Heavy metal concentration and ecological risk assessment in surface sediments of Dal Lake, Kashmir Valley, Western Himalaya

Abstract

Lake systems act as a significant source of freshwater supply for the local population living in the Kashmir Valley. The water level in Kashmir Himalayan lakes is predominantly controlled by melt water generated from seasonal snowmelt and high-altitude glaciers. Heavy metal contamination poses a serious threat of vulnerability to these freshwater ecosystems. To evaluate the heavy metal status and their risk in lake sediments, surface sediment samples collected from Dal Lake located in Kashmir Valley, NW Himalaya were analyzed for spatial variations and estimating pollution levels of selected heavy metals. Geo-accumulation index (Igeo) and enrichment factor (EF) revealed that the sediments were moderately enriched in Cr, Ni, Cu, Zn, Pb, Fe, and Mn. The Pollution Load Index (PLI) indicates progressive lake degradation from margins towards the central parts of the lake. Relatively higher contents of total organic carbon (TOC) and nitrogen indicate eutrophic status of this lake basin. Most of the sediments exhibited C/N ratio of < 4, suggesting large in situ organic matter (OM) production possibly due to high nitrification. The results highlight that the anthropogenic activities had a significant impact in altering the lake environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abad-Valle P, Alvarez-Ayuso E, Murciego A (2015) Evaluation of ferrihydrite as amendment to restore an arsenic-polluted mine soil. Environ Sci Pollut Res 22:6778–6788

    Article  Google Scholar 

  2. Achyuthan H, Lone AM, Shah RA, Fousiya AA (2020) Climate, C/N ratio and organic matter accumulation: An overview of examples from Kashmir Himalayan Lakes. In: Dimri A, Bookhagen B, Stoffel M, Yasunari T (eds) Himalayan Weather and Climate and their Impact on the Environment. Springer, Cham, pp 185–203. https://doi.org/10.1007/978-3-030-29684-1_11

  3. Algül F, Beyhan M (2020) Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Sci Rep 10:11782. https://doi.org/10.1038/s41598-020-68833-2

    Article  Google Scholar 

  4. Babeesh C, Lone A, Achyuthan A (2017) Geochemistry of Manasbal lake sediments, Kashmir: weathering, provenance and tectonic setting. J Geol Soc India 89:563–572. https://doi.org/10.1007/s12594-017-0645-4

    Article  Google Scholar 

  5. Babeesh C, Achyuthan H, Resmi M, Nautiyal CM, Shah RA (2019) Late Holocene paleoenvironmental changes inferred from Manasbal Lake sediments, Kashmir Valley, India. Quat Int 507:156–171

    Article  Google Scholar 

  6. Badar B, Romshoo SA, Khan MA (2013) Modelling catchment hydrological responses in a Himalayan Lake as a function of changing land use and land cover. J Eart Syst Sci 122:433–449. https://doi.org/10.1007/s12040-013-0285-z

    Article  Google Scholar 

  7. Bhatt DK (1982) A review of the stratigraphy of the Karewa Group (Pliocene/Quaternary), Kashmir. Man and Environment 6:46e55

    Google Scholar 

  8. Boyle J, Rose NL, Appleby PG, Birks HJB (2004) Recent environmental change and human impact on Svalbard: the lake sediment geochemical record. J Paleolimnol 31:515–530. https://doi.org/10.1023/B:JOPL.0000022549.07298.6e

    Article  Google Scholar 

  9. Dong S, Li Z, Chen Q, Wei Z (2018) Total organic carbon and its environmental significance for the surface sediments in groundwater recharged lakes from the Badain Jaran Desert Northwest China. J Limnol 77(1):121–129. https://doi.org/10.4081/jlimnol.2017.1667

    Article  Google Scholar 

  10. Dixit Y, Tandon SK (2016) Hydroclimatic variability on the Indian-subcontinent in the past millennium: review and assessment. Eart Sci Rev 161:1–15. https://doi.org/10.1016/j.earscirev.2016.08.001

    Article  Google Scholar 

  11. Goher ME, Farhat HI, Abdo MH, Salem SG (2014) Metal pollution assessment in the surface sediment of Lake Nasser, Egypt. The Egypt J Aquat Res 40(3):213–224

