Assessment of groundwater and soil pollution by leachate using electrical resistivity and induced polarization imaging survey, case of Tebessa municipal landfill, NE Algeria

Abstract

In the last decade, the anarchical discharges have severely degraded the environment quality in Tebessa province. Due to the exudation and the percolation of leachate through the retention tanks, the Tenoukla Technical Landfill Center (TLC) is considered as the main source of the aquifer and soil pollution in the Tebessa basin. Our research intended to investigate the groundwater and soil pollution extent within and close the municipal landfill, southeast of Tebessa city, NE Algeria. For this task, we used geochemistry analysis based on atomic absorption spectrometry and geophysics prospecting based on electrical resistivity tomography (ERT) and induced polarization (IP) techniques. The chemical results showed strong soil/water contamination by high levels of mineralization (3.5 μg/g of Pb, 7.1 μg/g of Cd, 0.09 μg/g of Cu, and.05 μg/g of Zn). The IP and ERT image indicated large zones of decomposed waste bodies saturated with highly conducting leachate (resistivity’s value varies from 3 to 10 Ω m). This high mineralization concentration in the vadose zone is due to the leakage of the leachate, through the permeable Cenomanian marly limestone. Cd, Pb, Cu, Zn, Fe, and Mg element concentration in sediments caused the degradation of water quality. These results confirm a general trend of pollution towards the downstream area. Soil exchangeable bases were higher in the vadose zone compared to the saturated one. Our study gives a good example of the potential of the ERT/IP method for the hydrogeological investigation and for the pollution characterization especially in landfill sites. These tools could help decision-makers in our study area or in a similar environment for monitoring environmental parameters, reduce the risk, and avoid critical pollution situations caused by the leachate resulting from landfills. We highly recommended initiating a depollution plan for a both soil and water.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abdelli I, Asnoune M, Arab Z, Abdelmalek F, Addou A (2017) Management of household waste in sanitary landfill of Mostaganem district (Western Algeria). Journal of Material Cycles and Waste Management 19(1):265–281

    Google Scholar 

  2. Abdulrahman A, Nawawi MNM, Saad R, Adiat KAN (2013) Volumetric assessment of leachate from solid waste using 2D and 3D electrical resistivity imaging. In: Advanced Materials Research, vol 726. Trans Tech Publications Ltd., pp 3014–3022

  3. Abdulrahman A, Nawawi M, Saad R, Abu-Rizaiza AS, Yusoff MS, Khalil AE, Ishola KS (2016) Characterization of active and closed landfill sites using 2D resistivity/IP imaging: case studies in Penang, Malaysia. Environmental Earth Sciences 75(4):347

    Google Scholar 

  4. Ahel M, Tepić N (2000) Distribution of polycyclic aromatic hydrocarbons in a municipal solid waste landfill and underlying soil. Bulletin of environmental contamination and toxicology 65(2):236–243

    Google Scholar 

  5. Anis Z, Wissem G, Riheb H, Biswajeet P, Essghaier GM (2019) Effects of clay properties in the landslides genesis in flysch massif: case study of Aïn Draham, North Western Tunisia. Journal of African Earth Sciences 151:146–152

    Google Scholar 

  6. Aristodemou E, Thomas-Betts A (2000) DC resistivity and induced polarisation investigations at a waste disposal site and its environments. Journal of Applied Geophysics 44(2-3):275–302

    Google Scholar 

  7. Baali F, Rouabhia A, Kherici N, Djabri L, Bouchaou L, Hani A (2007) Qualité des eaux souterraines et risque de pollution en milieu semi-aride. Cas de la cuvette de Chéria (NE Algérien). Estudios Geológicos 63(2):127–133

    Google Scholar 

  8. Baali F, Fehdi C, Rouabhia A, Mouici R, Carlier E (2015) Hydrochemistry and isotopic exploration for a karstic aquifer in a semi-arid region: case of Cheria Plain, Eastern Algeria. Carbonates and evaporites 30(1):99–107

    Google Scholar 

  9. Bernstone C, Dahlin T (1999) Assessment of two automated electrical resistivity data acquisition systems for landfill location surveys: two case studies. Journal of Environmental and Engineering Geophysics 4(2):113–121

    Google Scholar 

  10. Berrouk S (2016) Mise en evidence d’une contamination des eaux superficielles par le lixiviats de décharge. Cas de la plaine de Tebessa-Bekkaria. Magister dissernation, 115 p.

