Archaeological and Anthropological Sciences

, Volume 9, Issue 7, pp 1439–1452 | Cite as

Diet and mobility patterns in the Late Prehistory of central Iberia (4000–1400 cal bc): the evidence of radiogenic (87Sr/86Sr) and stable (δ18O, δ13C) isotope ratios

  • Pedro Díaz-del-Río
  • Anna J. Waterman
  • Jonathan T. Thomas
  • David W. Peate
  • Robert H. Tykot
  • M. Isabel Martínez-Navarrete
  • Juan M. Vicent
Original Paper
  • 218 Downloads

Abstract

This study examines strontium, oxygen, and carbon isotope ratios (87Sr/86Sr, δ18O, δ13C) in dental enamel and bone apatite from 82 individuals interred at Late Neolithic, Chalcolithic, and Bronze Age burial sites near Madrid, Spain, to discern variations in dietary patterns and identify possible migrants. Questions about mobility patterns and subsistence practices have played a central role in the scholarship of Late Prehistoric central Iberia in the last 20 years, but the archaeological record has still not been able to provide clear answers. This study adds valuable data to this line of research. The results of this study suggest that migration from regions with different geologic landscapes was uncommon in these communities. For the identified migrants, based upon the 87Sr/86Sr values, several of the identified non-local individuals originate from regions with substantially older lithological features and possible places of origin are being investigated. As it is not possible to discern individuals who may have moved from regions with similar geologic landscapes using this methodology, these data provide the minimum number of migrants, and it is conceivable that the number of non-locals in this sample may be higher. Combining multiple lines of material and biological evidence and the completion of Sr isotope mapping in the Iberian Peninsula will help to clarify these findings. Stable carbon isotope data provide new and direct evidence of regional changes in consumption patterns. In particular, this study provides some possible evidence for the consumption of C4 plants in third-millennium bc central Spain.

Keywords

Stable isotopes Radiogenic isotopes Mobility Diet C4 plants Late Prehistory Spain 

