Implications for practical application of commercial reduced iron powders to activate aqueous sulfite for decontamination of organics

Abstract

Sulfate radicals (SO4•−) based advanced oxidation processes (AOPs), with high efficiency and selectivity toward degradation of refractory organic contaminants, have captured increasing worldwide attention. Here, an efficient advanced oxidation process based on SO4•− (i.e., a CRI/S(IV) process), induced by commercial reduced iron (CRI) powder-induced aqueous sulfite [S(IV)] activation for favorable degradation of refractory organics, is reported. The CRI/S(IV) coupled system efficiently decomposes rhodamine B (RhB) and 4-chlorophenol (4-CP) at weakly acidic and even neutral pHs. The distributions of active sulfur and iron species distribution in the CRI/S(IV) system were investigated and implied that HSO3, FeHSO3+ and FeSO3+ were the main active species for S(IV), Fe(II), and Fe(III), respectively. In addition, radical quenching experiments show that both SO4•− and hydroxyl radicals (OH) are present in this CRI/S(IV) system with SO4•− as the dominant reactive radical for contamination removal. Furthermore, this novel process surpassed both CRI/Oxone and CRI/persulfate systems towards the organic degradation. This work might provide an implication for an efficient practical route for SO4•− activation for wastewater decontamination, particularly for sulfite contaminated wastewaters with recalcitrant organic contaminants.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abuelgasim A, Farahat A (2020) Investigations on PM10, PM2.5, and their ratio over the Emirate of Abu Dhabi, United Arab Emirates. Earth Syst Environ 4:763–775. https://doi.org/10.1007/s41748-020-00186-2

    Article  Google Scholar 

  2. Ahmad M, Teel AL, Watts RJ (2013) Mechanism of persulfate activation by phenols. Environ Sci Technol 47:5864–5871. https://doi.org/10.1021/es400728c

    Article  Google Scholar 

  3. Alemu K, Assefa B, Kifle D, Kloos H (2018) Removal of organic pollutants from municipal wastewater by applying high-rate algal pond in Addis Ababa, Ethiopia. Earth Sys Environ 2:377–386. https://doi.org/10.1007/s41748-018-0050-1

    Article  Google Scholar 

  4. Anipsitakis GP, Dionysiou DD (2003) Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ Sci Technol 37:4790–4797. https://doi.org/10.1021/es0263792

    Article  Google Scholar 

  5. Anipsitakis GP, Dionysiou DD (2004) Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38:3705–3712. https://doi.org/10.1021/es035121o

    Article  Google Scholar 

  6. Anonymous (2020) Tracking the acute toxicity of potassium persulfate. http://www.chemcas.com/material/cas/archive/7727-21-1.asp (accessed December 31, 2020).

  7. Antoniou MG, de la Cruz AA, Dionysiou DD (2010) Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis, and e- transfer mechanisms. Appl Catal B Environ 96:290–298. https://doi.org/10.1016/j.apcatb.2010.02.013

    Article  Google Scholar 

  8. Barakat A, Ouargaf Z, Khellouk R, el Jazouli A, Touhami F (2019) Land use/land cover change and environmental impact assessment in Béni-Mellal District (Morocco) using remote sensing and GIS. Earth Syst Environ 3:113–125. https://doi.org/10.1007/s41748-019-00088-y

    Article  Google Scholar 

  9. Beilke S, Gravenhorst G (1978) Heterogeneous SO2 oxidation in the droplet phase. Atmos Environ 12:231–239. https://doi.org/10.1016/B978-0-08-022932-4.50025-2

    Article  Google Scholar 

  10. Betterton EA, Hoffmann MR (1988) Oxidation of aqueous sulfur dioxide by peroxymonosulfate. J Phys Chem 92:5962–5965. https://doi.org/10.1021/j100332a025

    Article  Google Scholar 

  11. Bhardwaj LK, Jindal T (2020) Persistent organic pollutants in lakes of Grovnes Peninsula at Larsemann Hill Area, East Antarctica. Earth Syst Environ 4:349–358. https://doi.org/10.1007/s41748-020-00154-w

