Fabrication of Schiff’s base-functionalized porous carbon materials for the effective removal of toxic metals from wastewater

Abstract

The development of adsorbents for water treatment applications is an important strategy for removing hazardous materials from wastewater effluent. In this regard, an efficient adsorbent was prepared based on a combination of N′-(2-phenylacetyl) thiophene-2-carbohydrazide and low-cost porous activated carbon with 5 and 10% Schiff’s base with the aim of enhancing the efficiency of metal adsorption by the carbon. The Schiff’s base-modified carbon was characterized by SEM, EDS, XRD surface area, and FTIR. In addition, the Schiff base-modified carbon was applied for water treatment. The water samples were collected from Riyadh, Dammam, and places near industrial zones. SEM showed the porous structure of the prepared adsorbent even after modification with Schiff’s base at the two tested ratios (5% and 10%). The removal of mercury(II), lead(II), cadmium(II), and aluminum(III) from aqueous solution was evaluated. In addition, the effects of pH and contact time were investigated. Furthermore, kinetic models were applied. The optimal conditions for the removal of mercury(II), lead(II), cadmium(II), and aluminum(III) by N′-(2-phenylacetyl) thiophene-2-carbohydrazide-modified carbon were pH 6 and a contact time of 60 min. The adsorption capacities were 86.7, 70.3, 71.36, and 88.5 mg/g for mercury(II), lead(II), cadmium(II), and aluminum(III), respectively. Based on the adsorption kinetic models, the process followed a second-order kinetic model, which confirms the fast uptake of metals from the solutions. The removal efficiencies of mercury(II), lead(II), cadmium(II), and aluminum(III) from real wastewater samples were at least 90% in most of the tested real wastewater samples.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Figure 6.
Fig. 7
Fig. 8

References

  1. Aggoun D, Fernández-García M, López D et al (2020) New Nickel (II) and Copper (II) bidentate Schiff base complexes, derived from dihalogenated salicylaldehyde and alkylamine: synthesis, spectroscopic, thermogravimetry, crystallographic determination and electrochemical studies. Polyhedron:114640. https://doi.org/10.1016/j.poly.2020.114640

  2. Ahmed MO, Shrpip A, Mansoor M (2020) Synthesis and characterization of new schiff base/thiol-functionalized mesoporous silica: an efficient sorbent for the removal of Pb(II) from aqueous solutions. Processes 8:246. https://doi.org/10.3390/pr8020246

    Article  Google Scholar 

  3. Al-Mallah Z, Amin AS (2018) Utility of solid phase extraction for colorimetric determination of lead in waters, vegetables, biological and soil samples. J Ind Eng Chem 67:461–468. https://doi.org/10.1016/j.jiec.2018.07.020

    Article  Google Scholar 

  4. ALOthman ZA, Habila M, Yilmaz E, Soylak M (2012) Solid phase extraction of Cd(II), Pb(II), Zn(II) and Ni(II) from food samples using multiwalled carbon nanotubes impregnated with 4-(2-thiazolylazo)resorcinol. Microchim Acta 177:397–403. https://doi.org/10.1007/s00604-012-0789-2

    Article  Google Scholar 

  5. ALOthman ZA, Habila MA, Al-Shalan NH et al (2016) Adsorptive removal of Cu(II) and Pb(II) onto mixed-waste activated carbon: kinetic, thermodynamic, and competitive studies and application to real wastewater samples. Arab J Geosci 9. https://doi.org/10.1007/s12517-016-2350-9

  6. AlOthman ZA, Habila MA, Ali R et al (2014) Valorization of two waste streams into activated carbon and studying its adsorption kinetics, equilibrium isotherms and thermodynamics for methylene blue removal. Arab J Chem 7:1148–1158. https://doi.org/10.1016/j.arabjc.2013.05.007

    Article  Google Scholar 

  7. Baccar R, Bouzid J, Feki M, Montiel A (2009) Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions. J Hazard Mater 162:1522–1529. https://doi.org/10.1016/j.jhazmat.2008.06.041

    Article  Google Scholar 

  8. Baghban N, Yilmaz E, Soylak M (2017) Nanodiamond/MoS2 nanorod composite as a novel sorbent for fast and effective vortex-assisted micro solid phase extraction of lead(II) and copper(II) for their flame atomic absorption spectrometric detection. J Mol Liq 234:260–267. https://doi.org/10.1016/j.molliq.2017.03.079