  11. Besser H, Mokadem N, Redhaounia B, Hadji R, Hamad A, Hamed Y (2018) Groundwater mixing and geochemical assessment of low-enthalpy resources in the geothermal field of southwestern Tunisia. Euro-Mediterranean Journal for Environmental Integration 3(1):16

    Google Scholar 

  12. Bouri S, Dhia HB (2010) A thirty-year artificial recharge experiment in a coastal aquifer in an arid zone: the Teboulba aquifer system (Tunisian Sahel). Comptes Rendus Geoscience 342(1):60–74

    Google Scholar 

  13. Burston MW, Nazari MM, Bishop PK, Lerner DN (1993) Pollution of groundwater in the Coventry region (UK) by chlorinated hydrocarbon solvents. Journal of Hydrology 149(1-4):137–161

    Google Scholar 

  14. Chambers JE, Kuras O, Meldrum PI, Ogilvy RD, Hollands J (2006) Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics 71(6):B231–B239

    Google Scholar 

  15. Dahlin T, Rosqvist H, Leroux V (2010) Resistivity-IP mapping for landfill applications. first break 28(8)

  16. Dahoua L, Yakovitch SV, Hadji R, Farid Z (2017) Landslide susceptibility mapping using analytic hierarchy process method in BBA-Bouira Region, case study of east-west highway, NE Algeria. In: Kallel A, Ksibi M, Ben Dhia H, Khélifi N (eds) Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions. EMCEI 2017. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham

    Google Scholar 

  17. Dahoua L, Usychenko O, Savenko VY, Hadji R (2018) Mathematical approach for estimating the stability of geotextile-reinforced embankments during an earthquake. Mining Science. 25:207–217

    Google Scholar 

  18. Davis JL, Annan AP (1989) Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy 1. Geophysical prospecting 37(5):531–551

    Google Scholar 

  19. Dawson CB, Lane JW, White EA, Belaval M (2002) Integrated geophysical characterization of the Winthrop landfill southern flow path, Winthrop, Maine. In: 15th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems. European Association of Geoscientists & Engineers, p cp-191

  20. De Donno G, Cardarelli E (2017) Tomographic inversion of time-domain resistivity and chargeability data for the investigation of landfills using a priori information. Waste management 59:302–315

    Google Scholar 

  21. Demdoum A, Hamed Y, Feki M, Hadji R, Djebbar M (2015) Multi-tracer investigation of groundwater in El Eulma Basin (Northwestern Algeria), North Africa. Arabian Journal of Geosciences 8(5):3321–3333

    Google Scholar 

  22. Drias T, Toubal AC (2015) Mapping of the vulnerability to pollution of the Tebessa-Morsott alluvial aquifer (Oued Ksob watershed), extreme east of Algeria. LARHYSS Journal P-ISSN 1112-3680 / E-ISSN 2602-7828(22):35–48

    Google Scholar 

  23. Eggen T, Moeder M, Arukwe A (2010) Municipal landfill leachates: a significant source for new and emerging pollutants. Science of the Total Environment 408(21):5147–5157

    Google Scholar 

  24. Eikmann T (1994) Environmental toxicological assessment of emissions from waste incinerators. Fresenius Environmental Bulletin 3(4):244–249

    Google Scholar 

  25. El-Fadel M, Findikakis AN, Leckie JO (1997) Environmental impacts of solid waste landfilling. Journal of environmental management 50(1):1–25

    Google Scholar 

  26. Flores Orozco A, Velimirovic M, Tosco T, Kemna A, Sapion H, Klaas N, Sethi R, Bastiaens L (2015) Monitoring the injection of microscale zerovalent iron particles for groundwater remediation by means of complex electrical conductivity imaging. Environmental science & technology 49(9):5593–5600

    Google Scholar 

  27. Gadri L, Hadji R, Zahri F, Benghazi Z, Boumezbeur A, Laid BM, Raїs K (2015) The quarries edges stability in opencast mines: a case study of the Jebel Onk phosphate mine, NE Algeria. Arabian Journal of Geosciences 8(11):8987–8997