    Article  Google Scholar 

  12. Hakanson L (1980) An ecological risk index for aquatic pollution controls a sedimentological approach. Water Res 14(8):975–1001

    Article  Google Scholar 

  13. Hou D, Al-Tabbaa A, Chen H, Mamic I (2014) Factor analysis and structural equation modeling of sustainable behaviour in contaminated land remediation. Journal of Cleaner Production 84:439–449. https://doi.org/10.1016/j.jclepro.2014.01.054

    Article  Google Scholar 

  14. Iqbal J, Saleem M, Shah MH (2016) Spatial distribution, environmental assessment and source identification of metals content in surface sediments of freshwater reservoir, Pakistan. Geochemistry 76:171–177. https://doi.org/10.1016/j.chemer.2016.02.002

    Article  Google Scholar 

  15. Jeelani G, Shah AQ (2006) Geochemical characteristics of water and sediment from the Dal Lake, Kashmir Himalaya: constraints on weathering and anthropogenic activity. Environ Geol 50:112–123. https://doi.org/10.1007/s00254-005-0168-y

    Article  Google Scholar 

  16. Jeelani G, Lone SA, Nisa AU, Mukherjee A, Deshpande RD (2020) Sources and processes of groundwater arsenic mobilization in upper Jhelum basin. Western Himalayas J Hydrol 591:125292. https://doi.org/10.1016/j.jhydrol.2020.125292

    Article  Google Scholar 

  17. Johnson TC, Evans JE, Eisenreich SJ (1982) Total organic carbon in Lake Superior sediments: comparisons with hemipelagic and pelagic marine environments 1. Limnol Oceanograph 27(3):481–491

    Article  Google Scholar 

  18. Kango RA, Dubey KP, Zutshi D (1987) Sediment chemistry of Kashmir Himalayan lakes: clay mineralogy. Chemical Geol 64:121–126. https://doi.org/10.1016/0009-2541(87)90157-4

    Article  Google Scholar 

  19. Kaul V, Hando VK, Raina R (1980) Physico-chemical characteristics of Nilnag- Ahigh altitude forest lake in Kashmir and its comparison with the valley lakes. Proceed Ind Nat Sci Acad 46:528–541

    Google Scholar 

  20. Krumbein WC, Petijohn FJ (1938) Manual of sedimentary petrography. Appleton Century-Crofts, Inc, New York, p 549

  21. Lone A, Babeesh C, Achyuthan H, Chandra R (2017a) Evaluation of environmental status and geochemical assessment of sediments, Manasbal Lake, Kashmir, India. Arab J Geosci 10:1–18

  22. Lone A, Fousiya AA, Shah R, Achyuthan H (2018a) Reconstruction of paleoclimate and environmental fluctuations since the early Holocene period using organic matter and C:N proxy records: a review. J Geol Soc Ind 91:209–214. https://doi.org/10.1007/s12594-018-0837-60

  23. Lone A, Achyuthan H, Shah RA, Sangode SJ, Fousiya AA (2018b) Environmental magnetism and heavy metal assemblages in lake bottom sediments of Anchar, Srinagar, NW Himalaya. India Internat j environment res 12:489–502. https://doi.org/10.1007/s41742-018-0108-9

  24. Lone AM, Shah RA, Achyuthan H, Fousiya AA (2018c) Geochemistry, spatial distribution and environmental risk assessment of the surface sediments: Anchar Lake. Kashmir Valley. India Environment Eart Sci 77. https://doi.org/10.1007/s12665-018-7242-8

  25. Lone AM, Shah RA, Achyuthan H, Rafiq M (2018d) Source identification of organic matter using C/N ratio in freshwater lakes of Kashmir Valley, Western Himalaya, India. Himal Geol 39(1):101–114

  26. Lone AM, Achyuthan H, Shah RA, Sangode SJ, Kumar P, Chopra S, Sharma R (2019a) Paleoenvironmental shifts spanning the last ~6000 years and recent anthropogenic controls inferred from a high-altitude temperate lake: Anchar Lake. NW Himalaya The Holocene 30:23–36. https://doi.org/10.1177/0959683619865599