    Article  Google Scholar 

  9. Balkhair KS, Ashraf MA (2016) Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J Biol Sci 23:S32–S44. https://doi.org/10.1016/j.sjbs.2015.09.023

    Article  Google Scholar 

  10. Bardajee GR, Hooshyar Z, Shahidi FE (2015) Synthesis and characterization of a novel Schiff-base/SBA-15 nanoadsorbent for removal of methylene blue from aqueous solutions. Int J Environ Sci Technol 12:1737–1748. https://doi.org/10.1007/s13762-014-0732-7

    Article  Google Scholar 

  11. Basu M, Guha AK, Ray L (2017) Adsorption Behavior of Cadmium on Husk of Lentil. Process Saf Environ Prot 106:11–22. https://doi.org/10.1016/j.psep.2016.11.025

    Article  Google Scholar 

  12. Betiha MA, Moustafa YM, El-Shahat MF, Rafik E (2020) Polyvinylpyrrolidone-Aminopropyl-SBA-15 schiff Base hybrid for efficient removal of divalent heavy metal cations from wastewater. J Hazard Mater 397:122675. https://doi.org/10.1016/j.jhazmat.2020.122675

    Article  Google Scholar 

  13. Bilal M, Kazi TG, Afridi HI, Ali J, Baig JA, Arain MB, Khan M (2017) A new tunable dispersive liquid-liquid micro extraction method developed for the simultaneous preconcentration of lead and cadmium from lakes water: a multivariate study. Spectrochim Acta - Part A Mol Biomol Spectrosc 183:417–424. https://doi.org/10.1016/j.saa.2017.04.037

    Article  Google Scholar 

  14. Blanchard G, Maunaye M, Martin G (1984) Removal of heavy metals from waters by means of natural zeolites. Water Res 18:1501–1507. https://doi.org/10.1016/0043-1354(84)90124-6

    Article  Google Scholar 

  15. Böttcher A, Elias H, Huber A, Müller L (1993) Mechanistic aspects of O2-activation on nickel(ii) tetrahydrosalen complexes. in: the activation of dioxygen and homogeneous catalytic oxidation. Springer US, pp 395–409

  16. Corps Ricardo AI, Sánchez-Cachero A, Jiménez-Moreno M, Guzmán Bernardo FJ, Rodríguez Martín-Doimeadios RC, Ríos Á (2018) Carbon nanotubes magnetic hybrid nanocomposites for a rapid and selective preconcentration and clean-up of mercury species in water samples. Talanta 179:442–447. https://doi.org/10.1016/j.talanta.2017.11.024

    Article  Google Scholar 

  17. Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 157:220–229

    Article  Google Scholar 

  18. El-Toni AM, Habila MA, Ibrahim MA et al (2014) Simple and facile synthesis of amino functionalized hollow core-mesoporous shell silica spheres using anionic surfactant for Pb(II), Cd(II), and Zn(II) adsorption and recovery. Chem Eng J 251:441–451. https://doi.org/10.1016/j.cej.2014.04.072

    Article  Google Scholar 

  19. Elsayed NH, Alatawi A, Monier M (2020) Diacetylmonoxine modified chitosan derived ion-imprinted polymer for selective solid-phase extraction of nickel (II) ions. React Funct Polym 151:104570. https://doi.org/10.1016/j.reactfunctpolym.2020.104570

    Article  Google Scholar 

  20. Elshaarawy RFM, El-Azim HA, Hegazy WH et al (2020) Poly(ammonium/ pyridinium)-chitosan Schiff base as a smart biosorbent for scavenging of Cu2+ ions from aqueous effluents. Polym Test 83:106244. https://doi.org/10.1016/j.polymertesting.2019.106244

    Article  Google Scholar 

  21. Fernández-Nava Y, Ulmanu M, Anger I, Marañón E, Castrillón L (2011) Use of granular bentonite in the removal of mercury (II), cadmium (II) and lead (II) from aqueous solutions. Water Air Soil Pollut 215:239–249. https://doi.org/10.1007/s11270-010-0474-1

    Article  Google Scholar 

  22. Ferreira M d L, Vasconcelos TRA, de Carvalho EM et al (2009) Synthesis and antitubercular activity of novel Schiff bases derived from d-mannitol. Carbohydr Res 344:2042–2047. https://doi.org/10.1016/j.carres.2009.08.006