References

  1. Abarquero FJ (2005) Cogotas I. La difusión de un tipo cerámico durante la Edad del Bronce. Monografías. Arqueología en Castilla y León 4. ValladolidGoogle Scholar
  2. Aliaga R (2014) Sociedad y mundo funerario en el III y II milenio a. C. en la región del Jarama. British Archaeological Reports, International Series. 2630. Archaeopress, OxfordGoogle Scholar
  3. Aliaga R, Megías M (2011) Los Berrocales (Madrid): un yacimiento de la Edad del Bronce en la confluencia Manzanares-Jarama. Patrimonio Arqueológico de Madrid 8. Universidad Autónoma de Madrid, MadridGoogle Scholar
  4. Ambrose SH, Krigbaum J (2003) Bone chemistry and bioarchaeology. J Anthropol Archaeol 22:193–199CrossRefGoogle Scholar
  5. Aranda G, Fernández S, Haro M, Molina F, Nájera T, Sánchez M (2008) Water control and cereal management on the Bronze Age Iberian Peninsula: la Motilla del Azuer. Oxf J Archaeol 27(3):241–259CrossRefGoogle Scholar
  6. Balsera V, Bernabeu J, Costa-Caramé M, Díaz-del-Río P, García-Sanjuán L, Pardo S (2015) The radiocarbon chronology of Southern Spain’s Late Prehistory (5600-1000 cal BC): a comparative review. Oxf J Archaeol 34(2):139–156CrossRefGoogle Scholar
  7. Beard BL, Johnson CM (2000) Strontium isotope composition of skeletal material can determine the birthplace and geographic mobility of humans and animals. J Forensic Sci 45(5):1049–1061CrossRefGoogle Scholar
  8. Bentley RA, Price TD, Stephan E (2004) Determining the ‘local’ 87Sr/86Sr range for archaeological skeletons: a case study from Neolithic Europe. J Archaeol Sci 31(4):365–375Google Scholar
  9. Blanco González A (2011) From huts to ‘the house’: the shift in perceiving home between the Bronze Age and the Early Iron Age in central Iberia (Spain). Oxf J Archaeol 30:393–410CrossRefGoogle Scholar
  10. Blasco, MC (1994) ed. El horizonte campaniforme de la región de Madrid en el centenario de Ciempozuelos. Patrimonio Arqueológico del Bajo Manzanares 2. Universidad Autónoma de Madrid.Google Scholar
  11. Bradley RS (1999) Paleoclimatology: reconstructing climates of the Quaternary Vol. 68. Academic PressGoogle Scholar
  12. Brodsky MC, Gilman A, Martín Morales C (2013) Bronze Age political landscapes in La Mancha. In: Cruz Berrocal M, García Sanjuán L, Gilman A (eds) The prehistory of Iberia. Debating early social stratification and the state. Routledge, London, pp 141–169Google Scholar
  13. Carmona E (2011) Las comunidades campesinas calcolíticas en el valle medio del Arlanzón (cal 3000–1900 A.C.): Transformaciones y procesos históricos. Universidad de Burgos, BurgosGoogle Scholar
  14. DeNiro MJ (1985) Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317(6040):806–809Google Scholar
  15. Díaz-del-Río P (1995) Campesinado y gestión pluriactiva del ecosistema: un marco teórico para el análisis del III y II milenios A.C. en la Meseta Peninsular. Trab Prehist 52(2):99–109CrossRefGoogle Scholar
  16. Díaz-del-Río P (2004) Copper Age ditched enclosures in central Iberia. Oxf J Archaeol 23(2):107–121CrossRefGoogle Scholar
  17. Díaz-del-Río P (2006) An appraisal of social inequalities in Central Iberia (c. 5300–1600 cal BC). In: Díaz-del-Río P, García Sanjuán L (eds) Social inequality in Iberian. British archaeological reports international series 1525. Archaeopress, Oxford, pp 67–79Google Scholar
  18. Díaz-del-Río P, Consuegra S, Peña-Chocarro L, Márquez B, Sampedro C, Moreno R, Albertini D, Pino B (1997) Paisajes agrarios prehistóricos en la Meseta Peninsular: el caso de ‘Las Matillas’ (Alcalá de Henares, Madrid). Trab Prehist 54(2):93–111CrossRefGoogle Scholar
  19. Díaz-del-Río P, Consuegra S, Audije J, Zapata S, Cambra O, González A, Waterman A, Thomas J, Peate D, Odriozola C, Villalobos R, Bueno P, Tykot RH (2017) Un enterramiento colectivo de mediados del III milenio AC en el centro de la Península Ibérica: El Rebollosillo (Torrelaguna, Madrid). Trab Prehist 74(1)Google Scholar
  20. Díaz-Teijeiro MF, Rodríguez-Arévalo J, Castaño S (2009) La Red Española de Vigilancia de Isótopos en la Precipitación (REVIP): distribución isotópica espacial y aportación al conocimiento del ciclo hidrológico. Ingeniería Civil (CEDEX) 155:87–97Google Scholar
  21. Domínguez RM, Vírseda L (2009) Excavación en el yacimiento Pista de Motos (Villaverde, Madrid). Actas de las cuartas jornadas de Patrimonio Arqueológico en la Comunidad de Madrid (Madrid 2007), pp 327–331Google Scholar
  22. Fernández-Crespo T, Mijika JA, Ordoño J (2017) Aproximación al patrón alimentario de los inhumados en la cista de la Edad del Bronce de Ondarre (Aralar, Guipúzcoa) a través del análisis de isótopos estables de carbono y nitrógeno sobre colágeno óseo. Trab Prehist 73(2):325–334CrossRefGoogle Scholar
  23. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Biol 40(1):503–537CrossRefGoogle Scholar