    Article  Google Scholar 

  12. Brandt C, van Eldik RV (1994) Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution. Evidence for the redox cycling of iron in the presence of oxygen and modeling of the overall reaction mechanism. Inorg Chem 33:687–701. https://doi.org/10.1021/ic00082a012

    Article  Google Scholar 

  13. Brandt C, van Eldik R (1995) Transition metal-catalyzed oxidation of sulfur(IV) oxides. atmospheric-relevant processes and mechanisms. Chem Rev 95:119–190. https://doi.org/10.1021/cr00033a006

    Article  Google Scholar 

  14. Bremner DH, Burgess AE, Houllemare D, Namkung KC (2006) Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide. Appl Catal B Environ 63:15–19. https://doi.org/10.1016/j.apcatb.2005.09.005

    Article  Google Scholar 

  15. Chen WS, Su YC (2012) Removal of dinitrotoluenes in wastewater by sono-activated persulfate. Ultrason Sonochem 19:921–927. https://doi.org/10.1016/j.ultsonch.2011.12.012

    Article  Google Scholar 

  16. Chen X, Chen J, Qiao X, Wang D, Cai X (2008) Performance of nano-Co3O4/peroxymonosulfate system: kinetics and mechanism study using Acid Orange 7 as a model compound. Appl Catal B Environ 80:116–121. https://doi.org/10.1016/j.apcatb.2007.11.009

    Article  Google Scholar 

  17. Chen L, Peng X, Liu J, Li J, Wu F (2012) Decolorization of Orange II in aqueous solution by an Fe (II)/sulfite system : replacement of persulfate. Ind Eng Chem Res 51:13632–13638. https://doi.org/10.1021/ie3020389

    Article  Google Scholar 

  18. Comba S, Di Molfetta A, Sethi R (2011) A comparison between field applications of nano-, micro-, and millimetric zerovalent iron for the remediation of contaminated aquifers. Water Air Soil Pollu 215:595–607. https://doi.org/10.1007/s11270-010-0502-1

    Article  Google Scholar 

  19. Cusack M, Arrieta JM, Duarte CM (2020) Source apportionment and elemental composition of atmospheric total suspended particulates (TSP) over the Red Sea coast of Saudi Arabia. Earth Syst Environ 4:777–788. https://doi.org/10.1007/s41748-020-00189-z

    Article  Google Scholar 

  20. Ding Y, Zhu L, Wang N, Tang H (2013) Sulfate radicals induced degradation of tetrabromobisphenol a with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Appl Catal B Environ 129:153–162. https://doi.org/10.1016/j.apcatb.2012.09.015

    Article  Google Scholar 

  21. Dong H, Wei G, Yin D, Guan X (2020) Mechanistic insight into the generation of reactive oxygen species in sulfite activation with Fe(III) for contaminants degradation. J Hazard Mater 384:121497. https://doi.org/10.1016/j.jhazmat.2019.121497

    Article  Google Scholar 

  22. Ekoa Bessa AZ, Ngueutchoua G, Kwewouo Janpou A, el-Amier YA, Njike Njome Mbella Nguetnga OA, Kankeu Kayou UR, Bisse SB, Ngo Mapuna EC, Armstrong-Altrin JS (2020) Heavy metal contamination and its ecological risks in the beach sediments along the Atlantic Ocean (Limbe coastal fringes, Cameroon). Earth Syst Environ. https://doi.org/10.1007/s41748-020-00167-5

  23. Fang JY, Shang C (2012) Bromate formation from bromide oxidation by the UV/persulfate process. Environ Sci Technol 46:8976–8983. https://doi.org/10.1021/es300658u

    Article  Google Scholar 

  24. Fang G, Gao J, Dionysiou DD, Liu C, Zhou D (2013) Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs. Environ Sci Technol 47:4605–4611. https://doi.org/10.1021/es400262n