    Article  Google Scholar 

  23. Ghaedi M, Niknam K, Shokrollahi A, Niknam E, Rajabi HR, Soylak M (2008) Flame atomic absorption spectrometric determination of trace amounts of heavy metal ions after solid phase extraction using modified sodium dodecyl sulfate coated on alumina. J Hazard Mater 155:121–127. https://doi.org/10.1016/j.jhazmat.2007.11.038

    Article  Google Scholar 

  24. Ghorbani F, Kamari S, Zamani S, Akbari S, Salehi M (2020) Optimization and modeling of aqueous Cr(VI) adsorption onto activated carbon prepared from sugar beet bagasse agricultural waste by application of response surface methodology. Surfaces and Interfaces 18:100444. https://doi.org/10.1016/j.surfin.2020.100444

    Article  Google Scholar 

  25. Grigg ARC, Kretzschmar R, Gilli RS, Wiederhold JG (2018) Mercury isotope signatures of digests and sequential extracts from industrially contaminated soils and sediments. Sci Total Environ 636:1344–1354. https://doi.org/10.1016/j.scitotenv.2018.04.261

    Article  Google Scholar 

  26. Habila M, AlOthman Z, Ghfar A, al-Zaben M, Alothman A, Abdeltawab A, el-Marghany A, Sheikh M (2019) Phosphonium-based ionic liquid modified activated carbon from mixed recyclable waste for mercury(II) uptake. Molecules 24:570. https://doi.org/10.3390/molecules24030570

    Article  Google Scholar 

  27. Habila MA, Alothman ZA, Ali R et al (2014a) Removal of tartrazine dye onto mixed-waste activated carbon: kinetic and thermodynamic studies. Clean - Soil, Air, Water 42:1824–1831. https://doi.org/10.1002/clen.201300191

    Article  Google Scholar 

  28. Habila MA, ALOthman ZA, Ali R, et al (2014b) Removal of tartrazine dye onto mixed-waste activated carbon: kinetic and thermodynamic studies. CLEAN - Soil, Air, Water 42:1824–1831. https://doi.org/10.1002/clen.201300191

  29. Habila MA, ZA ALO, El-Toni AM et al (2016) Mercaptobenzothiazole-functionalized magnetic carbon nanospheres of type Fe3O4@SiO2@C for the preconcentration of nickel, copper and lead prior to their determination by ICP-MS. Microchim Acta 183:2377–2384. https://doi.org/10.1007/s00604-016-1880-x

    Article  Google Scholar 

  30. Habila MA, ZA ALO, El-Toni AM et al (2017) One-step carbon coating and polyacrylamide functionalization of Fe3O4 nanoparticles for enhancing magnetic adsorptive-remediation of heavy metals. Molecules 22. https://doi.org/10.3390/molecules22122074

  31. Herce-Sesa B, López-López JA, Moreno C (2018) Ionic liquid solvent bar micro-extraction of CdCl n(n−2)- species for ultra-trace Cd determination in seawater. Chemosphere 193:306–312. https://doi.org/10.1016/j.chemosphere.2017.11.004

    Article  Google Scholar 

  32. Ihsanullah AA, Al-Amer AM et al (2016) Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep Purif Technol 157:141–161. https://doi.org/10.1016/j.seppur.2015.11.039

    Article  Google Scholar 

  33. Kamari S, Ghorbani F, Sanati AM (2019) Adsorptive removal of lead from aqueous solutions by amine–functionalized magMCM-41 as a low–cost nanocomposite prepared from rice husk: Modeling and optimization by response surface methodology. Sustain Chem Pharm 13:100153. https://doi.org/10.1016/j.scp.2019.100153

    Article  Google Scholar 

  34. Kamari S, Shahbazi A (2020) Biocompatible Fe3O4@SiO2-NH2 nanocomposite as a green nanofiller embedded in PES–nanofiltration membrane matrix for salts, heavy metal ion and dye removal: Long–term operation and reusability tests. Chemosphere 243:125282. https://doi.org/10.1016/j.chemosphere.2019.125282

    Article  Google Scholar 

  35. Karmakar M, Chattopadhyay S (2020) Synthesis, structure and nitroaromatic sensing ability of a trinuclear zinc complex with a reduced Schiff base ligand: Assessment of the ability of the ligand to sense zinc ion. Polyhedron:114639. https://doi.org/10.1016/j.poly.2020.114639