  24. Gerbault P, Liebert A, Itan Y, Powell A, Currat M, Burger J, Thomas MG (2011) Evolution of lactase persistence: an example of human niche construction. Philosophical Transactions of the Royal Society B: Biological Sciences 366(1566):863–877. doi:10.1098/rstb.2010.0268 CrossRefGoogle Scholar
  25. Jiménez-Jáimez V (2015) The unsuspected circles. On the late recognition of Southern Iberian Neolithic and chalcolithic ditched enclosures. Proceedings of the Prehistoric Society 81:179–198CrossRefGoogle Scholar
  26. Instituto Geológico y Minero de España (1988) Atlas Geocientífico del Medio Natural de la Comunidad de Madrid. IGME, MadridGoogle Scholar
  27. Katzenberg MA (2008) Stable isotope analysis: a tool for studying past diet, demography, and life history. In: Katzenberg MA, Saunders SR (eds) Biological anthropology of the human skeleton, 3rd edn. John Wiley and Sons Inc, Hoboken, pp 413–441CrossRefGoogle Scholar
  28. Koch PL, Tuross N, Fogel ML (1997) The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. J Archaeol Sci 24:417–429CrossRefGoogle Scholar
  29. Kohn MJ, Cerling TE (2002) Stable isotope compositions of biological apatite. Rev Mineral Geochem 48(1):455–488Google Scholar
  30. Krueger HW, Sullivan CH (1984) Models for carbon isotope fractionation between diet and bone. In: Turnlund J, Johnson PE (eds) Stable isotopes in nutrition. American Chemical Society, Washington, DC, pp 205–222CrossRefGoogle Scholar
  31. Lai L (2008) The interplay of economic, climatic and cultural change investigated through isotopic analyses of bone tissue: the case of Sardinia 4000–1900 B.C. Dissertation, University of South FloridaGoogle Scholar
  32. Lee-Thorp JA, Sealy JC, van der Merwe NJ (1989) Stable carbon isotope ratio differences between bone-collagen and bone apatite, and their relationship to diet. J Archaeol Sci 16:585–599CrossRefGoogle Scholar
  33. Lillios KT (1991) Competition to fission: the Copper to Bronze Age transition in the lowlands of West-Central Portugal (3000–1000 BC). Ph.D. Dissertation, Yale UniversityGoogle Scholar
  34. Liesau C (2011) La arqueozoología, un elemento clave en la concepción espacial de Camino de las Yeseras. In: Blasco C, Lieasu C, Ríos P (eds) Yacimientos calcolíticos con campaniforme de la región de Madrid: nuevos estudios. Patrimonio Arqueológico de Madrid 6. Universidad Autónoma de Madrid, Madrid, pp 167–170Google Scholar
  35. Liu L, Duncan NA, Chen X, Liu G, Zhao H (2015) Plant domestication, cultivation, and foraging by the first farmers in early Neolithic Northeast China: evidence from microbotanical remains. The Holocene 25(12):1965–1978CrossRefGoogle Scholar
  36. Lull V (2000) Argaric society: death at home. Antiquity 285:581–590CrossRefGoogle Scholar
  37. Lull V, Micó R, Rihuete C, Risch R (2013) Bronze Age Iberia. In: Fokkens H, Harding A (eds) The Oxford handbook of the European Bronze Age. Oxford University Press, Oxford, pp 594–616Google Scholar
  38. Makarewicz CA, Sealy J (2015) Dietary reconstruction, mobility, and the analysis of ancient skeletal tissues: expanding the prospects of stable isotope research in archaeology. J Archaeol Sci 56:146–158CrossRefGoogle Scholar
  39. Maluquer de Motes J (1972) Proceso histórico económico de la Primitiva población peninsular. Instituto de Arqueología y Prehistoria, Publicaciones Eventuales 20. Universidad de BarcelonaGoogle Scholar
  40. Martín Bañón A (2007) Yacimiento de El Congosto (Rivas-Vaciamadrid). La fase neolítica. Actas de las segundas jornadas de Patrimonio Arqueológico en la Comunidad de Madrid, Madrid: 201–205Google Scholar
  41. McArthur JM, Howarth RJ, Bailey TR (2001) Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. The Journal of Geology 109(2):155–170CrossRefGoogle Scholar
  42. Nájera T, Molina F, Jiménez-Brobeil SA, Sánchez Romero M, Al Oumaoui I, Aranda G, Delgado-Huertas A, Laffranchi Z (2010) La población infantil de la Motilla del Azuer: Un estudio bioarqueológico. Complutum 21:69–102Google Scholar
  43. Moreno-Larrazabal A, Teira-Brión A, Sopelana-Salcedo I, Arranz-Otaegui A, Zapata L (2015) Ethnobotany of millet cultivation in the north of the Iberian Peninsula. Veg Hist Archaeobotany 24(4):541–554CrossRefGoogle Scholar
  44. Peña-Chocarro L, Ruiz-Alonso M, Sabato D (2011) Los macrorrestos vegetales. In: Blasco C, Liesau C, Ríos P (eds) Yacimientos calcolíticos con campaniforme de la región de Madrid: nuevos estudios. Universidad Autónoma de Madrid, Madrid, pp 261–275Google Scholar
  45. Pérez-Villa A (2015) Pautas funerarias y demográficas de la Edad del Bronce en la cuenca media y alta del Tajo. Bibliotheca Praehistorica Hispana 31. CSIC, MadridGoogle Scholar
  46. Price TD, Burton JH (2011) An introduction to archaeological chemistry. Springer, New YorkGoogle Scholar
