Archaeological and Anthropological Sciences

, Volume 9, Issue 3, pp 431–445 | Cite as

The Dor C shipwreck, Israel: metallurgical analysis and its contribution to the ship characterization

  • D. Ashkenazi
  • D. Cvikel
  • M. Holtzman
  • D. Bershadski
  • A. Stern
  • S. Klein
  • Y. Kahanov
Original Paper

Abstract

The Dor C shipwreck is the remains of a 60-t schooner that plied the Mediterranean during the last decades of the nineteenth century. The various building materials and ceramic ware found inside the shipwreck suggest an established commercial route between southern France and the Holy Land. Three metal objects were found in the bow area of the shipwreck: a lead pipe, an iron rigging hoop, and a brass wick housing. This study aims to understand their manufacturing processes, to propose possible dating and manufacturing locations, and to verify their use. The metallurgical investigation suggests that the objects were designated for marine use and manufactured using processes developed during the second half of the nineteenth century, probably post-1885, which supports the dating of the ship. The tonnage of the ship, the origin of her cargo, the provenance of some of the metal parts, and the location of the shipwreck, all suggest that her last voyage was a delivery of cargo from Marseilles to Dor.

Keywords

Archaeometallurgy Dor C shipwreck Lead pipe Rigging hoop Wick housing 

Notes

Acknowledgments

The underwater excavation and research of the Dor C shipwreck was supported by the Hecht Foundation and anonymous donors, to whom the authors are grateful. The authors would like to thank A. Gienko and I. Rosenthal, Department of Materials Engineering, Ben-Gurion University of the Negev, and Y. Shoef, Gabi Shoef Ltd, for their radiographic (RT) assistance; E. Tuval and his group from the IDF laboratories for their technical assistance; Z. Barkai, Wolfson Applied Materials Research Centre, Tel Aviv University, and H. Kravitz, Microtech Advanced Metallographic Supplies (Israel), for their valuable assistance; and J. B. Tresman for the English editing.