  36. Kaußen FM, Friedrich B (2016) Methods for alkaline recovery of aluminum from bauxite residue. J Sustain Metall 2:353–364. https://doi.org/10.1007/s40831-016-0059-3

    Article  Google Scholar 

  37. Kavitha A, Easwaramoorthy D, Thangeeswari T, Parthipan G, Shanmugan S, Ansari T (2020) Synthesis and characterization of tritendate Schiff base rare earth nano metal complexes. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.02.663

  38. Ke C, Ma X, Tang Y, Tang F, Zheng W (2019) Effects of natural and modified calcium-based sorbents on heavy metals of food waste under oxy-fuel combustion. Bioresour Technol 271:251–257. https://doi.org/10.1016/j.biortech.2018.09.109

    Article  Google Scholar 

  39. Kenawy E-R, Ghfar AA, Naushad M et al (2017) Efficient removal of Co(II) metal ion from aqueous solution using cost-effective oxidized activated carbon: kinetic and isotherm studies. https://doi.org/10.5004/dwt.2017.20534

  40. Keramat A, Zare-Dorabei R (2017) Ultrasound-assisted dispersive magnetic solid phase extraction for preconcentration and determination of trace amount of Hg (II) ions from food samples and aqueous solution by magnetic graphene oxide (Fe3O4@GO/2-PTSC): Central composite design optimization. Ultrason Sonochem 38:421–429. https://doi.org/10.1016/j.ultsonch.2017.03.039

    Article  Google Scholar 

  41. Keypour H, Mahmoudabadi M, Shooshtari A, Bayat M, Soltani E, Karamian R, Farida SHM (2020) Synthesis, spectral, theoretical and antioxidant studies of copper (II) and cobalt (III) macroacyclic Schiff-base complexes containing homopiperazine moietiy. Chem Data Collect 26:100354. https://doi.org/10.1016/j.cdc.2020.100354

    Article  Google Scholar 

  42. Kolcu F, Erdener D, Kaya İ (2020) A Schiff base based on triphenylamine and thiophene moieties as a fluorescent sensor for Cr (III) ions: Synthesis, characterization and fluorescent applications. Inorganica Chim Acta 509:119676. https://doi.org/10.1016/j.ica.2020.119676

    Article  Google Scholar 

  43. Koubaissy B, Toufaily J, Cheikh S, Hassan M, Hamieh T (2014) Valorization of agricultural waste into activated carbons and its adsorption characteristics for heavy metals. Cent Eur J Eng 4:90–99. https://doi.org/10.2478/s13531-013-0148-z

    Article  Google Scholar 

  44. Kumar Mudi P, Bandopadhyay N, Joshi M, Shit M, Paul S, Roy Choudhury A, Biswas B (2020) Schiff base triggering synthesis of copper(II) complex and its catalytic fate towards mimics of phenoxazinone synthase activity. Inorganica Chim Acta 505:119468. https://doi.org/10.1016/j.ica.2020.119468

    Article  Google Scholar 

  45. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  Google Scholar 

  46. Liu J, Gao D, Chen Y et al (2014) Lead exposure at each stage of pregnancy and neurobehavioral development of neonates. Neurotoxicology 44:1–7. https://doi.org/10.1016/j.neuro.2014.03.003

    Article  Google Scholar 

  47. Liu L, Guo X, Wang S, Li L, Zeng Y, Liu G (2018) Effects of wood vinegar on properties and mechanism of heavy metal competitive adsorption on secondary fermentation based composts. Ecotoxicol Environ Saf 150:270–279. https://doi.org/10.1016/j.ecoenv.2017.12.037

    Article  Google Scholar 

  48. Liu Y, Feng Y, Wang R, Jiao T, Li J, Rao Y, Zhang Q, Bai Z, Peng Q (2019) Self-assembled naphthylidene-containing schiff base anchored polystyrene nanocomposites targeted for selective cu(II) ion removal from wastewater. ACS Omega 4:12098–12106. https://doi.org/10.1021/acsomega.9b01205

    Article  Google Scholar 

  49. Meira LA, de Souza DF (2017) Application of constrained mixture design and Doehlert matrix in the optimization of dispersive liquid-liquid microextraction assisted by ultrasound for preconcentration and determination of cadmium in sediment and water samples by FAAS. Microchem J 130:56–63. https://doi.org/10.1016/j.microc.2016.07.013