  27. Lone AM, Achyuthan H, Chakraborty S, Metya A, Datye A, Kripalani RH, Fousiya AA (2020) Controls on the isotopic composition of daily precipitation characterized by dual moisture transport pathways at the monsoonal margin region of North- Western India controls on the isotopic composition of daily precipitation characterized by dual moisture transport pathways at the monsoonal margin region of North- Western India. J Hydrol 588:125106. https://doi.org/10.1016/j.jhydrol.2020.125106

    Article  Google Scholar 

  28. Lone SA, Jeelani G, Deshpande RD (2017b) Evaluating the sensitivity of glacier to climate by using stable water isotopes and remote sensing. Environ Earth Sci 76:598. https://doi.org/10.1007/s12665-017-6937-6

  29. Lone SA, Jeelani G, Deshpande RD, Mukherjee A (2019b) Stable isotope (δ18O and δD) dynamics of precipitation in a high altitude Himalayan cold desert and its surroundings in Indus river basin. Ladakh Atmos Res 221:46–57. https://doi.org/10.1016/j.atmosres.2019.01.025

  30. Mahapatra DM, Chanakya HN, Ramachandra TV (2011) C:N ratio of sediments in a sewage fed urban lake. International J Geol 5(3):86–92

    Google Scholar 

  31. Matter M, Anselmetti F, Jordanoska B, Wagner B, Wessels M, Wüest A (2010) Carbonate sedimentation and effects of eutrophication observed at the Kališta subaquatic springs in Lake Ohrid (Macedonia). Biogeosciences 7(11):3755–3767

    Article  Google Scholar 

  32. Meyers AP, Ishiwatari R (1993) Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments. Organ Geochem 20:867–900. https://doi.org/10.1016/0146-6380(93)90100-P

    Article  Google Scholar 

  33. Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, physical and geochemical methods, vol 2. Kluwer Academic Publishers, Dordrecht, pp 239–265. https://doi.org/10.1007/0-306-47669-X

    Google Scholar 

  34. Middleton GV (1976) Hydraulic interpretation of sand size distributions. J Geol 84(4):405–426

    Article  Google Scholar 

  35. Mir IA, Mir RA (2019) Geochemistry of surface sediments in parts of Bandipora–Ganderbal areas, Kashmir Valley, Western Himalaya: implications for provenance and weathering. Journal of Earth System Sciences 128:223. https://doi.org/10.1007/s12040-019-1248-9

    Article  Google Scholar 

  36. Muller G (1979) Schwermetalle in den sediments des Rheins-Veranderungen seitt. Umschau 79:778–783

    Google Scholar 

  37. Najar A, Basheer A (2012) Assessment of seasonal variation in water quality of Dal Lake (Kashmir, India) using multivariate statistical techniques. Water Pollution XI 164:123–134. https://doi.org/10.2495/WP120111

    Article  Google Scholar 

  38. Qayoom I, Balkhi MH, Mukhtar M (2018) Assessment of dimethoate residues from dal Lake of Jammu and Kashmir&nbsp;India. Chemical Science Review and Letters 7(26):578–581

    Google Scholar 

  39. Rashid SA, Ganai JA, Masoodi A (2015) Major and trace element geochemistry of lake sediments, India: implications for weathering and climate control. Arabian Jour Geosci 8:5677–5684

    Article  Google Scholar 

  40. Rather IA, Dar AQ (2020) Assessing the impact of land use and land cover dynamics on water quality of Dal Lake, NW Himalaya. India. Appl Water Sci 10:219. https://doi.org/10.1007/s13201-020-01300-5

    Article  Google Scholar 

  41. Romshoo SA, Muslim M (2011) Geospatial modeling for assessing the nutrient load of a Himalayan Lake. Environ Earth Sci 64:1269–1282. https://doi.org/10.1007/s12665-011-0944-9

    Article  Google Scholar 

  42. Sakan SM, Djordjevic DS, Manojlovic DD, Polic PS (2009) Assessment of heavy metal pollutants accumulation in the Tisza river sediments. J Environm Manag 90:3382–3390. https://doi.org/10.1016/j.jenvman.2009.05.013