  47. Price TD, Johnson CM, Ezzo JA, Ericson J, Burton JH (1994) Residential mobility in the prehistoric southwest United States: a preliminary study using strontium isotope analysis. J Archaeol Sci 21(3):315–330CrossRefGoogle Scholar
  48. Price TD, Burton JH, Bentley RA (2002) The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeometry 44(1):117–135Google Scholar
  49. Ríos P (2011) Nuevas fechas para el Calcolítico de la región de Madrid. Aproximación crono-cultural a los primeros poblados estables. In: Blasco C, Liesau C, Ríos P (eds) Yacimientos calcolíticos con campaniforme de la región de Madrid: nuevos estudios. Patrimonio Arqueológico de Madrid 6. Universidad Autónoma de Madrid, Madrid, pp 73–86Google Scholar
  50. Salazar DC, Benítez de Lugo LB, Álvarez HJ, Benito M (2013) Estudio diacrónico de la dieta de los pobladores antiguos de Terrinches (Ciudad Real) a partir del análisis de isótopos estables sobre restos óseos humanos. Revista Española de Antropología Física 34:6–14Google Scholar
  51. de Sanches MJ coord (2008) O Crasto de Palheiros. Fragada do Crasto. Murça-Portugal. Município de Murça. PortugalGoogle Scholar
  52. Schoeninger MJ, Moore K (1992) Bone stable isotope studies in archaeology. J World Prehist 6(2):247–296CrossRefGoogle Scholar
  53. Smith BH (1991) Standards of human tooth formation and dental age assessment. Wiley-Liss Inc., New YorkGoogle Scholar
  54. Stuart Williams HLQ, Schwarcz HP, White CD, Spence MW (1996) The isotopic composition and diagenesis of human bone from Teotihuacan and Oaxaca, Mexico. Palaeogeogr Palaeoclimatol Palaeoecol 126(1–2):1–14CrossRefGoogle Scholar
  55. Tankersley KB, Conover DG, Lentz DL (2016) Stable carbon isotope values (δ13C) of purslane (Portulaca oleracea) and their archaeological significance. Journal of Archaeological Science Reports 7:189–194CrossRefGoogle Scholar
  56. Tykot RH (2002) Contribution of stable isotope analysis to understanding dietary variation among the Maya. In: Jakes KA (ed) Archaeological chemistry: materials, methods, and meanings. American Chemical Society, Washington DC, pp 214–230CrossRefGoogle Scholar
  57. Tykot RH (2006) Isotope analyses and the histories of maize. In: Staller JE, Tykot RH, Benz BF (eds) Histories of maize: multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Academic Press, Amsterdam, pp 131–142Google Scholar
  58. Tykot RH, Falabella F, Planella MT, Aspillaga E, Sanhueza L, Becker C (2009) Stable isotopes and archaeology in central Chile: methodological insights and interpretative problems for dietary reconstruction. Int J Osteoarchaeol 19(2):156–170Google Scholar
  59. van der Merwe NJ, Medina E (1991) The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J Archaeol Sci 18(3):249–259CrossRefGoogle Scholar
  60. Villaseca C, Barbero L, Santos RJ, Zalduegui JF (1998) Nuevos datos petrológicos, geocronología (Rb-Sr) y geoquímica isotópica (Sr, Nd) del plutón de Ventosilla (Sierra de Guadarrama, Sistema Central Español). Geogaceta 23:169–172Google Scholar
  61. Waight TE, Baker JA, Peate DW (2002) Sr isotope ratio measurements by double focusing MC-ICPMS: techniques, observations and pitfalls. Int J Mass Spectrom 221:229–244CrossRefGoogle Scholar
  62. Waterman AJ (2012) Marked in life and death: identifying biological markers of social differentiation in Late Prehistoric Portugal. Dissertation. University of IowaGoogle Scholar
  63. Waterman AJ, Peate DW, Silva AM, Thomas JT (2014) In search of homelands: using strontium isotopes to identify biological markers of mobility in Late Prehistoric Portugal. J Archaeol Sci 42C:119–127CrossRefGoogle Scholar
  64. Waterman AJ, Tykot RH, Silva AM (2016) Stable isotope analysis of diet-based social differentiation at Late Prehistoric collective burials in southwestern Portugal. Archaeometry 58(1):131–151CrossRefGoogle Scholar
  65. White CD, Spence MW, Longstaffe FJ (2004) Demography and ethnic continuity in the Tlailotlacan enclave of Teotihuacan: the evidence from stable oxygen isotopes. J Anthropol Archaeol 23:385–403CrossRefGoogle Scholar
  66. Wright LE, Schwarcz HP (1998) Stable carbon and oxygen isotopes in human tooth enamel: identifying breastfeeding and weaning in prehistory. Am J Phys Anthropol 106(1):1–18CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Departamento de Arqueología y Procesos SocialesInstituto de Historia, CSICMadridSpain
  2. 2.Department of Natural and Applied SciencesMount Mercy UniversityCedar RapidsUSA
  3. 3.Department of AnthropologyThe University of IowaIowa CityUSA
  4. 4.Department of Earth & Environmental SciencesUniversity of IowaIowa CityUSA
  5. 5.Department of AnthropologyUniversity of South FloridaTampaUSA

Personalised recommendations