    Article  Google Scholar 

  25. Furman OS, Teel AL, Watts RJ (2010) Mechanism of base activation of persulfate. Environ Sci Technol 44:6423–6428. https://doi.org/10.1021/es1013714

    Article  Google Scholar 

  26. Gheju M (2011) Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water Air Soil Pollu 222:103–148. https://doi.org/10.1007/s11270-011-0812-y

    Article  Google Scholar 

  27. Giwa A, Chakraborty S, Mavukkandy MO, Arafat HA, Hasan SW (2017) Nanoporous hollow fiber polyethersulfone membranes for the removal of residual contaminants from treated wastewater effluent: functional and molecular implications. Sep Purif Technol 189:20–31. https://doi.org/10.1016/j.seppur.2017.07.058

  28. Giwa A, Yusuf A, Balogun HA, Sambudi NS, Bilad MR, Adeyemi I, Chakraborty S, Curcio S (2021) Recent advances in advanced oxidation processes for removal of contaminants from water: a comprehensive review. Process Saf Environ Protection 146:220–256. https://doi.org/10.1016/j.psep.2020.08.015

  29. Graedel TE, Weschler CJ (1981) Chemistry within aqueous atmospheric aerosols and raindrops. Rev Geophys 19:505–539. https://doi.org/10.1029/RG019i004p00505

    Article  Google Scholar 

  30. Grieger KD, Fjordboge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118:165–183. https://doi.org/10.1016/j.jconhyd.2010.07.011

    Article  Google Scholar 

  31. Guan X, Sun Y, Qin H, Li J, Lo IMC, He D, Dong H (2015) The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Res. 75:224–248. https://doi.org/10.1016/j.watres.2015.02.034

    Article  Google Scholar 

  32. Guo Y, Lou X, Fang C, Xiao D, Wang Z, Liu J (2013) Novel photo-sulfite system: toward simultaneous transformations of inorganic and organic pollutants. Environ Sci Technol 47:11174–11181. https://doi.org/10.1021/es403199p

    Article  Google Scholar 

  33. Guo Y, Zhou J, Lou X, Liu R, Xiao D, Fang C, Wang Z, Liu J (2014) Enhanced degradation of tetrabromobisphenol A in water by a UV/base/persulfate system: kinetics and intermediates. Chem Eng J 254:538–544. https://doi.org/10.1016/j.cej.2014.05.143

    Article  Google Scholar 

  34. House DA (1962) Kinetics and mechanism of oxidations by peroxydisulfate. Chem Rev 62:185–203. https://doi.org/10.1021/cr60217a001

    Article  Google Scholar 

  35. Humphrey R, Ward M, Hinze W (1970) Spectrophotometric determination of sulfite with 4,4’-dithio-dipyridine and 5,5’-dithiobis (2-nitrobenzoic acid). Anal Chem 42:698–702. https://doi.org/10.1021/ac60289a021

    Article  Google Scholar 

  36. Ji Y, Ferronato C, Salvador A, Yang X, Chovelon J-M (2014) Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics. Sci. Total Environ 472:800–808. https://doi.org/10.1016/j.scitotenv.2013.11.008

    Article  Google Scholar 

  37. Johnson RL, Tratnyek PG, Johnson ROB (2008) Persulfate persistence under thermal activation conditions. Environ Sci Technol 42:9350–9356. https://doi.org/10.1021/es8019462

    Article  Google Scholar 

  38. Kumar R, Laskar MA, Hewaidy IF, Barakat MA (2019) Modified adsorbents for removal of heavy metals from aqueous environment: a review. Earth Syst Environ 3:83–93. https://doi.org/10.1007/s41748-018-0085-3

    Article  Google Scholar 

  39. Lee YJ, Rochelle GT (1987) Oxidative degradation of organic acid conjugated with sulfite oxidation in flue gas desulfurization: products, kinetics, and mechanism. Environ Sci Technol 21:266–272. https://doi.org/10.1021/es00157a007

    Article  Google Scholar 

  40. Liang C, Bruell CJ, Marley MC, Sperry KL (2004) Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfateethiosulfate redox couple. Chemosphere 55:1213–1223. https://doi.org/10.1016/j.chemosphere.2004.01.029