    Article  Google Scholar 

  43. Saleem M, Jeelani G, Shah RA (2015) Hydrogeochemistry of Dal Lake and the potential for present, future management by using facies, ionic ratios, and statistical analysis. Environm Eart Sci 74:3301–3313. https://doi.org/10.1007/s12665-015-4361-3

    Article  Google Scholar 

  44. Saleem M, Jeelani G (2016) Anthropogenic induced evolution of chemical quality of water in Dal Lake, Srinagar. J Res Develop 16:69–80

    Google Scholar 

  45. Saleem M, Jeelani G (2017) Geochemical, isotopic and hydrological mass balance approaches to constrain the lake water–groundwater interaction in Dal Lake Kashmir Valley. Environmen Eart Sci 76:533. https://doi.org/10.1007/s12665-017-6865-5

    Article  Google Scholar 

  46. Saluja R, Garg JK (2017) Trophic state assessment of Bhindawas Lake, Haryana. India. Environ Monit Assess 189:32. https://doi.org/10.1007/s10661-016-5735-z

    Article  Google Scholar 

  47. Sarah S, Jeelani G, Ahmed S (2011) Assessing variability of water quality in a groundwater-fed perennial lake of Kashmir Himalayas using linear geostatistics. J Eart Sys Sci 120:399–411. https://doi.org/10.1007/s12040-011-0081-6

    Article  Google Scholar 

  48. Sarkar S, Prakasam M, Upasana S, Bhushan R, Gaury PK, Meena NK (2016) Rapid sedimentation history of Rewalsar Lake, Lesser Himalaya, India during the last fifty years-estimated using Cs and Pb dating techniques: a comparative study with other North-Western Himalayan Lakes. Himal Geol 37:1–7

    Google Scholar 

  49. Shah RA, Achyuthan H, Lone AM, Ramanibai R (2017) Diatoms, spatial distribution and physicochemical characteristics of Wular Lake sediments, Kashmir Valley, Kashmir. J Geol Soc Ind 90:159–168. https://doi.org/10.1007/s12594-017-0694-8

    Article  Google Scholar 

  50. Shah RA, Lone SA (2019) Hydrogeomorphological mapping using geospatial techniques for assessing the groundwater potential of Rambiara river basin Western Himalayas. Appl Water Sci 9:64. https://doi.org/10.1007/s13201-019-0941-9

    Article  Google Scholar 

  51. Shah RA, Achyuthan H, Sangode SJ, Lone AM, Rafiq M (2020a) Mineral magnetic and geochemical mapping of the Wular Lake sediment, Kashmir Valley, NW Himalaya. Aquat Geochem 26:31–52. https://doi.org/10.1007/s10498-019-09364-9

  52. Shah RA, Achyuthan H, Lone AM, Kumar S, Kumar P, Sharma R, Amir M, Singh AK, Dash C (2020b) Holocene palaeoenvironmental records from the high-altitude Wular Lake. Western Himalayas The Holocene 30:733–743. https://doi.org/10.1177/0959683619895592

  53. Shah RA, Achyuthan H, Lone AM, Kumar P, Ali A, Rahman A (2020c) Palaeoenvironment shifts during last ~500 years and eutrophic evolution of the Wular Lake, Kashmir Valley. India Limnol 22:111–120. https://doi.org/10.1007/s10201-020-00639-7

  54. Shah RA, Achyuthan H, Lone AM, Lone SA, Malik SM (2020d) Environmental risk assessment of lake surface sediments using trace elements: a case study of the Wular Lake. J Geol Soc Ind 95:145–151. https://doi.org/10.1007/s12594-020-1403-6

  55. Sheela AM, Letha J, Joseph S, Thomas J (2012) Assessment of heavy metal contamination in coastal lake sediments associated with urbanization: Southern Kerala, India. Lakes and Reservoirs: Res Manag 17(2):97–112

    Article  Google Scholar 

  56. Sheikh JA, Jeelani G, Gavali RS, Shah AR (2014) Weathering and anthropogenic influences on the water and sediment chemistry of Wular Lake, Kashmir Himalaya. Environ Earth Sci 6:2837–2846. https://doi.org/10.1007/s12665-013-2661-z