    Google Scholar 

  28. Gallas JDF, Taioli F, Malagutti Filho W (2011) Induced polarization, resistivity, and self-potential: a case history of contamination evaluation due to landfill leakage. Environmental Earth Sciences 63(2):251–261

    Google Scholar 

  29. Gazoty A, Fiandaca G, Pedersen J, Auken E, Christiansen A (2012a) Mapping landfills with Time Domain IP: the Eskelund case study. Near Surf Geophys 10:563–574

    Google Scholar 

  30. Gazoty A, Fiandaca G, Auken E, Christiansen AV (2012b) Application of time domain induced polarization to the mapping of lithotypes in a landfill site. Hydrology and Earth System Sciences 16(6):1793–1804

    Google Scholar 

  31. GEFR: General environment, final report (2012) Master plan for urban solid waste management in the city of Tébessa. Internal report, (p 33-34-40).

  32. Greenhouse JP, Slaine DD (1983) The use of reconnaissance electromagnetic methods to map contaminant migration: these nine case studies can help determine which geophysical techniques are applicable to a given problem. Groundwater Monitoring & Remediation 3(2):47–59

    Google Scholar 

  33. Guérin R, Munoz ML, Aran C, Laperrelle C, Hidra M, Drouart E, Grellier S (2004) Leachate recirculation: moisture content assessment by means of a geophysical technique. Waste Management 24(8):785–794

    Google Scholar 

  34. Hadji R, Boumazbeur A, Limani Y, Baghem M, Chouabi A (2013) Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: a case study of Souk Ahras region. NE Algeria. Quaternary International. 302:224–237

    Google Scholar 

  35. Hadji R, Limani Y, Boumazbeur A, DemdoumA ZK, Zahri F, Chouabi A (2014a) Climate change and their influence on shrinkage - swelling clays susceptibility in a semi - arid zone: a case study of Souk Ahras municipality, NE-Algeria. Desalination and Water Treatment 52(10-12):2057–2072

    Google Scholar 

  36. Hadji R, Limani Y, Demdoum A (2014b) Using multivariate approach and GIS applications to predict slope instability hazard case study of Machrouha municipality, NE Algeria. 10.1109/ICT-DM.2014.6917787 Publisher: IEEE Xplore. Print ISBN: 978-1-4799-4768-3, Accession Number: 14651190.

  37. Hadji R, Chouabi A, Gadri L, Raïs K, Hamed Y, Boumazbeur A (2016) Application of linear indexing model and GIS techniques for the slope movement susceptibility modeling in Bousselam upstream basin. Northeast Algeria, Arabian Journal of Geosciences 9:192

    Google Scholar 

  38. Hadji R, Raïs K, Gadri L, Chouabi A, Hamed Y (2017a) Slope failures characteristics and slope movement susceptibility assessment using GIS in a medium scale: a case study from Ouled Driss and Machroha municipalities. Northeastern of Algeria, Arabian Journal for Science and Engineering 42:281–300

    Google Scholar 

  39. Hadji R, Achour Y, Hamed Y (2017b) Using GIS and RS for slope movement susceptibility mapping: comparing AHP, LI and LR methods for the Oued Mellah Basin, NE Algeria. In: Kallel A, Ksibi M, Ben Dhia H, Khélifi N (eds) Recent advances in environmental science from the Euro-Mediterranean and surrounding regions. EMCEI 2017. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham

    Google Scholar 

  40. Hamad A, Baali F, Hadji R, Zerrouki H, Besser H, Mokadem N, Legrioui R, Hamed Y (2018a) Hydrogeochemical characterization of water mineralization in Tebessa-Kasserine karst system (Tuniso-Algerian Transboundry basin). Euro-Mediterranean Journal for Environmental Integration 3(1):7

    Google Scholar 

  41. Hamad A, Hadji R, Bâali F, Houda B, Redhaounia B, Zighmi K, Legrioui R, Brahmi S, Hamed Y (2018b) Conceptual model for karstic aquifers by combined analysis of GIS, chemical, thermal, and isotopic tools in Tuniso-Algerian transboundary basin. Arabian Journal of Geosciences 11(15):409