    Article  Google Scholar 

  41. Liang C, Liang CP, Chen CC (2009) pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene. J Contam Hydrol 106:173–182. https://doi.org/10.1016/j.jconhyd.2009.02.008

    Article  Google Scholar 

  42. Liu L, Son M, Chakraborty S, Bhattacharjee C, Choi H (2013) Fabrication of ultra-thin polyelectrolyte/carbon nanotube membrane by spray-assisted layer-by-layer technique: characterization and its anti-protein fouling properties for water treatment. Desali Water Treat 51:6194–6200.https://doi.org/10.1080/19443994.2013.780767

  43. Lou X, Wu L, Guo Y, Chen C, Wang Z, Xiao D, Fang C, Liu J, Zhao J, Lu S (2014) Peroxymonosulfate activation by phosphate anion for organics degradation in water. Chemosphere 117:582–585. https://doi.org/10.1016/j.chemosphere.2014.09.046

    Article  Google Scholar 

  44. Lou X, Fang C, Geng Z, Jin Y, Xiao D, Wang Z, Liu J, Guo Y (2017) Significantly enhanced base activation of peroxymonosulfate by polyphosphates: kinetics and mechanism. Chemosphere 173:529–534. https://doi.org/10.1016/j.chemosphere.2017.01.093

    Article  Google Scholar 

  45. Manawi SMA, Nasir KAM, Shiru MS, Hotaki SF, Sediqi MN (2020) Urban flooding in the northern part of Kabul City: causes and mitigation. Earth Syst Environ 4:599–610. https://doi.org/10.1007/s41748-020-00165-7

    Article  Google Scholar 

  46. Manoharan R, Alemu M, Legesse B, Abajihad M (2020) Malaria hazard and risk analysis using geospatial techniques in the case of selected woredas of Jimma Zone, Oromia Region. Ethiopia. Earth Syst Environ. https://doi.org/10.1007/s41748-020-00170-w

  47. Mitra S, Roy AK, Tamang L (2020) Assessing the status of changing channel regimes of Balason and Mahananda River in the Sub-Himalayan West Bengal, India. Earth Syst Environ 4:409–425. https://doi.org/10.1007/s41748-020-00160-y

    Article  Google Scholar 

  48. Mohanty JK, Guru SR, Dash P, Pradhan PK (2020) Fly ash management and condition monitoring of ash pond. Earth Syst Environ. https://doi.org/10.1007/s41748-020-00163-9

  49. Mottley C, Mason RP (1988) Sulfate anion free radical formation by the peroxidation of (Bi) sulfite and its reaction with hydroxyl radical scavengers. Arch Biochem Biophys 267:681–689. https://doi.org/10.1016/0003-9861(88)90077-X

    Article  Google Scholar 

  50. Nahin KTK, Basak R, Alam R (2020) Groundwater vulnerability assessment with DRASTIC index method in the salinity-affected southwest coastal region of Bangladesh: a case study in Bagerhat Sadar, Fakirhat and Rampal. Earth Syst Environ 4:183–195. https://doi.org/10.1007/s41748-019-00144-7

    Article  Google Scholar 

  51. Neta P, Huie RE, Ross AB (1988) Rate constants for reactions of inorganic radicals in aqueous solution. J Phys Chem Ref Data 17:1027–1284. https://doi.org/10.1063/1.555808

    Article  Google Scholar 

  52. Noubactep C (2009) Characterizing the discoloration of methylene blue in Fe0/H2O systems. J Hazard Mater 166:79–87. https://doi.org/10.1016/j.jhazmat.2008.11.001

    Article  Google Scholar 

  53. Panda N, Sahoo H, Mohapatra S (2011) Decolourization of methyl orange using Fenton-like mesoporous Fe2O3-SiO2 composite. J Hazard Mater 185:359–365. https://doi.org/10.1016/j.jhazmat.2010.09.042

