Advertisement

Archaeological and Anthropological Sciences

, Volume 9, Issue 3, pp 345–370 | Cite as

Constraining the time of construction of the irrigation system of Tell Hujayrat al-Ghuzlan near Aqaba, Jordan, using high-resolution optically stimulated luminescence (HR-OSL) dating

  • Christiane Rhodius
  • Annette Kadereit
  • Ulrike Siegel
  • Klaus Schmidt
  • Ricardo Eichmann
  • Lutfi A. Khalil
Original Paper

Abstract

Tell Hujayrat al-Ghuzlan, situated at the northern periphery of modern Aqaba in southern Jordan, is one of the most important sites in Levantine archeology spanning the transitional period from late Chalcolithic to Early Bronze Age times. Numerous stone structures spread out in the surrounding area of the prehistoric settlement were interpreted as the remains of a complex hydro-technical system constructed for water supply of the settlement, agriculture, and craft production. Although construction of the water management system in prehistoric times seems likely, this hypothesis could not be proofed, as archeological evidence is missing and direct dating of the structures is not possible with established dating techniques. But the chronological placement of the irrigation system is essential to evaluate the settlement site appropriately within a wider socioeconomic context. Therefore, here, a feasibility study was carried out to test whether it is possible to date the last exposure of the stone surfaces of the irrigation system to daylight, as expected to occur during construction or repair works. For age determination, the high-resolution optically stimulated luminescence (HR-OSL) dating technique was applied. Five samples were dated, three of them from different hydro-technical components. The HR-OSL ages represent likely man-made as well as non-intentional or natural events. In summary, the results indicate that the water management system was in use in Early Bronze Age times, thus providing a minimum age for the time of construction.

Keywords

Stone surface dating High-resolution optically stimulated luminescence (HR-OSL) dating Irrigation system Tell site Archeology Chalcolithic Bronze Age 

Notes

Acknowledgments

The authors thank the following persons for their kind support of the study: Clemens Woda performed sampling in 2005 (then Forschungsstelle Archäometrie, Heidelberger Akademie der Wissenschaften) with the help of Matthias Grottker, Rüdiger Gnadt, Mathias Hamann, Benjamin Heemeier, Marian Stickel, and Ansgar Voorwold (Fachhochschule Lübeck). The SEM/EDS analyses were performed at the Institut für Geowissenschaften, Universität Heidelberg, in collaboration with Ilse Glass, who was always ready for assistance. Benjamin Heemeier provided information on water management in prehistoric times and photographs used in Table 2. Christiane Rhodius was financed by the German Research Foundation (part of DFG-grant Aqaba Ei 438/6-2). The manuscript profited from constructive comments by G. Huckleberry and two anonymous reviewers.

Supplementary material

12520_2015_284_MOESM1_ESM.pdf (1.3 mb)
ESM 1 (PDF 1.30 mb)