    Google Scholar 

  42. Hamed Y, Ahmadi R, Hadji R, Mokadem N, Ben DH, Ali W (2014) Groundwater evolution of the Continental Intercalaire aquifer of Southern Tunisia and a part of Southern Algeria: use of geochemical and isotopic indicators. Desalination and Water Treatment 52(10-12):1990–1996

    Google Scholar 

  43. Hamed Y, Redhaounia B, Ben Sâad A, Hadji R, Zahri F (2017a) Groundwater inrush caused by the fault reactivation and the climate impact in the mining Gafsa basin (southwestern Tunisia). J Tethys 5(2):154–164

    Google Scholar 

  44. Hamed Y, Redhaounia B, Sâad A, Hadji R, Zahri F, Zighmi K (2017b) Hydrothermal waters from karst aquifer: case study of the Trozza basin (Central Tunisia). Journal of Tethys 5(1):33–44

    Google Scholar 

  45. Hamed Y, Hadji R, Redhaounia B, Zighmi K, Bâali F, El Gayar A (2018) Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendations. Euro-Mediterranean Journal for Environmental Integration 3(1):25

    Google Scholar 

  46. Idris A, Inanc B, Hassan MN (2004) Overview of waste disposal and landfills/dumps in Asian countries. Journal of material cycles and waste management 6(2):104–110

    Google Scholar 

  47. Johansson S, Dahlin T (1996) Seepage monitoring in an earth embankment dam by repeated resistivity measurements. European Journal of Engineering and Environmental Geophysics 1(3):229–247

    Google Scholar 

  48. Karim Z, Hadji R, Hamed Y (2019) GIS-based approaches for the landslide susceptibility prediction in Setif Region (NE Algeria). Geotechnical and Geological Engineering 37(1):359–374

    Google Scholar 

  49. Kehila Y (2014) Contribution on solid waste management in Algeria, published in April 2014. Internal report:12-13-18

  50. Kerbati NR, Gadri L, Hadji R et al (2020) Graphical and numerical methods for stability analysis in surrounding rock of underground excavations, example of Boukhadra Iron Mine NE Algeria. Geotechnical and Geological Engineering:1–9

  51. King WC, Witten AJ, Reed GD (1989) Detection and imaging of buried wastes using seismic wave propagation. Journal of Environmental Engineering 115(3):527–540

    Google Scholar 

  52. Koshy L, Paris E, Ling S, Jones T, BéruBé K (2007) Bioreactivity of leachate from municipal solid waste landfills—assessment of toxicity. Science of the total Environment 384(1-3):171–181

    Google Scholar 

  53. Kowalski WM, Boudoukha A, Hemila ML, Pharisat A (1997) Les stades d’effondrement du graben de Tébessa (confins Algéro-Tunisien) et la tectonique plicative Plio-Quaternaire. Bull. Soc. Hist. Nat. Pays de Montbéliard:201–215

  54. Lee SI, Kitanidis PK (1993) Analysis of groundwater flow and travel times for a landfill site in an arid region with a thick vadose zone. Hydrological processes 7(4):373–387

    Google Scholar 

  55. Lei L, Aoyama I (2010) Effect-directed investigation and interactive effect of organic toxicants in landfill leachates combining Microtox test with RP-HPLC fractionation and GC/MS analysis. Ecotoxicology 19(7):1268–1276

    Google Scholar 

  56. Leroux V, Dahlin T (2002) Induced polarisation survey at a waste site in southern Sweden. In: 8th EEGS-ES Meeting. European Association of Geoscientists & Engineers, p cp-36

  57. Leroy P, Revil A (2009) A mechanistic model for the spectral induced polarization of clay materials. Journal of Geophysical Research: Solid Earth 114(B10)

  58. Mahdadi F, Boumezbeur A, Hadji R, Kanungo DP, Zahri F (2018) GIS-based landslide susceptibility assessment using statistical models: a case study from Souk Ahras province, NE Algeria. Arabian Journal of Geosciences 11(17):476

    Google Scholar 

  59. Manchar N, Benabbas C, Hadji R, Bouaicha F, Grecu F (2018) Landslide susceptibility assessment in Constantine region (NE Algeria) By Means of Statistical Models. Studia Geotechnica et Mechanica 40(3):208–219