    Article  Google Scholar 

  50. Mnasri-Ghnimi S, Frini-Srasra N (2019) Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Appl Clay Sci 179:105151. https://doi.org/10.1016/j.clay.2019.105151

    Article  Google Scholar 

  51. Moganavally P, Deepa M, Sudha PN, Suresh R (2016) Adsorptive removal of lead and cadmium ions using cross-linked CMC Schiff base: Isotherm, kinetics and catalytic activity. Orient J Chem 32:441–453. https://doi.org/10.13005/ojc/320150

    Article  Google Scholar 

  52. Mohamaden MII, Khalil MK, Draz SEO, Hamoda AZM (2017) Ecological risk assessment and spatial distribution of some heavy metals in surface sediments of New Valley, Western Desert, Egypt. Egypt J Aquat Res 43:31–43. https://doi.org/10.1016/j.ejar.2016.12.001

    Article  Google Scholar 

  53. Monier M, Abdel-Latif DA (2017) Fabrication of Au(III) ion-imprinted polymer based on thiol-modified chitosan. Int J Biol Macromol 105:777–787. https://doi.org/10.1016/j.ijbiomac.2017.07.098

    Article  Google Scholar 

  54. Monier M, Abdel-Latif DA, Abou El-Reash YG (2016) Ion-imprinted modified chitosan resin for selective removal of Pd(II) ions. J Colloid Interface Sci 469:344–354. https://doi.org/10.1016/j.jcis.2016.01.074

    Article  Google Scholar 

  55. Monier M, Abdel-Latif DA, Youssef I (2018a) Preparation of ruthenium (III) ion-imprinted beads based on 2-pyridylthiourea modified chitosan. J Colloid Interface Sci 513:266–278. https://doi.org/10.1016/j.jcis.2017.11.004

    Article  Google Scholar 

  56. Monier M, Ayad DM, Abdel-Latif DA (2012) Adsorption of Cu(II), Cd(II) and Ni(II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff’s base. Colloids Surfaces B Biointerfaces 94:250–258. https://doi.org/10.1016/j.colsurfb.2012.01.051

    Article  Google Scholar 

  57. Monier M, Ayad DM, Wei Y, Sarhan AA (2010) Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin. J Hazard Mater 177:962–970. https://doi.org/10.1016/j.jhazmat.2010.01.012

    Article  Google Scholar 

  58. Monier M, Bukhari AAH, Elsayed NH (2020) Designing and characterization of copper (II) ion-imprinted adsorbent based on isatin functionalized chitosan. Int J Biol Macromol 155:795–804. https://doi.org/10.1016/j.ijbiomac.2020.03.215

    Article  Google Scholar 

  59. Monier M, Shafik AL, Abdel-Latif DA (2018b) Synthesis of azo-functionalized ion-imprinted polymeric resin for selective extraction of nickel(II) ions. Polym Int 67:1035–1045. https://doi.org/10.1002/pi.5609

    Article  Google Scholar 

  60. Özer A, Özer D, Ekiz HI (2005) The equilibrium and kinetic modelling of the biosorption of copper(II) ions on cladophora crispata. Adsorption 10:317–326. https://doi.org/10.1007/s10450-005-4817-y

    Article  Google Scholar 

  61. Pathania D, Sharma S, Singh P (2017) Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab J Chem 10:S1445–S1451. https://doi.org/10.1016/j.arabjc.2013.04.021

    Article  Google Scholar 

  62. Raj P, Singh A, Singh A, Singh N (2017) Syntheses and Photophysical Properties of Schiff Base Ni(II) Complexes: Application for Sustainable Antibacterial Activity and Cytotoxicity. ACS Sustain Chem Eng 5:6070–6080. https://doi.org/10.1021/acssuschemeng.7b00963

    Article  Google Scholar 

  63. Sánchez-Hernández R, Padilla I, López-Andrés S, et al (n.d.) Single and competitive adsorptive removal of lead, cadmium, and mercury using zeolite adsorbent prepared from industrial aluminum waste

  64. Saravanan R, Ravikumar L (2016) Cellulose bearing Schiff base and carboxylic acid chelating groups: A low cost and green adsorbent for heavy metal ion removal from aqueous solution. Water Sci Technol 74:1780–1792. https://doi.org/10.2166/wst.2016.296