References

  1. Aitken MJ (1985) Thermoluminescence dating. Studies in archaeological science. Academic, LondonGoogle Scholar
  2. Aitken MJ (1998) An introduction to optical dating. Oxford University Press, New YorkGoogle Scholar
  3. Aitken MJ, Xie J (1992) Optical dating using infrared diodes: young samples. Quat Sci Rev 11:147–152CrossRefGoogle Scholar
  4. Al-Farajat M (2001) Hydrogeo-eco-systems in Aqaba/Jordan–coasts and region; natural settings, impacts of land use, spatial vulnerability to pollution and sustainable management. Dissertation, Julius-Maximilians-University WürzburgGoogle Scholar
  5. Allison AJ, Niemi TH (2010) Paleoenvironmental reconstruction of Holocene coastal sediments adjacent to archaeological ruins in Aqaba, Jordan. Geoarchaeology 25:602–625CrossRefGoogle Scholar
  6. Amit SR, Harrison JBJ, Enzel Y, Porat N (1996) Soils as a tool for estimating ages of Quaternary fault scarps in a hyperarid environment—the southern Arava valley, the Dead Sea Rift, Israel. Catena 28:21–45CrossRefGoogle Scholar
  7. Arz HW, Lamy F, Pätzold J, Müller PJ, Prins M (2003) Mediterranean moisture source for an Early-Holocene humid period in the Northern Red Sea. Science 300:118–121CrossRefGoogle Scholar
  8. Auclair M, Lamothe M, Huot S (2003) Measurement of anomalous fading for feldspar IRSL using SAR. Radiat Meas 37:487–492CrossRefGoogle Scholar
  9. Balescu S, Breton JF, Coque-Delhuille B, Lamothe M (1998) La datation par luminescence des limons de crue: une nouvelle approche de l'étude chronologique des périmètres d'irrigation antiques du Sud-Yémen = Luminescence dating of flash flood deposits: a new approach for the chronological study of ancient irrigation perimeters in southern Yemen. Earth Planet Sci 327(1):31–37Google Scholar
  10. Bar-Matthews M, Ayalon A, Gilmour M, Matthews A, Hawkesworth CJ (2003) Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim Cosmochim Acta 67(17):3181–3199CrossRefGoogle Scholar
  11. Bastert K, Lamprichs R (2004) The Wadi Qattar catchment area: ancient techniques of water use and storage. an archaeological perspective. In: Bienert H-D, Häser J (eds) Men of dikes and canals. The archaeology of water in the Middle East. Orient-Archäologie 13. VML, Rahden/Westf., pp 56–63Google Scholar
  12. Bender F (1975) Geology of the Arabian Peninsula. Jordan. Geological Survey Professional Paper 560-I. United States Government Printing Office, WashingtonGoogle Scholar
  13. Bienert HD, Häser J (2004) “Jeder von Euch baue sich eine Zisterne in seinem Haus“Wasserwirtschaft in Jordanien im Laufe der Jahrtausende. In: Kunst- und Ausstellungshalle der Bundesrepublik Deutschland, Bonn, Vorderasiatisches Museum, Staatliche Museen zu Berlin – Stiftung Preußischer Kulturbesitz (eds) Gesichter des Orients. 10000 Jahre Kunst und Kultur aus Jordanien. Philipp von Zabern, Mainz, pp 17–28Google Scholar
  14. Bronk Ramsey C (2010) Oxcal Program v 4.1.7 http://c14.arch.ox.ac.uk/embed.php?File=oxcal.htlm Oxford Radiocarbon Accelerator Unit, University of Oxford. Accessed 04 December 2014
  15. Brückner H, Eichmann R, Herling L, Kallweit H, Kerner S, Khalil L, Miqdadi R (2002) Chalcolithic and Early Bronze Age sites near 'Aqaba, Jordan. Archaeological survey and excavation in the Wādī al-Yutum and Tall al-Magass area (ASEYM). A preliminary report on the first season 1998. In: Eichmann R (ed) Ausgrabungen und Surveys im Vorderen Orient I. Orient-Archäologie 5. VML, Rahden/Westf., pp 215–331Google Scholar
