Skip to main content
Log in

Effect of prenatal antioxidant intake on infants’ respiratory infection is modified by a CD14 polymorphism

  • Original Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

Prenatal maternal diet may influence disease susceptibility in offspring with specific genetic backgrounds. We hypothesized that interactions between prenatal antioxidant intake and polymorphisms in immunity genes influence respiratory tract infection (RTI) susceptibility in infants at 12 months of age.

Methods

This study included 550 infants. In the Cohort for Childhood Origin of Asthma and Allergic Diseases (COCOA) birth cohort study, prenatal maternal diet was assessed by administering a food frequency questionnaire. Infants’ cord blood was genotyped for CD14 (rs2569190), TLR4 (rs1927911), and GSDMB (rs4794820) polymorphisms by the TaqMan method.

Results

Higher prenatal intake of total fruit and vegetables (FV) was associated with the decreased risk of RTI in offspring (P-trend=0.0430). In children with TT genotype at rs2569190, a higher prenatal intake of vitamins A and C, fruits, and total FV decreased RTI risk (P-trend <0.05), while in infants with TC+CC genotype, a higher prenatal intake of fruit increased RTI risk (P-trend <0.05). When analyzing the 3 genotypes, children with TT genotype at rs2569190 were more protected against RTIs compared with those with CC genotype with respect to vitamin C and fruits [odds ratio (OR)=5.04 and OR=10.30, respectively]. In children with CC genotype at rs1927911, RTI risk showed a dose–response association with a higher prenatal intake of vitamin C (P for interaction<0.05). A higher prenatal intake of fruits and total FV reduced RTI risk in infants with GA+AA genotype of rs4794820 (P for interaction<0.05).

Conclusions

Prenatal antioxidant intake may reduce RTI risk in infants and this relationship may be modified by CD14, TLR4, and GSDMB polymorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 2007;27:363–388.

    Article  PubMed  CAS  Google Scholar 

  2. Martino D, Prescott S. Epigenetics and prenatal influences on asthma and allergic airways disease. Chest 2011;139:640–647.

    Article  PubMed  CAS  Google Scholar 

  3. Leavy O. Asthma and allergy: Diet and airway inflammation. Nat Rev Immunol 2014;14:64–65.

    Article  PubMed  CAS  Google Scholar 

  4. Scrimshaw NS, Taylor CE, Gordon JE. Interactions of nutrition and infection. Geneva: World Health Organization, 1968.

    Google Scholar 

  5. Scaife AR, McNeill G, Campbell DM, Martindale S, Devereux G, Seaton A. Maternal intake of antioxidant vitamins in pregnancy in relation to maternal and fetal plasma levels at delivery. Br J Nutr 2006;95:771–778.

    Article  PubMed  CAS  Google Scholar 

  6. Prescott SL. Allergic disease: understanding how in utero events set the scene. Proc Nutr Soc 2010;69:366–372.

    Article  PubMed  Google Scholar 

  7. West CE, Videky DJ, Prescott SL. Role of diet in the development of immune tolerance in the context of allergic disease. Curr Opin Pediatr 2010;22:635–641.

    PubMed  Google Scholar 

  8. Webb AL, Villamor E. Update: effects of antioxidant and nonantioxidant vitamin supplementation on immune function. Nutr Rev 2007;65:181–217.

    Article  PubMed  Google Scholar 

  9. Alberti-Fidanza A, Di Renzo GC, Burini G, Antonelli G, Perriello G. Diet during pregnancy and total antioxidant capacity in maternal and umbilical cord blood. J Matern Fetal Neonatal Med 2002;12:59–63.

    Article  PubMed  CAS  Google Scholar 

  10. Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE. Maternal nutrition and fetal development. J Nutr 2004;134:2169–2172.

    Article  PubMed  CAS  Google Scholar 

  11. Dominguez-Salas P, Cox SE, Prentice AM, Hennig BJ, Moore SE. Maternal nutritional status, C(1) metabolism and offspring DNA methylation: a review of current evidence in human subjects. Proc Nutr Soc 2012;71:154–165.

    Article  PubMed  CAS  Google Scholar 

  12. Singh U, Devaraj S, Jialal I. Vitamin E, oxidative stress, and inflammation. Annu Rev Nutr 2005;25:151–174.

    Article  PubMed  CAS  Google Scholar 

  13. Gore AB, Qureshi MA. Enhancement of humoral and cellular immunity by vitamin E after embryonic exposure. Poult Sci 1997;76:984–991.