    Article  Google Scholar 

  65. Say R, Yilmaz N, Denizli A (2003) Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicillium purpurogenum. Sep Sci Technol 38:2039–2053. https://doi.org/10.1081/SS-120020133

    Article  Google Scholar 

  66. Saad Hashim K (2018) Effects on surface area, intake capacity and regeneration of impregnated palm-shell activated carbon with monoethanolamide and 2-amino-2-methyl- 1-propanol equipped for CO2 adsorption. J Earth Sci Clim Change 09:1–10. https://doi.org/10.4172/2157-7617.1000484

    Article  Google Scholar 

  67. Shah R, Katouah H, Sedayo AA, Abualnaja M, Aljohani MM, Saad F, Zaky R, el-Metwaly NM (2020) Practical and computational studies on novel Schiff base complexes derived from green synthesis approach: conductometry as well as in-vitro screening supported by in-silico study. J Mol Liq 319:114116. https://doi.org/10.1016/j.molliq.2020.114116

    Article  Google Scholar 

  68. Song X, Niu Y, Qiu Z, Zhang Z, Zhou Y, Zhao J, Chen H (2017) Adsorption of Hg(II) and Ag(I) from fuel ethanol by silica gel supported sulfur-containing PAMAM dendrimers: kinetics, equilibrium and thermodynamics. Fuel 206:80–88. https://doi.org/10.1016/j.fuel.2017.05.086

    Article  Google Scholar 

  69. Soylak M, Elci L, Doğan M (1993) Determinations of some trace metals in dialysis solutions by atomic absorption spectrometry after preconcentration. Anal Lett 26:1997–2007. https://doi.org/10.1080/00032719308017446

    Article  Google Scholar 

  70. Sreejalekshmi KG, Krishnan KA, Anirudhan TS (2009) Adsorption of Pb(II) and Pb(II)-citric acid on sawdust activated carbon: Kinetic and equilibrium isotherm studies. J Hazard Mater 161:1506–1513. https://doi.org/10.1016/j.jhazmat.2008.05.002

    Article  Google Scholar 

  71. Tejada CN, Almanza D, Villabona A, et al (2017) Characterization of activated carbon synthesized at low temperature from cocoa shell (Theobroma cacao) for adsorbing amoxicillin Caracterización de carbón activado sintetizado a baja temperatura a partir de cáscara de cacao (Theobroma cacao) para la adsorción de amoxicilina. Ing Y Compet 19:45–54. https://doi.org/10.25100/iyc.v19i2.5292

  72. Tounsadi H, Khalidi A, Machrouhi A, Farnane M, Elmoubarki R, Elhalil A, Sadiq M, Barka N (2016) Highly efficient activated carbon from Glebionis coronaria L. biomass: Optimization of preparation conditions and heavy metals removal using experimental design approach. J Environ Chem Eng 4:4549–4564. https://doi.org/10.1016/j.jece.2016.10.020

    Article  Google Scholar 

  73. Tuzen M, Soylak M, Citak D, Ferreira HS, Korn MGA, Bezerra MA (2009) A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry. J Hazard Mater 162:1041–1045. https://doi.org/10.1016/j.jhazmat.2008.05.154

    Article  Google Scholar 

  74. Tyler G, Påhlsson AMB, Bengtsson G et al (1989) Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates - A review. Water Air Soil Pollut 47:189–215. https://doi.org/10.1007/BF00279327

    Article  Google Scholar 

  75. Vernon JD, Bonzongo JCJ (2014) Volatilization and sorption of dissolved mercury by metallic iron of different particle sizes: Implications for treatment of mercury contaminated water effluents. J Hazard Mater 276:408–414. https://doi.org/10.1016/j.jhazmat.2014.05.054

    Article  Google Scholar 

  76. Vilela D, Parmar J, Zeng Y, Zhao Y, Sánchez S (2016) Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett 16:2860–2866. https://doi.org/10.1021/acs.nanolett.6b00768

    Article  Google Scholar 

  77. Wan S, Ma Z, Xue Y, Ma M, Xu S, Qian L, Zhang Q (2014) Sorption of lead(II), cadmium(II), and copper(II) ions from aqueous solutions using tea waste. Ind Eng Chem Res 53:3629–3635. https://doi.org/10.1021/ie402510s