References

  1. Ashkenazi D, Cvikel D, Iddan N, Mentovich E, Kahanov Y, Levinstain M (2011) Archaeometallurgical study of the brass cases from the Akko 1 shipwreck. J Archaeol Sci 38(9):2410–9CrossRefGoogle Scholar
  2. Ashkenazi D, Cvikel D, Stern A, Klein S, Kahanov Y (2014) Metallurgical characterization of brass objects from the Akko 1 shipwreck, Israel. Mater Charact 92:49–63CrossRefGoogle Scholar
  3. Baretzky B, Friesel M, Straumal B (2007) Reconstruction of historical alloys for pipe organs brings true baroque music back to life. Mater Res Soc Bull 32(3):249–55CrossRefGoogle Scholar
  4. Bayley J (1990) The production of brass in antiquity with particular reference to Roman Britain. In: Craddock PT (ed) 2000Years of Zinc and Brass. British Museum Research Laboratory, London, pp 7–27Google Scholar
  5. Beltrame C, Gaddi D (2005) The rigging and the ‘hydraulic system’ of the Roman wreck at Grado, Gorizia, Italy. Int J Naut Arch 34(1):79–87CrossRefGoogle Scholar
  6. Bode M (2008) Archäometallurgische Untersuchungen zur Blei-/Silbergewinnung im Germanien der frühen Römi-schen Kaiserzeit. Unpublished PhD Dissertation, University of Münster, GermanyGoogle Scholar
  7. Brauns CM (1995) Isotopenuntersuchungen an Erzen des Siegerlandes. Unpublished PhD Dissertation, University of Giessen, GermanyGoogle Scholar
  8. Brensing KH, Sommer B (2008) Steel tube and pipe manufacturing processes. www.smrw.de/files/steel_tube_and_pipe.pdf, pp 1–63
  9. Brevart O, Dupré B, Allegre CJ (1982) Metallogenic provinces and the remobilization process studied by lead isotopes; lead-zinc ore deposits from the southern Massif Central, France. Econ Geol 77(3):564–75CrossRefGoogle Scholar
  10. Craddock PT (1978) The composition of the copper alloys used by the Greek, Etruscan and Roman civilizations: 3. The origins and early use of brass. J Archaeol Sci 5(1):1–16CrossRefGoogle Scholar
  11. Craddock PT (1987) The early history of zinc. Endeavour 11(4):183–91CrossRefGoogle Scholar
  12. Craddock PT (2009) Metals, minerals and medicine. Indian J Hist Sci 44:209–30Google Scholar
  13. Cuinet V (1896) Syrie, Leban et Palestine, Géographie Administrative, Statistique, Descriptive et Raisonnée. Ernest Leroux, ParisGoogle Scholar
  14. Durali-Müller S (2005) Roman lead and copper mining in Germany: their origin and development through time, deduced from lead and copper isotope provenance studies. Unpublished PhD Dissertation, Goethe University Frankfurt, GermanyGoogle Scholar
  15. Edward CRM (1903) Manufacture of iron and steel tubes, 2nd edn. The Technical Publishing Company, CarrboroGoogle Scholar
  16. Fitzgerald MA (1994) The Ship. In: Oleson JP (ed) The Harbours of Caesarea Maritima, Volume II: The Finds and the Ship. BAR International Series 594, Oxford, pp 163–223Google Scholar
  17. Fontana MG (1987) Corrosion Engineering, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  18. Frost H (1973) First season of excavation on the Punic wreck in Sicily. Int J Naut Arch 2(1):33–49CrossRefGoogle Scholar
  19. Gale WKV (1973) The Bessemer steelmaking process. Trans Newcom Soc 46(1):17–26CrossRefGoogle Scholar
  20. Hachenberg K (1998) The Complaint of the Markneukirchen Brass-Instrument Makers about the Poor Quality of Brass from the Rodewisch Foundry, 1787–1795. Hist Brass Soc J 10:116–45Google Scholar
  21. Houldcroft PT (1986) Welding process developments and future trends. Mater Des 7(4):162–9CrossRefGoogle Scholar
  22. Kahanov Y, Ashkenazi D (2011) Lead sheathing of ship hulls in the Roman period: Archaeometallurgical characterization. Mater Charact 62(8):768–74CrossRefGoogle Scholar
  23. Kahanov Y, Cvikel D, Wielinski A (2012) Dor C shipwreck, Dor Lagoon, Israel, evidence for maritime connections between France and the Holy Land at the end of the 19th century: building materials and ceramics from Marseilles, Vallauris and the vicinity. Cahiers d'Archéologie Subaquatique 19:173–212Google Scholar
  24. Kahanov Y, Ashkenazi D, Cvikel D, Klein S, Navri R, Stern A (2015) Archaeometallurgical analysis of metal remains from the Dor 2006 shipwreck: a clue to the understanding of the transition in ship construction. J Archaeol Sci Reports 2:321–32CrossRefGoogle Scholar
  25. Kingsley SA, Raveh K (1996) The ancient harbour and anchorage at Dor, Israel: results of the underwater surveys, 1976–1991. BAR International Series 626, OxfordGoogle Scholar
  26. Klein S, Domergue C, Lahaye Y, Brey GP, von Kaenel HM (2009) The lead and copper isotopic composition of copper ores from the Sierra Morena (Spain). J Iber Geol 35(1):59–68Google Scholar
  27. Lancaster JF (1987) The physics of fusion welding. Part 1: the electric arc in welding. Electric Power Applications. IEE Proceedings B 134(5):233–54Google Scholar
  28. Lancelot J, Sarazin G, Allegre CJ (1971) Composition isotopique du plomb et du soufre des galènes liées aux formations sédimentaires interprétations géologiques et géophysiques. Contrib Mineral Petr 32(4):315–33CrossRefGoogle Scholar