    Article  Google Scholar 

  54. Puigdomenech I (2010) MEDUSA-make equilibrium diagrams using sophisticated algorithms; 32 bit version. Inorganic Chemistry Royal Institute of Technology 100 44 Stockholm, Sweden. http://www.ke- mi.kth.se/medusa

  55. Qi C, Liu X, Ma J, Lin C, Li X, Zhang H (2016) Activation of peroxymonosulfate by base: implications for the degradation of organic pollutants. Chemosphere 151:280–288. https://doi.org/10.1016/j.chemosphere.2016.02.089

    Article  Google Scholar 

  56. Qi CD, Liu XT, Lin CY, Zhang HJ, Li X, Ma J (2017) Activation of peroxymonosulfate by microwave irradiation for degradation of organic contaminants. Chem Eng J 315:201–209. https://doi.org/10.1016/j.cej.2017.01.012

    Article  Google Scholar 

  57. Reddy KB, van Eldik RV (1992) Kinetics and mechanism of the sulfite-induced autoxid of Fe(II) in acidic aqueous solution. Atmos Environ 26A:661–665. https://doi.org/10.1016/0960-1686(92)90177-M

    Article  Google Scholar 

  58. Sarkar S, Chakraborty S (2021) Nanocomposite polymeric membrane a new trend of water and wastewater treatment: a short review. Groundwater Sustainable Develop  12:100533. https://doi.org/10.1016/j.gsd.2020.100533

  59. Sheng B, Yang F, Wang Y, Wang Z, Li Q, Guo Y, Lou X, Liu J (2019) Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe(II)/PMS. Chem Eng J 375:121989. https://doi.org/10.1016/j.cej.2019.121989

    Article  Google Scholar 

  60. Shukla PR, Wang SB, Ang HM, Tade MO (2010) Photocatalytic oxidation of phenolic compounds using zinc oxide and sulphate radicals under artificial solar light. Sep Purif Technol 70:338–344. https://doi.org/10.1016/j.seppur.2009.10.018

    Article  Google Scholar 

  61. Tamura H, Goto K, Yotsuyanagi T, Nagayama M (1974) Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta 21:314–318. https://doi.org/10.1016/0039-9140(74)80012-3

    Article  Google Scholar 

  62. Tilahun S, Kifle D (2020) Atmospheric dry fallout of macronutrients in a semi-arid region: an overlooked source of eutrophication for shallow lakes with large catchment to lake surface area ratio. Earth Syst Environ. https://doi.org/10.1007/s41748-020-00162-w

  63. Wang Z, Chen X, Ji H, Ma W, Chen C, Zhao J (2010) Photochemical cycling of iron mediated by dicarboxylates: special effect of malonate. Environ Sci Technol 44:263–268. https://doi.org/10.1021/es901956x

    Article  Google Scholar 

  64. Wang Z, Yuan R, Guo Y, Xu L, Liu J (2011) Effects of chloride ions on bleaching of azo dyes by Co2+/oxone reagent: kinetic analysis. J Hazard Mater 190:1083–1087. https://doi.org/10.1016/j.jhazmat.2011.04.016

    Article  Google Scholar 

  65. Wang Z, Ai L, Huang Y, Zhang J, Li S, Chen J, Yang F (2017) Degradation of azo dye with activated peroxygens: when zero-valent iron meets chloride. RSC Adv 7:30941–30948. https://doi.org/10.1039/C7RA03872K

    Article  Google Scholar 

  66. Wiefel L, Bachmann F, Terwort J, Steinbüchel A (2019) In vitro modification of bacterial cyanophycin and cyanophycin dipeptides using chemical agents towards novel variants of the biopolymer. Earth Syst Environ 3:637–650. https://doi.org/10.1007/s41748-019-00107-y

    Article  Google Scholar 

  67. Xu L, Yuan R, Guo Y, Xiao D, Cao Y, Wang Z, Liu J (2013) Sulfate radical-induced degradation of 2,4,6-trichlorophenol: a de novo formation of chlorinated compounds. Chem Eng J 217:169–173. https://doi.org/10.1016/j.cej.2012.11.112