    Google Scholar 

  60. Meju MA (2000) Geoelectrical investigation of old/abandoned, covered landfill sites in urban areas: model development with a genetic diagnosis approach. Journal of Applied Geophysics 44(2-3):115–150

    Google Scholar 

  61. Michot D, Benderitter Y, Dorigny A, Nicoullaud B, King D, Tabbagh A (2003) Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research 39(5)

  62. Mokadem N, Demdoum A, Hamed Y, Bouri S, Hadji R, Boyce A, Laouar R, Saad A (2016) Hydrogeochemical and stable isotope data of groundwater of a multi-aquifer system: Northern Gafsa basin e Central Tunisia. Journal of African Earth Sciences 114:174–191

    Google Scholar 

  63. Mouici R, Baali F, Hadji R, Boubaya D, Audra P, Fehdi CÉ et al (2017) Geophysical, geotechnical, and speleologic assessment for karst-sinkhole collapse genesis in Cheria plateau (NE Algeria). Mining Science 24:59–71

    Google Scholar 

  64. Naudet V, Revil A, Rizzo E, Bottero JY, Bégassat P (2004) Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations

  65. Ncibi K, Chaar H, Hadji R, Baccari N, Sebei A, Khelifi F, Abbes M, Hamed Y (2020a) A GIS-based statistical model for assessing groundwater susceptibility index in shallow aquifer in Central Tunisia (Sidi Bouzid basin). Arabian Journal of Geosciences 13(2):98

    Google Scholar 

  66. Ncibi K, Hadji R, Hamdi M, Mokadem N, Abbes M, Khelifi F et al (2020b) Application of the analytic hierarchy process to weight the criteria used to determine the Water Quality Index of groundwater in the northeastern basin of the Sidi Bouzid region, Central Tunisia. Euro-Mediterranean Journal for Environmental Integration 5:1–15

    Google Scholar 

  67. Nekkoub A, Baali F, Hadji R, Hamed Y (2020) The EPIK multi-attribute method for intrinsic vulnerability assessment of karstic aquifer under semi-arid climatic conditions, case of Cheria Plateau, NE Algeria. Arabian Journal of Geosciences 13(15):1–15

    Google Scholar 

  68. Nouioua I, Fehdi C, Boubaya D, Serhane B, Djellali A (2015) Mapping underground cracks using 2D electrical resistivity tomography: the case of the landslide of Kef Essenoun phosphate deposit, Djebel Onk (northeast of Algeria). Arabian Journal of Geosciences 8(10):7731–7738

    Google Scholar 

  69. Öman C, Hynning P-Å (1993) Identification of organic compounds in municipal landfill leachates. Environmental Pollution 80(3):265–271

    Google Scholar 

  70. Othmanine A (1987) Les minéralisations en fluorine, barytine, Pb, Zn et fer sidéritique autour du fossé de Tebessa-Morsott (Algérie). Relation entre paléogéographie aptiènne, diapirisme, structure et métallogénie (Doctoral dissertation, Thèse de 3ème Cycle, Université Pierre et Marie Curie, Paris VI, France, 22 l p).

  71. Roongtanakiat N, Nirunrach T, Chanyotha S, Hengchaovanich D (2003) Uptake of heavy metals in landfill leachate by vetiver grass. Kasetsart J.(Nat. Sci.) 37(2):168–175

    Google Scholar 

  72. Ross HP, Mackelprang CE, Wright PM (1990) Dipole-dipole electrical resistivity surveys at waste disposal study sites in Northern Utah. Geotechnical and environmental geophysics 2:145–152

    Google Scholar 

  73. Rouabhia A, Djabri L, Hadji R, Baali F, Fahdi C, Hanni A (2012) Geochemical characterization of groundwater from shallow aquifer surrounding Fetzara Lake NE Algeria. Arabian Journal of Geosciences 5(1):1–13

    Google Scholar 

  74. Saadali B, Zerrouki H, Hamzi A, Bouhdid C, Khiari A (2019) Geochemical assessment of water quality and its suitability for agricultural use in the Djedra wadi subwatershed, northeast Algeria. Euro-Mediterranean Journal for Environmental Integration 4(1):33