  29. Le Guen M (1989) Les minéralisations Pb-Zn du Bathonien dans la région des Malines (Gard): cadre géodynamique, caractérisation isotopique (Pb) et implications genetiques. Thèse de Doctorat, Université des Sciences et Techniques du LanguedocGoogle Scholar
  30. Le Guen M, Lancelot J (1989) Origin du Pb-Zn des minéralisations du Bathonien sud-cévenol. Apport de la géochimie isotopique comparée du plomb des galènes, de leur encaissant et du socle. BRGM Chronique de la Recherche Miniere 495:31–6Google Scholar
  31. Le Guen M, Orgeval JJ, Lancelot J (1991) Lead isotope behaviour in a polyphased Pb-Zn ore deposit: Les Malines (Cévennes, France). Mineral Deposita 26(3):180–8CrossRefGoogle Scholar
  32. Le Guen M, Lescuyer JL, Marcoux E (1992) Lead-isotope evidence for a Hercynian origin of the Salsigne gold deposit (Southern Massif Central, France). Mineral Deposita 27:129–36CrossRefGoogle Scholar
  33. Martini C, Chiavari C, Ospitali F, Grazzi F, Scherillo A, Soffritti C, Garagnani GL (2013) Investigations on a brass armour: authentic or forgery? Mater Chem Phys 142(1):229–37CrossRefGoogle Scholar
  34. Meadows CA (1978) Discovering oil lamps. Shire Publications, AylesburyGoogle Scholar
  35. Müller R, Brey GP, Seitz HM, Klein S, Lead isotope analyses on Late Republican sling bullets. Archaeol Anthropol Sci, Published online August 15, 2014. doi: 10.1007/s12520-014-0209-0.Google Scholar
  36. Murphy JM, Jeffers WN (1849) Spars and rigging from nautical routine. Dover Publications, MinolaGoogle Scholar
  37. Oerling TJ (1996) Ship’s Bilge Pumps: A History of Their Development, 1500–1900. Texas A&M University Press, College StationGoogle Scholar
  38. Osakada K (2010) History of plasticity and metal forming analysis. J Mater Process Tech 210(11):1436–54CrossRefGoogle Scholar
  39. Qiu P, Leygraf C (2011) Initial oxidation of brass induced by humidified air. Appl Surf Sci 258(3):1235–41CrossRefGoogle Scholar
  40. Rabinovich D (2013) The allure of aluminium. Nat Chem 5(1):76CrossRefGoogle Scholar
  41. Rao TS, Nair KVK (1998) Microbiologically influenced stress corrosion cracking failure of admiralty brass condenser tubes in a nuclear power plant cooled by freshwater. Corrosion Sci 40(11):1821–36CrossRefGoogle Scholar
  42. Rao JA, Rao JB, Kamaluddin S, Bhargava NRMR (2011) Studies on cold workability limits of brass using machine vision system and its finite element analysis. J Miner Mater Charact Eng 10(9):777–803Google Scholar
  43. Robinson WS (1981) Observations on the preservation of archaeological wrecks and metals in marine environment. Int J Naut Arch 10(1):3–14CrossRefGoogle Scholar
  44. Rohl BM (1996) Lead isotope data from the Isotrace Laboratory, Oxford: Archaeometry data base 2, galena from Britain and Ireland. Archaeometry 38(1):165–80CrossRefGoogle Scholar
  45. Rohl BM, Needham S (1998) The crculation of metal in the British Bronze Age: the application of lead isotope analysis. OP 102, British Museum Press, LondonGoogle Scholar
  46. Stanescu RF (2005) A single pass butt-welded pipe finite element method computer simulation. Unpublished PhD Dissertation, Carleton UniversityGoogle Scholar
  47. Tylecote RF (1977) Durable materials for sea water: the archaeological evidence. Int J Naut Arch 6(4):269–83CrossRefGoogle Scholar
  48. Tylecote RF (1983) The behaviour of lead as a corrosion resistant medium undersea and in soils. J Archaeol Sci 10(4):397–409CrossRefGoogle Scholar
  49. Tylecote RF (1992) A History of Metallurgy, 2nd edn. The Metals Society, LondonGoogle Scholar
  50. Underhill HA (1969) Masting and rigging. Brown, Son and Ferguson, GlasgowGoogle Scholar
  51. Underhill HA (1988) Deep-water sail. Brown, Son and Ferguson, GlasgowGoogle Scholar
  52. Wang D, He Y, Liang J, Liu P, Zhuang P (2013) Distribution and source analysis of aluminum in rivers near Xi’an City, China. Environ Monit Assess 185(2):1041–53CrossRefGoogle Scholar
  53. Zwicker U, Gale NH, Stos-Gale ZA (1991) Metallographische, analytische und technologische Untersuchungen sowie Messungen der Bleiisotope an Otto-Adelheid-Pfennigen und Vergleichsmünzen meist aus dem 9.-11. Jahrhundert. In: Hatz G, Hatz V, Zwicker U, Gale NH, Stos-Gale Z (eds) Otto-Adelheid-Pfennige. Commentationes de Nummis Saeculorum IX–XI, Stockholm, pp 59–146Google Scholar
  54. Zwicker U, Nigge K, Stos-Gale ZA, Gale NH (1998) Untersuchung zur römischen Metall- und Legierungsherstellung im Bereich von Nida-Heddernheim. In: Fischer U, Eschbaumer P, Fasold P, Huld-Zetsche I, Rupp V, Schubert H (eds) Grabungen im römischen Vicus von NIDA-Heddernheim. Schriften des Frankfurter Museums für Vor-und rühgeschichte, Archäologisches Museum, Bonn, pp 254–98Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • D. Ashkenazi
    • 1
  • D. Cvikel
    • 2
  • M. Holtzman
    • 2
  • D. Bershadski
    • 3
  • A. Stern
    • 3
  • S. Klein
    • 4
  • Y. Kahanov
    • 2
  1. 1.School of Mechanical EngineeringTel Aviv UniversityRamat AvivIsrael
  2. 2.Leon Recanati Institute for Maritime StudiesUniversity of HaifaHaifaIsrael
  3. 3.Department of Materials EngineeringBen-Gurion University of the NegevBeer ShevaIsrael
  4. 4.Institut für GeowissenschaftenJ. W. Goethe UniversitätFrankfurt am MainGermany

Personalised recommendations