  16. DAI (2006) Jordan, Aqaba–Tall Hujayrat al-Ghuzlan. http://www.dainst.org. Accessed 05 October 2006
  17. Edgell HS (2006) Arabian deserts: nature, origin and evolution. Springer, DordrechtCrossRefGoogle Scholar
  18. Eichmann R, Khalil L, Schmidt K (2009) Excavations at Tell Hujayrat al-Ghuzlan (cAqaba/Jordan). Excavations 1998–2005 and Stratigraphy. In: Khalil L, Schmidt K (eds) Prehistoric cAqaba I. Orient-Archäologie 23. VML, Rahden/Westf., pp 18–77Google Scholar
  19. Galli P (1999) Active tectonics along the Wadi Araba-Jordan Valley transform fault. J Geophys Res 104(B2):2777–2796CrossRefGoogle Scholar
  20. Gibson S (2001) Agricultural terraces and settlement expansion in the highlands of Early Iron Age Palestine: Is there any correlation between the two? In: Mazar A (ed) Studies in the archaeology of the Iron Age in Israel and Jordan. Sheffield Academic Press, Sheffield = J Study Old Testament Suppl Ser 331: 113–146Google Scholar
  21. Gliganic LA, Jacobs Z, Roberts RG (2012) Luminescence characteristics and dose distributions for quartz and feldspar grains from Mumba rockshelter, Tanzania. Archaeol Anthropol Sci 4:115–135. doi: 10.1007/s12520-011-0085-9 CrossRefGoogle Scholar
  22. Görsdorf J (2002) New 14C-Datings of prehistoric settlements in the South of Jordan. In: Eichmann R (ed) Ausgrabungen und Surveys im Vorderen Orient I. Orient-Archäologie 5. VML, Rahden/Westf., pp 333–339Google Scholar
  23. Greilich S (2004) Über die Datierung von Gesteinsoberflächen mittels optisch stimulierter Lumineszenz. Dissertation, Ruprecht-Karls-University HeidelbergGoogle Scholar
  24. Greilich S, Wagner GA (2006) Development of spatially resolved dating technique using HR-OSL. Radiat Meas 41:738–743CrossRefGoogle Scholar
  25. Greilich S, Wagner GA (2009) Light thrown on history—the dating of stone surfaces at the geoglyphs of Palpa using optically stimulated luminescence. In: Reindel M, Wagner GA (eds) New technologies for archaeology. Multidisciplinary investigations in Palpa and Nasca, Peru. Springer, BerlinGoogle Scholar
  26. Greilich S, Glasmacher UA, Wagner GA (2005) Optical dating of granitic stone surfaces. Archaeometry 47:645–665CrossRefGoogle Scholar
  27. Greilich S, Harney HL, Woda C, Wagner GA (2006) AgesGalore—a software program for evaluating spatially resolved luminescence data. Radiat Meas 41:726–735CrossRefGoogle Scholar
  28. Grootes PM (2007) Datierungsergebnisse der Proben KIA 32973, 32974 (unpub. dating report Leibnitz Labor für Altersbestimmung und Isotopenforschung Christian-Albrechts-University Kiel 05 July 2007)Google Scholar
  29. Grottker M (2004a) Wasserwirtschaftliche Anlagen am Tell Hujayrat al-Ghuzlan, Aqaba, Jordanien. ImpulsE 9(1):50–55Google Scholar
  30. Grottker M (2004b) Wasserwirtschaftliche Anlagen am Tell Hujayrat al-Ghuzlan, Aqaba, Jordanien. In: Ohlig C (ed) Wasserbauten im Königreich Urartu und weitere Beiträge zur Hydrotechnik in der Antike. Schr. DWhG e. V. 5. Books on Demand GmbH, Siegburg, pp 245–255Google Scholar
  31. Habermann J (2000) Untersuchungen von Gesteinsoberflächen. Dissertation, Ruprecht-Karls-University HeidelbergGoogle Scholar
  32. Habermann J, Schilles T, Kalchgruber R, Wagner GA (2000) Steps toward surface dating using luminescence. Radiat Meas 32:847–851CrossRefGoogle Scholar