    Article  PubMed  CAS  Google Scholar 

  14. Mizgerd JP. Lung infection—a public health priority. PLoS Med 2006;3:e76.

    Article  Google Scholar 

  15. Tregoning JS, Schwarze J. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev 2010;23:74–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Morcillo EJ, Estrela J, Cortijo J. Oxidative stress and pulmonary inflammation: pharmacological intervention with antioxidants. Pharmacol Res 1999;40:393–404.

    Article  PubMed  CAS  Google Scholar 

  17. Brandsma E, Houben T, Fu J, Shiri-Sverdlov R, Hofker MH. The immunity-diet-microbiota axis in the development of metabolic syndrome. Curr Opin Lipidol 2015;26:73–81.

    Article  PubMed  CAS  Google Scholar 

  18. Vial G, Dubouchaud H, Couturier K, Cottet-Rousselle C, Taleux N, Athias A, et al. Effects of a high-fat diet on energy metabolism and ROS production in rat liver. J Hepatol 2011;54:348–356.

    Article  PubMed  CAS  Google Scholar 

  19. Lee IT, Yang CM. Role of NADPH oxidase/ROS in proinflammatory mediators-induced airway and pulmonary diseases. Biochem Pharmacol 2012;84:581–590.

    Article  PubMed  CAS  Google Scholar 

  20. Surh YJ, Kundu JK, Na HK. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med 2008;74:1526–1539.

    Article  PubMed  CAS  Google Scholar 

  21. Parker D, Prince A. Innate immunity in the respiratory epithelium. Am J Respir Cell Mol Biol 2011;45:189–201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kitchens RL, Munford RS. CD14-dependent internalization of bacterial lipopolysaccharide (LPS) is strongly influenced by LPS aggregation but not by cellular responses to LPS. J Immunol 1998;160:1920–1928.

    PubMed  CAS  Google Scholar 

  23. Hailman E, Vasselon T, Kelley M, Busse LA, Hu MC, Lichenstein HS, et al. Stimulation of macrophages and neutrophils by complexes of lipopolysaccharide and soluble CD14. J Immunol 1996;156:4384–4390.

    PubMed  CAS  Google Scholar 

  24. Wei J, Rahman S, Ayaub EA, Dickhout JG, Ask K. Protein misfolding and endoplasmic reticulum stress in chronic lung disease. Chest 2013;143:1098–1105.

    Article  PubMed  CAS  Google Scholar 

  25. Kim HB, Ahn KM, Kim KW, Shin YH, Yu J, Seo JH, et al. Cord blood cellular proliferative response as a predictive factor for atopic dermatitis at 12 months. J Korean Med Sci 2012;27:1320–1326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Oh SY, Kim EM, Shin MHL, Lee SH, Kim JE, Lee HS. Development and validation of food frequency questionnaire for adults. Seoul, Korea: The Korean Society of Health Promotion Annual Spring Conference, 2007:67–72.

    Google Scholar 

  27. Willers SM, Devereux G, Craig LC, McNeill G, Wijga AH, Abou El-Magd W, et al. Maternal food consumption during pregnancy and asthma, respiratory and atopic symptoms in 5-year-old children. Thorax 2007;62:773–779.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Dhur A, Galan P, Hercberg S. Folate status and the immune system. Prog Food Nutr Sci 1991;15:43–60.

    PubMed  CAS  Google Scholar 

  29. West CE, Dunstan J, McCarthy S, Metcalfe J, D’Vaz N, Meldrum S, et al. Associations between maternal antioxidant intakes in pregnancy and infant allergic outcomes. Nutrients 2012;4:1747–1758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Miyake Y, Sasaki S, Tanaka K, Hirota Y. Consumption of vegetables, fruit, and antioxidants during pregnancy and wheeze and eczema in infants. Allergy 2010;65:758–765.

    Article  PubMed  CAS  Google Scholar 

  31. Litonjua AA, Rifas-Shiman SL, Ly NP, Tantisira KG, Rich-Edwards JW, Camargo CA Jr, et al. Maternal antioxidant intake in pregnancy and wheezing illnesses in children at 2 y of age. Am J Clin Nutr 2006;84:903–911.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Bruckdorfer KR. Antioxidants and CVD. Proc Nutr Soc 2008;67:214–222.