    Google Scholar 

  75. Schrab GE, Brown KW, Donnelly KC (1993) Acute and genetic toxicity of municipal landfill leachate. Water, Air, and Soil Pollution 69(1-2):99–112

    Google Scholar 

  76. Senese V, Boriani E, Baderna D, Mariani A, Lodi M, Finizio A, Testa S, Benfenati E (2010) Assessing the environmental risks associated with contaminated sites: definition of an ecotoxicological classification index for landfill areas (ECRIS). Chemosphere 80(1):60–66

    Google Scholar 

  77. Senesi N (1993) Organic pollutant migration in soils as affected by soil organic matter. Molecular and mechanistic aspects. In: Migration and fate of pollutants in soils and subsoils. Springer, Berlin, Heidelberg, pp 47–74

    Google Scholar 

  78. Slaine DD, Pehme PE, Hunter JA, Pullan SE, Greenhouse JP, Ward SH (1990) Mapping overburden stratigraphy at a proposed hazardous waste facility using shallow seismic reflection methods. Geotechnical and environmental geophysics 2:273–280

    Google Scholar 

  79. Slater LD, Lesmes D (2002) IP interpretation in environmental investigations. Geophysics 67(1):77–88

    Google Scholar 

  80. Soupios P, Papadopoulos N, Papadopoulos I, Kouli M, Vallianatos F, Sarris A, Manios T (2007) Application of integrated methods in mapping waste disposal areas. Environ Geol 53(3):661–675

    Google Scholar 

  81. Takigami H, Matsui S, Matsuda T, Shimizu Y (2002) The Bacillus subtilis rec-assay: a powerful tool for the detection of genotoxic substances in the water environment. Prospect for assessing potential impact of pollutants from stabilized wastes. Waste Management 22(2):209–213

    Google Scholar 

  82. Tamani F, Hadji R, Hamad A, Hame DY (2019) Integrating remotely sensed and GIS data for the detailed geological mapping in semi-arid regions: case of Youks les Bains Area, Tebessa Province, NE Algeria. Geotechnical and Geological Engineering:1–11

  83. Toufexi E, Tsarpali V, Efthimiou I, Vidali MS, Vlastos D, Dailianis S (2013) Environmental and human risk assessment of landfill leachate: an integrated approach with the use of cytotoxic and genotoxic stress indices in mussel and human cells. Journal of hazardous materials 260:593–601

    Google Scholar 

  84. Ustra AT, Elis VR, Mondelli G, Zuquette LV, Giacheti HL (2012) Case study: a 3D resistivity and induced polarization imaging from downstream a waste disposal site in Brazil. Environmental Earth Sciences 66(3):763–772

    Google Scholar 

  85. Yoon J, Lee K, Kwon B, Han W (2003) Geoelectrical surveys of the Nanjido waste landfill in Seoul, Korea. Environmental Geology 43(6):654–666

    Google Scholar 

  86. Zeqiri RR, Riheb H, Karim Z, Younes G, Mania B, Aniss M (2019) Analysis of safety factor of security plates in the mine “Trepça” Stantërg. Mining Science 26:21

    Google Scholar 

  87. Zerrouki H, Hafid F, Lassaad G, Djabri L (2013) Aperçu géomorphologique et hydrologique de la grotte de Bouakkous (Hammamet-Tébessa, Alégrie). Synthèse: Revue des Sciences et de la Technologie 26(1):112–117

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous reviewers for their valuable comments on the manuscript. The authors are indebted to the SOMIPHOS laboratory, Bir El Ater, Tebessa, Algeria, for the help in analyzing water and soil samples.

Funding

This study was supported by the Water and environment laboratory, University of Tebessa, Algeria, the International Association of Water Resources in the Southern Mediterranean Basin-Tunisia, and the managers of the TLC.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Riheb Hadji.

Additional information

Responsible Editor: Narasimman Sundararajan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brahmi, S., Baali, F., Hadji, R. et al. Assessment of groundwater and soil pollution by leachate using electrical resistivity and induced polarization imaging survey, case of Tebessa municipal landfill, NE Algeria. Arab J Geosci 14, 249 (2021). https://doi.org/10.1007/s12517-021-06571-z

Download citation

Keywords

  • ERT
  • IP
  • GIS
  • Electrical conductivity
  • Vulnerability