  33. Harrower MJ (2006) Environmental versus social parameters, landscape, and the origins of irrigation in Southwest Arabia (Yemen). Dissertation, Ohio State UniversityGoogle Scholar
  34. Harrower MJ (2008) Mapping and dating incipient irrigation in Wadi Sana, Hadramawt (Yemen). Proc Semin Arab Stud 38:187–202Google Scholar
  35. Harrower MJ (2009) Is the hydraulic hypothesis dead yet? Irrigation and social change in ancient Yemen. World Archaeol 41(1):58–72CrossRefGoogle Scholar
  36. Hauptmann A (2007) The archaeometallurgy of copper: evidence from Faynan, Jordan. Springer, BerlinCrossRefGoogle Scholar
  37. Heemeier B, Grottker M (2006) Tall Hujayrat al-Ghuzlan. Wasserressource einer prähistorischen Siedlung. ImpulsE 11(1):20–26Google Scholar
  38. Heemeier B, Rauen A, Waldhör M, Grottker M (2009) Water management at Tell Hujayrat al-Ghuzlan. In: Khalil L, Schmidt K (eds) Prehistoric cAqaba I. Orient-Archäologie 23. VML, Rahden/Westf., pp 248–271Google Scholar
  39. Huckleberry G, Rittenour T (2014) Combining radiocarbon and single-grain optically stimulated luminescence methods to accurately date pre-ceramic irrigation canals, Tucson, Arizona. J Archaeol Sci 41:156–170CrossRefGoogle Scholar
  40. Huckleberry G, Hayashida F, Johnson J (2012) New insights into the evolution of an intervalley prehistoric irrigation canal system, North Coastal Peru. Geoarchaeology 27:492–520CrossRefGoogle Scholar
  41. IUSS Working Group WRB (2014) World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports 106. FAO, RomeGoogle Scholar
  42. Kadereit A, Greilich S, Woda C, Wagner GA (2009) Cold light from the sediments of a hot desert: how luminescence dating sheds light on the landscape development of the north-eastern Atacama. In: Reindel M, Wagner GA (eds) New technologies for archaeology. Multidisciplinary investigations in Palpa and Nasca, Peru. Springer, BerlinGoogle Scholar
  43. Kaptijn E (2008) Settling the steppe. Iron Age irrigation around Tell Deir ‘Alla, Jordan Valley. In: Córdoba JM, Molist M, Pérez MC, Rubio I, Martínez S (eds) Proceedings of the 5th International Congress on the Archaeology of the Ancient Near East Madrid, April 3–8 2006. Actas del V Congreso Internacional de Arqueología del Oriente Próximo Antiguo, vol II. UAM Ediciones, Madrid, pp 265–283Google Scholar
  44. Kaptijn E (2009) Life on the watershed. Reconstructing subsistence in a steppe region using archaeological survey: a diachronic perspective on habitation in the Jordan Valley. Sidestone Press, LeidenGoogle Scholar
  45. Khalil L (2009) cAqaba through the ages. In: Khalil L, Schmidt K (eds) Prehistoric cAqaba I. Orient-Archäologie 23. VML, Rahden/Westf., pp 1–4Google Scholar
  46. Khalil L, Schmidt K (2004) Excavations at the 4th millenium site of Tall Hujayrat al-Ghuzlan/Aqaba. New results 2004. Occident & Orient 9:12–15Google Scholar
  47. Khalil L, Schmidt K (eds) (2009) Prehistoric cAqaba I. Orient-Archäologie 23. VML, Rahden/WestfGoogle Scholar
  48. Klimscha F (2009) Radiocarbon dates from prehistoric cAqaba and other related sites from the Chalcolithic Period. In: Khalil L, Schmidt K (eds) Prehistoric cAqaba I. Orient-Archäologie 23. VML, Rahden/Westf., pp 363–401Google Scholar