    Article  Google Scholar 

  57. Shirani M, Afzali KN, Jahan S, Strezov V, Soleimani-Sardo M (2020) Pollution and contamination assessment of heavy metals in the sediments of Jazmurian playa in Southeast Iran. Sci Rep 10:4775. https://doi.org/10.1038/s41598-020-61838-x

    Article  Google Scholar 

  58. Sun D, Bloemendal J, Rea DK, Vandenberghe J, Jiang F, An Z, Su R (2002) Grain-size distribution function of polymodal sediments in hydraulic and Aeolian environments, and numerical partitioning of the sedimentary components. Sed Geol 152(3–4):263–277

    Article  Google Scholar 

  59. Tang W, Shan B, Zhang H, Zhang W, Zhao Y, Ding Y, Rong N, Zhu X (2014) Heavy metal contamination in the surface sediments of representative limnetic ecosystems in eastern China. Scientific Reports 4:7152. https://doi.org/10.1038/srep07152

    Article  Google Scholar 

  60. Tomlinson DC, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolander Meeresunters 33:566–575. https://doi.org/10.1007/BF02414780

    Article  Google Scholar 

  61. Van Andel JH, Postma H (1954) Recent sediments of Gulf of Paria, reports of Orinco shelf expedition. North Holland Publishing Co., Amsterdam

    Google Scholar 

  62. Vass KK (1980) On the trophic status and conservation of Kashmir Lakes. Hydrobiologia 68:9–15. https://doi.org/10.1007/BF00009058

    Article  Google Scholar 

  63. Wang L, Wang Y, Zhang W, Xu C, An Z (2014) Multivariate statistical techniques for evaluating and identifying the environmental significance of heavy metal contamination in sediments of the Yangtze River, China. Environmental Earth Science 71:1183–1193. https://doi.org/10.1007/s12665-013-2522-9

    Article  Google Scholar 

  64. Wedepohl KH (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta 59:1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2

    Article  Google Scholar 

  65. Xiao J, Chang Z, Fan J, Zhou L, Zhai D, Wen R, Qin X (2012) The link between grain-size components and depositional processes in a modern clastic lake. Sedimentol 59(3):1050–1062

    Article  Google Scholar 

  66. Xiao J, Fan J, Zhou L, Zhai D, Wen R, Qin X (2013) Amodel for linking grain-size component to lake level status of a modern clastic lake. J Asian Earth Sci 69:149–158

    Article  Google Scholar 

  67. Xiao HF, Zhang S, Guan Y, Lu S, Gao Y, Sun Q, Xu H, Li M, Wang J, Pei X (2014) Assessment of potential risks associated with heavy metal contamination in sediment in Aobaopao Lake, China, determined from sediment cores. Ecotoxicol 23:527–537. https://doi.org/10.1007/s10646-014-1220-z

    Article  Google Scholar 

  68. Xu Y, Wu Y, Han J, Li P (2017) The current status of heavy metal in lake sediments from China: pollution and ecological risk assessment. Ecol evol 7(14):5454–5466

    Article  Google Scholar 

  69. Yao ZG, Bao ZY, Gao P (2006) Environmental assessments of trace metals in sediments from Dongting Lake, Central China. J China Univ Geosci 17:310–319. https://doi.org/10.1016/S1002-0705(07)60004-1

    Article  Google Scholar 

  70. Yu ZT, Wang XJ, Zhang EL, Zhao CY, Liu XQ (2015) Spatial distribution and sources of organic carbon in the surface sediment of Bosten Lake, China. Biogeosciences 12(22):6605–6615

    Article  Google Scholar 

  71. Zhang C (2006) Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environment Poll 142:501–511. https://doi.org/10.1016/j.envpol.2005.10.028

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous reviewers for their constructive comments that helped in improving the quality of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rayees Ahmad Shah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Amjad Kallel

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shah, R.A., Achyuthan, H., Krishnan, H. et al. Heavy metal concentration and ecological risk assessment in surface sediments of Dal Lake, Kashmir Valley, Western Himalaya. Arab J Geosci 14, 187 (2021). https://doi.org/10.1007/s12517-021-06504-w

Download citation

Keywords

  • Dal Lake
  • Eutrophication
  • Organic elements
  • Trace metals
  • Limnology