domínguez-Rodrigo M (2003) Importance of limb bone shaft fragments in zooarchaeology: a response to “on in situ attrition and vertebrate body part profiles” (2002), by M. C. Stiner. J Archaeol Sci 30:1469–1482

    Article  Google Scholar 

  • Pineda A, Saldié P, Maria Vergès J, Huguet R, Cáceres I, Vallvedú J (2014) Trampling versus cut marks on chemically altered surfaces: an experimental approach and archaeological application at the Barranc de la Boella site (la Canonja, Tarragona, Spain). J Archaeol Sci 50:84–93

    Article  Google Scholar 

  • Playfair J (1802) Figure of the Earth, illustrations of the Huttonian theory of the Earth. William Creech, Edinburgh, pp 488–509

    Google Scholar 

  • Popper K (1935 [Translated into English in 1959]) Theory and experiment, logic of scientific discovery. Routledge Classics, London, pp 88–94

  • Potter SL (2005) The physics of cutmarks. J Taphon 3(2):91–106

    Google Scholar 

  • Potts R (1988) Early Hominid activities at Olduvai Gorge: foundations of human behaviour. Aldine de Gruyter, New York

  • Reynard JP (2013) Trampling in coastal sites: an experimental study on the effects of shell on bone in coastal sediment. Quat Int. https://doi.org/10.1016/j.quaint.2013.11.007

  • Rohlf FJ (1999) Shape statistics: Procrustes superimpositions and tangent spaces. J Classif 16:197–223

    Article  Google Scholar 

  • Rohlf FJ, Corti M (2000) Use of two-block partial least-squares to study covariation in shape. Syst Bio 49(4):740–753

    Article  Google Scholar 

  • Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. Tree 8(4):129–132

  • Sánchez-Yustos P, Diez-Martín F, Domínguez-Rodrigo M, Duque J, Fraile C, Baquedano E, Mabulla A (2017) Diversity and significance of core preparation in the developed Oldowan technology: reconstructing the flaking processes at SHK and BK (middle-upper bed II, Olduvai Gorge, Tanzania). Boreas. https://doi.org/10.1111/bor.12237

  • Santonja M, Panera J, Rubio-Jara S, Pérez-González A, Uribelarrea D, Domínguez-Rodrigo M, Mabulla AZP, Bunn HT, Baquedano E (2014) Technological strategies and the economy of raw materials in the TK (Thiongo Korongo) lower occupation, bed II, Olduvai Gorge, Tanzania. Quat Int 322-323:181–208

    Article  Google Scholar 

  • Shipman P, Rose J (1983) Evidence of butchery and hominid activities at Torralba and Ambrona; an evaluation using microscopic techniques. J Archaeol Sci 10:465–474

    Article  Google Scholar 

  • Slice D (2001) Landmark coordinates aligned by Procrustes analysis do not lie in Kendall’s shape space. Syst Bio 50(1):141–149

    Article  Google Scholar 

  • Slice D (2005) Modern morphometrics in physical anthropology. Plenum Publishers, New York

    Book  Google Scholar 

  • Spennemann DHR (1990) Don’t forget the bamboo. On recognising and interpreting butchery marks in tropical faunal assemblages, some comments asking for caution, problem solving in taphonomy. Archaeological and palaeontological studies from Europe, Africa and. Oceania 2:80–101

    Google Scholar 

  • Stiner M (2002) On in situ attrition and vertebrate body part profiles. J Archaeol Sci 29:979–991

    Article  Google Scholar 

  • Thompson JC (2005) The impact of post-depositional processes on bone surface modification frequencies: a corrective strategy and its application to the Loiyangalani site, Serengeti plain, Tanzania. J Taphon 3(2):67–90

    Google Scholar 

  • de la Torre I, Mora R (2013) The transition to the Acheulean in East Africa: an assessment of paradigms and evidence from Olduvai Gorge (Tanzania). J Archaeol Method Theory. https://doi.org/10.1007/s10816-013-9176-5

  • de la Torre I, Benito-Calvo A, Arroyo A, Zupancich A, Proffitt A (2013) Experimental protocols for the study of battered stone anvils from Olduvai Gorge (Tanzania). J Archaeol Sci 40:313–332