    Article  Google Scholar 

  78. Wang Y, Yang F, Yang X (2010) Colorimetric biosensing of mercury(II) ion using unmodified gold nanoparticle probes and thrombin-binding aptamer. Biosens Bioelectron 25:1994–1998. https://doi.org/10.1016/j.bios.2010.01.014

    Article  Google Scholar 

  79. Xiao C, Zeng L, Wei J, Xiao L, Zhang G (2017) Thermodynamic analysis for the separation of tungsten and aluminium in alkaline medium using solvent extraction. Hydrometallurgy 174:91–96. https://doi.org/10.1016/j.hydromet.2017.08.010

    Article  Google Scholar 

  80. Yang X, Qiu T (2017) Influence of aluminum ions distribution on the removal of aluminum from rare earth solutions using saponified naphthenic acid. Sep Purif Technol 186:290–296. https://doi.org/10.1016/j.seppur.2017.05.057

    Article  Google Scholar 

  81. Yardim MF, Budinova T, Ekinci E, Petrov N, Razvigorova M, Minkova V (2003) Removal of mercury (II) from aqueous solution by activated carbon obtained from furfural. Chemosphere 52:835–841. https://doi.org/10.1016/S0045-6535(03)00267-4

    Article  Google Scholar 

  82. Yung Weng Lee A, Fong Lim S, David Chua SN et al (2017) Adsorption equilibrium for heavy metal divalent ions (Cu 2+ , Zn 2+ , and Cd 2+ ) into zirconium-based ferromagnetic sorbent. https://doi.org/10.1155/2017/1210673

  83. Zaman Brohi RO, Khuhawar MY, Mahar RB (2020) Graphene oxide functionalized with a Schiff Base for the removal of Pb(II) ions from contaminated water: experimental and modeling approach. J Chem Technol Biotechnol 95:1694–1704. https://doi.org/10.1002/jctb.6362

    Article  Google Scholar 

  84. Zhang FS, Nriagu JO, Itoh H (2005) Mercury removal from water using activated carbons derived from organic sewage sludge. Water Res 39:389–395. https://doi.org/10.1016/j.watres.2004.09.027

    Article  Google Scholar 

  85. Zhang Z, Niu Y, Chen H, Yang Z, Bai L, Xue Z, Yang H (2019) Feasible one-pot sequential synthesis of aminopyridine functionalized magnetic fe 3 o 4 hybrids for robust capture of aqueous Hg(II) and Ag(I). ACS Sustain Chem Eng 7:7324–7337. https://doi.org/10.1021/acssuschemeng.9b00471

    Article  Google Scholar 

  86. Zhao J, Luan L, Li Z, Duan Z, Li Y, Zheng S, Xue Z, Xu W, Niu Y (2020) The adsorption property and mechanism for Hg(II) and Ag(I) by Schiff base functionalized magnetic Fe3O4 from aqueous solution. J Alloys Compd 825:154051. https://doi.org/10.1016/j.jallcom.2020.154051

    Article  Google Scholar 

  87. Zhou Y, Luan L, Tang B et al (2020) Fabrication of Schiff base decorated PAMAM dendrimer/magnetic Fe3O4 for selective removal of aqueous Hg(II). Chem Eng J 398. https://doi.org/10.1016/j.cej.2020.125651

  88. Zulfiqar A, Ahmed D, Fatima R, Yousuf S (2020) Green synthesis, urease inhibitory activity and antioxidant potential of 4-bromo-2-(((2′-chloro-4′-nitrophenyl)imino)methyl)phenol Schiff base. J Mol Struct 1202:127263. https://doi.org/10.1016/j.molstruc.2019.127263

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge King AbdulAziz City for Science and Technology for supporting this research work through the small grant program “Project Grant No. 37 – 163”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohamed Habila.

Ethics declarations

Conflict of Interest

The author(s) declare that there is no conflict of interest.

Additional information

Responsible Editor: Amjad Kallel

Supplementary Information

ESM 1

(PDF 696 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Marghany, A., Badjah Hadj Ahmed, A.Y., AlOthman, Z.A. et al. Fabrication of Schiff’s base-functionalized porous carbon materials for the effective removal of toxic metals from wastewater. Arab J Geosci 14, 336 (2021). https://doi.org/10.1007/s12517-021-06667-6

Download citation

Keywords

  • N′-(2-phenylacetyl) thiophene-2-carbohydrazide
  • Carbon
  • Adsorption
  • ICP-MS
  • Wastewater