  49. Klimscha F (2011) Long-range contacts in the Late Chalcolithic of the Southern Levant. Excavations at Tall Hujayrat al-Ghuzlan and Tall al-Magass near Aqaba, Jordan. In: Mynárova J (ed) Egypt and the Near East—the crossroads. Charles University Prague, Czech Institute of Egyptology, Faculty of Arts, Prague, pp 177–209Google Scholar
  50. Klimscha F (2012) Die absolute Chronologie der Besiedlung von Tall Hujayrāt al-Ghuzlān bei ‛Aqaba, Jordanien, im Verhältnis zum Chalkolithikum der südlichen Levante. Zeitschrift für Orient-Archäologie 5:188–208Google Scholar
  51. Klimscha F, Siegel U, Heemeier B (2012) Das wasserwirtschaftliche System des Tall Hujayrāt al-Ghuzlān, Jordanien. In: Klimscha F, Eichmann R, Schuler C, Fahlbusch H (eds) Wasserwirtschaftliche Innovationen im archäologischen Kontext – Von den prähistorischen Anfängen bis zu den Metropolen der Antike. VML, Rahden/Westf., pp 123–138Google Scholar
  52. Klimscha F, Notroff J, Siegel U (2014) New data on the socio-economic relations between Egypt and the Southern Levant in the 4th Millennium BC. A Jordanian perspective. In: Höflmayer F, Eichmann R (eds) Egypt and the Southern Levant in the Early Bronze Age. Orient-Archäologie 31. VML, Rahden/Westf., pp 165–180Google Scholar
  53. Kolarkar AS, Murthy KNK, Singh N (1983) 'Khadin'—a method of harvesting water for agriculture in the Thar desert. J Arid Environ 6:59–66Google Scholar
  54. Korjenkov AM, Schmidt K (2009) An Archaeoseismological Study at Tall Hujayrat al-Ghuzlan. In: Khalil L, Schmidt K (eds) Prehistoric cAqaba I. Orient-Archäologie 23. VML, Rahden/Westf., pp 79–97Google Scholar
  55. Krbetschek M, Rieser U, Stolz W (1996) Optical dating: some luminescence properties of natural feldspars. Radiat Prot Dosim 66:407–412CrossRefGoogle Scholar
  56. Kühn P, Pietsch D, Gerlach I (2010) Archaeopedological analyses around a Neolithic hearth and the beginning of Sabaean irrigation in the oasis of Ma’rib (Ramlat as-Sab’atayn, Yemen). J Archaeol Sci 37:1305–1310CrossRefGoogle Scholar
  57. Lang A, Lindauer S, Kuhn R, Wagner GA (1996) Procedures used for optically and infrared stimulated luminescence dating of sediments in Heidelberg. Ancient TL 14(3):7–11Google Scholar
  58. Liritzis I (2001) Searching for precision of a new ‘luminescence clock’ in dating calcitic rocks. J Radioanal Nucl Chem 247(3):727–730CrossRefGoogle Scholar
  59. Liritzis I, Singhvi AK, Feathers JK, Wagner GA, Kadereit A, Zacharias N, Li SH (2013) Luminescence dating in archaeology, anthropology and geoarchaeology. An overview. Springer Briefs in Earth System Sciences. Springer, ChamCrossRefGoogle Scholar
  60. Litt T, Ohlwein C, Neumann FH, Hense A, Stein M (2012) Holocene climate variability in the Levant from the Dead Sea pollen record. Quat Sci Rev 49:95–105CrossRefGoogle Scholar
  61. Migowski C, Agnon A, Bookman R, Negendank JFW, Stein M (2004) Recurrence pattern of Holocene earthquakes along the Dead Sea transform revealed by varve-counting and radiocarbon dating of lacustrine sediments. Earth Planet Sci Lett 222:301–314CrossRefGoogle Scholar
  62. Migowski C, Stein M, Prasad S, Negendank JFW, Agnon A (2006) Holocene climate variability and cultural evolution in the near east from the Dead Sea sedimentary record. Quat Res 66(3):421–431CrossRefGoogle Scholar
  63. Murray AS, Wintle AG (2000) Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat Meas 32:57–73CrossRefGoogle Scholar