    Article  Google Scholar 

  • Val A, Costamagno S, Discamps E, Chong S, Claud E, Deschamps M, Mourre V, Soulier MC, Thiébaut C (2017) Testing the influence of stone tool type on microscopic morphology of cut-marks: experimental approach and application to the archaeological record with a case study from the middle Palaeolithic site of Noisetier cave (Fréchet-Aure, Hautes-Pyrénées, France). J Archaeol Sci: Reports 11:17–28

    Google Scholar 

  • Van Gelder L (2010) 10 years in Rouffignac: a collective report on findings from a decade of finger flutings research, IFRAO congress, September 2010 – Symposium: Pleistocene Art in Europe (Pre-Acts)

  • Van Gelder L (2014) Paleolithic finger flutings and the question of writing. Time and Mind 7(2):141–153

    Article  Google Scholar 

  • Van Gelder L (2015) Counting the children: the role of children in the production of finger flutings in four upper Palaeolithic caves. Oxf J Archaeol 34(2):117–138

    Google Scholar 

  • Van Gelder L, Sharpe K (2015) Evidence for cave marking by Palaeolithic children. Antiq 80(310):937–947

    Google Scholar 

  • Walker P, Long J (1977) An experimental study of the morphological characteristics of tool marks. Soc American Archaeol 42(4):605–616

    Google Scholar 

  • Walker P (1978) Butchering and stone tool function. Soc Am Archaeol 43(4):710–715

    Google Scholar 

  • West J, Louys J (2007) Differentiating bamboo from stone tool cut marks in the zooarchaeological record, with a discussion on the use of bamboo knives. J Archaeol Sci 34:512–518

    Article  Google Scholar 

  • Weston E, Szabó K, Stern N (2015) Pleistocene shell tools from Lake Mungo Lunette, Australia: identification and interpretation drawing on experimental archaeology. Quat Int. https://doi.org/10.1016/j.quaint.2015.11.047 (Consulted the 10th of April, 2017)

  • Whewell W (1847) Of the fundamental antithesis of philosophy, the philosophy of the inductive sciences founded upon their history, vol 2. John W Parker, London, pp 16–50

    Google Scholar 

  • Yravedra J (2006) Las Marcas de Corte, Tafonomía Aplicada a la Zooarqueología. UNED, Madrid, pp 188–195

    Google Scholar 

  • Yravedra J, Maté-González MA, Palomeque-González JF, Aramendi J, Estaca Gómez V, San Juan Blazquez M, García Vargas E, Organista E, González-Aguilera D, Carmen Arriaza M, Cobo-Sánchez L, Gidna A, Uriberlarrea del Val D, Baquedano E, Mabulla A, Domíngue-Rodrigo M (2017a) A new apporach to raw material use in the exploitation of animal carcasses at BK (upper bed II, Olduvai Gorge, Tanzania): a micro-photogrammetric and geometric morphometric analysis of fossil cut marks. Boreas. https://doi.org/10.1111/bor.12224

  • Yravedra J, Díez-Martín F, Egeland C, Maté-González MA, Palomeque-González JF, Carmen Arriaza M, Aramendi J, García Vargas E, Estaca-Gómez V, Sánchez P, Fraile C, Duque J, Francisco Rodriguez S, González-Aguilera D, Mabulla A, Baquedano E, Domíngue-Rodrigo M (2017b) FLK west (lower bed II, Olduvai-gorge, Tanzania): a new early Acheulean site with evidence for human exploitation of Fauna. Boreas. https://doi.org/10.1111/bor.12243

Download references

Acknowledgements

We would like to thank the TIDOP Group from the Department of Cartographic and Land Engineering of the High Polytechnics School of Avila, University of Salamanca, for the use of tools and facilities. We want to recognise the technical support provided by C.A.I. Arqueometry and Archaeological Analysis from Complutense University which has been very useful to carry out the present work. Julia Aramendi would like to thank Fundación La Caixa and the Spanish Education, Culture and Sports Ministry (FPU15/04585) for funding her postgraduate education programmes. We also appreciate the help Andrea Martínez Fernández, Nicolas Alix González and Irene Faza Aladro provided with the photographical documentation of the experimental lithic tools. The corresponding author would also like to thank Abel Moclán for his advice on countless occasions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd A. Courtenay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Courtenay, L.A., Yravedra, J., Mate-González, M.Á. et al. 3D analysis of cut marks using a new geometric morphometric methodological approach. Archaeol Anthropol Sci 11, 651–665 (2019). https://doi.org/10.1007/s12520-017-0554-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-017-0554-x

Keywords

Navigation