    Article  Google Scholar 

  68. Yang Q, Choi H, Al-Abed SR, Dionysiou DD (2009) Iron-cobalt mixed oxide nanocatalysts: heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications. Appl Catal B Environ 88:462–469. https://doi.org/10.1016/j.apcatb.2008.10.013

    Article  Google Scholar 

  69. Yang SY, Yang X, Shao XT, Niu R, Wang LL (2011) Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature. J Hazard Mater 186:659–666. https://doi.org/10.1016/j.jhazmat.2010.11.057

    Article  Google Scholar 

  70. Yang F, Sheng B, Wang Z, Yuan R, Xue Y, Wang X, Liu Q, Liu J (2019) An often-overestimated adverse effect of halides in heat/persulfate-based degradation of wastewater contaminants. Environ Int 130:104918. https://doi.org/10.1016/j.envint.2019.104918

    Article  Google Scholar 

  71. Yermakov AN, Zhitomirsky BM, Poskrebyshev GA, Sozurakov DM (1993) The branching ratio of peroxomonosulfate radicals (SO5-) self-reaction aqueous solution. J Phys Chem 97:10712–10714. https://doi.org/10.1021/j100143a031

    Article  Google Scholar 

  72. Yuan R, Ramjaun SN, Wang Z, Liu J (2011) Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds. J Hazard Mater 196:173–179. https://doi.org/10.1016/j.jhazmat.2011.09.007

    Article  Google Scholar 

  73. Zhang Y, Zhou J, Li C, Guo S, Wang G (2012) Reaction kinetics and mechanism of iron(II)-induced catalytic oxidation of sulfur(IV) during wet desulfurization. Ind Eng Chem Res 51:1158–1165. https://doi.org/10.1021/ie2014372

    Article  Google Scholar 

  74. Zhang T, Zhu H, Croue JP (2013) Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency, stability, and mechanism. Environ Sci Technol 47:2784–2791. https://doi.org/10.1021/es304721g

    Article  Google Scholar 

  75. Zhou J, Xiao J, Xiao D, Guo Y, Fang C, Lou X, Wang Z, Liu J (2015) Transformations of chloro and nitro groups during the peroxymonosulfate-based oxidation of 4-chloro-2-nitrophenol. Chemosphere 134:446–451. https://doi.org/10.1016/j.chemosphere.2015.05.027

    Article  Google Scholar 

  76. Zuo Y, Zhan J (2005) Effects of oxalate on Fe-catalyzed photooxidation of dissolved sulfur dioxide in atmospheric water. Atmos Environ 39:27–37. https://doi.org/10.1016/j.atmosenv.2004.09.058

    Article  Google Scholar 

Download references

Acknowledgments

The present work was financially supported by Shanghai Sailing Program (18YF1429900, 19YF1459900, and 15YF1404300), Natural Science Foundation of China (51678353, 52070127), Shanghai Natural Science Foundation (20ZR1421100), Central Public-interest Scientific Institution Basal Research Fund, ECSFR, CAFS (2019T14, 2019T13), Cultivation Discipline Fund of Shanghai Polytechnic University (XXKPY1601), and Gaoyuan Discipline of Shanghai-Environmental Science and Engineering (Resource Recycling Science and Engineering). Dr. Guo also acknowledges the Shanghai Teacher Professional Development Project (A11NH190713), Project of Key Undergraduate Courses (Instrumental Analysis) from Shanghai Municipal Education Committee.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yaoguang Guo or Xuefeng Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: Santanu Banerjee

Supplementary Information

ESM 1

(DOC 1179 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lou, X., Fang, C., Guo, Y. et al. Implications for practical application of commercial reduced iron powders to activate aqueous sulfite for decontamination of organics. Arab J Geosci 14, 221 (2021). https://doi.org/10.1007/s12517-021-06589-3

Download citation

Keywords

  • Sulfate radicals
  • Advanced oxidation processes
  • Decontamination
  • Radical quenching