    Article  PubMed  CAS  Google Scholar 

  33. Marchese ME, Kumar R, Colangelo LA, Avila PC, Jacobs DR Jr, Gross M, et al. The vitamin E isoforms alpha-tocopherol and gamma-tocopherol have opposite associations with spirometric parameters: the CARDIA study. Respir Res 2014;15:31.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Patel A, Liebner F, Netscher T, Mereiter K, Rosenau T. Vitamin E chemistry. Nitration of non-alpha-tocopherols: products and mechanistic considerations. J Org Chem 2007;72:6504–6512.

    Article  PubMed  CAS  Google Scholar 

  35. Cook-Mills JM, Abdala-Valencia H, Hartert T. Two faces of vitamin E in the lung. Am J Respir Crit Care Med 2013;188:279–284.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Cunningham-Rundles S, McNeeley DF, Moon A. Mechanisms of nutrient modulation of the immune response. J Allergy Clin Immunol 2005;115:1119–1128;quiz 1129.

    Article  PubMed  CAS  Google Scholar 

  37. Serafini M. Dietary vitamin E and T cell-mediated function in the elderly: effectiveness and mechanism of action. Int J Dev Neurosci 2000;18:401–410.

    Article  PubMed  CAS  Google Scholar 

  38. Yang Y, Bazhin AV, Werner J, Karakhanova S. Reactive oxygen species in the immune system. Int Rev Immunol 2013;32:249–270.

    Article  PubMed  CAS  Google Scholar 

  39. Malireddy S, Kotha SR, Secor JD, Gurney TO, Abbott JL, Maulik G, et al. Phytochemical antioxidants modulate mammalian cellular epigenome: implications in health and disease. Antioxid Redox Signal 2012;17:327–339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mistry HD, Williams PJ. The importance of antioxidant micronutrients in pregnancy. Oxid Med Cell Longev 2011;2011:841749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Willett WC. Nutritional epidemiology. New York: Oxford University Press, 1998.

    Book  Google Scholar 

  42. Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J 1996;10:709–720.

    Article  PubMed  CAS  Google Scholar 

  43. Al-Alem U, Gann PH, Dahl J, van Breemen RB, Mistry V, Lam PM, et al. Associations between functional polymorphisms in antioxidant defense genes and urinary oxidative stress biomarkers in healthy, premenopausal women. Genes Nutr 2012;7:191–195.

    Article  PubMed  CAS  Google Scholar 

  44. Hosakote YM, Jantzi PD, Esham DL, Spratt H, Kurosky A, Casola A, et al. Viral-mediated inhibition of antioxidant enzymes contributes to the pathogenesis of severe respiratory syncytial virus bronchiolitis. Am J Respir Crit Care Med 2011;183:1550–1560.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Caliskan M, Bochkov YA, Kreiner-Moller E, Bonnelykke K, Stein MM, Du G, et al. Rhinovirus wheezing illness and genetic risk of childhood-onset asthma. N Engl J Med 2013;368:1398–1407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Scrimshaw NS, Taylor CE, Gordon JE. Interactions of nutrition and infection. Monogr Ser World Health Organ 1968;57:3–329.

    PubMed  CAS  Google Scholar 

  47. Ngom PT, Collinson AC, Pido-Lopez J, Henson SM, Prentice AM, Aspinall R. Improved thymic function in exclusively breastfed infants is associated with higher interleukin 7 concentrations in their mothers’ breast milk. Am J Clin Nutr 2004;80:722–728.

    Article  PubMed  CAS  Google Scholar 

  48. Collinson AC, Ngom PT, Moore SE, Morgan G, Prentice AM. Birth season and environmental influences on blood leucocyte and lymphocyte subpopulations in rural Gambian infants. BMC Immunol 2008;9:18.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chandra RK. Antibody formation in first and second generation offspring of nutritionally deprived rats. Science 1975;190:289–290.

    Article  PubMed  CAS  Google Scholar 

  50. Beach RS, Gershwin ME, Hurley LS. Gestational zinc deprivation in mice: persistence of immunodeficiency for three generations. Science 1982;218:469–471.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to gratefully and sincerely thank Dr. Ja-Young Kwon, Suk-Joo Choi, Kyung-Ju Lee, Hee Jin Park, Hye-Sung Won, Mi-Jin Kang, Ho-Sung Yu, Hyung Young Kim, Ju-Hee Seo, Byoung-Ju Kim, Hyo-Bin Kim, and So-Yeon Lee for their participation in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Jong Hong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S.A., Lee, E., Kwon, S.O. et al. Effect of prenatal antioxidant intake on infants’ respiratory infection is modified by a CD14 polymorphism. World J Pediatr 13, 173–182 (2017). https://doi.org/10.1007/s12519-016-0054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-016-0054-6

Key words

Navigation