  64. Neef R (2009) Living in the desert: plant remains from Tall al-Magass. In: Khalil L, Schmidt K (eds) Prehistoric cAqaba I. Orient-Archäologie 23. VML, Rahden/Westf., pp 355–362Google Scholar
  65. Niemi TM (2014) Chapter 2: regional environmental setting, seismic history, and natural resources of Aqaba, Jordan. In: Parker ST, Smith AM II (eds) The Roman Aqaba Project, Final Report, Volume 1: The regional environment and the regional survey. Archaeological Reports 19. ASOR, Boston, pp 33–80Google Scholar
  66. Niemi TM, Smith AM II (1999) Initial results of the Southeastern Wadi Araba, Jordan Geoarchaeological Study: implications for shifts in Late Quaternary. Geoarchaeology 14:791–820CrossRefGoogle Scholar
  67. Notroff J, Schmidt K, Siegel U, Khalil L (2014) Reconstructing networks, linking spaces—the view from the Aqaba region (Jordan). Levant 46(2):249–267CrossRefGoogle Scholar
  68. Porat N, Amit R, Enzel Y, Zilberman E, Avni Y, Ginat H, Gluck D (2010) Abandonment ages of alluvial landforms in the hyperarid Negev determined by luminescence dating. J Arid Environ 74:861–869CrossRefGoogle Scholar
  69. Prescott JR, Hutton JT (1994) Cosmic ray contributions to dose-rates for luminescence and ESR dating: large depth and long-term time variations. Radiat Meas 23:497–500CrossRefGoogle Scholar
  70. Preusser F, Degering D, Fuchs M, Hilgers A, Kadereit A, Klasen N, Krbetschek M, Richter D, Spencer J (2008) Luminescence dating: basics, methods and applications. Quat Sci J (Eiszeit Gegenw) 57(1–2):95–149Google Scholar
  71. Preusser F, Chithambo ML, Götte T, Martini M, Ramseyer K, Sendezera EJ, Susino GJ, Wintle AG (2009) Quartz as a natural luminescence dosimeter. Earth Sci Rev 97(1–4):184–214. doi: 10.1016/j.earscirev.2009.09.006 CrossRefGoogle Scholar
  72. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) INTCAL09 and MARINE09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–1150CrossRefGoogle Scholar
  73. Rhodius C (2006) Lumineszenzdatierung von Gesteinsoberflächen am Beispiel der Glattjochkapelle, Steiermark, Österreich. Diploma thesis, Technical University Bergakademie FreibergGoogle Scholar
  74. Schumann W (2002) Der neue BLV Steine- und Mineralienführer, 6th edn. BLV, MünchenGoogle Scholar
  75. Siegel U (2009) Hydrological structures in the Wādi al-Yutum fan in the vicinity of Tell Hujayrat al-Ghuzlan. In: Khalil L, Schmidt K (eds) Prehistoric cAqaba I. Orient-Archäologie 23. VML, Rahden/Westf., pp 274–294Google Scholar
  76. Siegel U (2014) Die Baugeschichte der prähistorischen Siedlung Tall Hujayrat al-Ghuzlan/Jordanien. Z Orient-Archäol 7:138–156Google Scholar
  77. Siegel U, Schmidt K, Khalil L (2014) Tall al-Magass. Am J Archaeol 118(4):674–675. doi: 10.3764/aja.118.4.0627 Google Scholar
  78. Simms AR, DeWitt R, Kouremenos P, Drewry AM (2011) A new approach to reconstructing sea levels in Antarctica using optically stimulated luminescence of cobble surfaces. Quat Geochronol 6:50–60CrossRefGoogle Scholar
  79. Simms AR, Ivins ER, DeWitt R, Kouremenos P, Simkins LM (2012) Timing of the most recent Neoglacial advance and retreat in the South Shetland Islands, Antarctic Peninsula: insights from raised beaches and Holocene uplift rates. Quat Sci Rev 47:41–55CrossRefGoogle Scholar
  80. Slater L, Niemi TM (2003) Detection of active faults along the Dead Sea transform using ground penetrating radar and implications for seismic hazards within the city of Aqaba, Jordan. Tectonophysics 368:33–50CrossRefGoogle Scholar
  81. Sohbati R, Murray AS, Chapot MS, Jain M, Pederson J (2012) Optically stimulated luminescence (OSL) as a chronometer for surface exposure dating. J Geophys Res Solid Earth 117 (B09202). doi:  10.1029/2012JB009383
  82. Stein M, Litt T (2013) Reply to comment by Christoph Zielhofer and Bernhard Weninger on the article: “Holocene climate variability in the Levant from the Dead Sea pollen record” by Litt et al. Quaternary Science Reviews 49 (2012) 95–105. Quat Sci Rev 59:113–114CrossRefGoogle Scholar
  83. Stein M, Torfstein A, Gavrieli I, Yechieli Y (2010) Abrupt aridities and salt deposition in the post-glacial Dead Sea and their North Atlantic connection. Quat Sci Rev 29:567–575CrossRefGoogle Scholar
  84. Talozi SA (2007) Water and security in Jordan. In: Lipchin C, Pallant E, Saranga D, Amster A (eds) Integrated water resources management and security in the Middle East. NATO Science for Peace and Security Series C: environmental security. Springer, Dordrecht, pp 73–98Google Scholar
  85. Törnros T, Menzel L (2014) Addressing drought conditions under current and future climates in the Jordan River region. Hydrol Earth Syst Sci 18:305–318CrossRefGoogle Scholar
  86. Vieweger D (2003) Archäologie der Biblischen Welt, 2nd edn. Vandenhoeck & Ruprecht, GöttingenGoogle Scholar
  87. Visocekas R (1988) Comparison between tunneling afterglows following alpha or beta irradiations. Nucl Tracks Radiat Meas (Int J Radiat Appl lnstrum Part D) 14(I/2):163–168CrossRefGoogle Scholar
  88. Wagner GA, Glasmacher UA, Greilich S (2005) Spatially resolved dose-rate determination in rocks and ceramics by neutron-induced fission tracks: fundamentals. Radiat Meas 40:26–31CrossRefGoogle Scholar
  89. Wellbrock K, Voß P, Grottker M (2012) The evolution of water management systems in north-western Arabia and the southern Levant from the Neolithic Age through antiquity. In: Ohlig C (ed) Zehn Jahre wasserhistorische Forschungen und Berichte, Teil 1. Schr. DWhG e. V. 20. Books on Demand GmbH, Siegburg, pp 29–56Google Scholar
  90. Weninger B, Clare L, Rohling EJ, Bar-Yosef O, Bohner U, Budja M, Bundschuh M, Feurdean A, Gebel HG, Joris O, Linstadter J, Mayewsk P, Muhlenbruch T, Reingruber A, Rollefson G, Schyle D, Thissen L, Todorova H, Zielhofer C (2009) The impact of rapid climate change on prehistoric societies during the Holocene in the Eastern Mediterranean. Doc Praehist 36:7–59CrossRefGoogle Scholar
  91. Wintle AG (1973) Anomalous fading of thermoluminescence in mineral samples. Nature 245:143–144CrossRefGoogle Scholar
  92. Wintle AG (2008) Luminescence dating: where it has been and where it is going. Boreas 37:471–482CrossRefGoogle Scholar
  93. Zink A (2008) Uncertainties on the luminescence ages and anomalous fading. Geochronometria 32:47–50CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christiane Rhodius
    • 1
  • Annette Kadereit
    • 1
  • Ulrike Siegel
    • 2
  • Klaus Schmidt
    • 2
  • Ricardo Eichmann
    • 2
  • Lutfi A. Khalil
    • 3
  1. 1.Heidelberger Lumineszenzlabor, Geographisches InstitutRuprecht-Karls-Universität HeidelbergHeidelbergGermany
  2. 2.Deutsches Archäologisches Institut (DAI)BerlinGermany
  3. 3.Department of ArchaeologyUniversity of JordanAmmanJordan

Personalised recommendations