Multiscale drought monitoring and comparison using remote sensing in a Mediterranean arid region: a case study from west-central Morocco

Abstract

During the last few decades, the frequency of drought has significantly increased in Morocco especially for arid and semi-arid regions, leading to a rising of several environmental and economic issues. In this work, we analyse the spatial and temporal relationship between vegetation activity and drought severity at different moments of the year, across an arid area in the western Haouz plain in Morocco. Our approach is based on the use of a set of more than 30 satellite Landsat images acquired for the period from 2008 to 2017, combined with the Standardized Precipitation Index (SPI) at different time scales and Standardized Water-Level Index (SWI). The Mann-Kendall and Sen’s slope methods were used to estimate SPI trends, and the Pearson correlation between NDVI and SPI was calculated to assess the sensitivity of vegetation types to drought. Results demonstrated that SPI experienced an overall downward trend in the Chichaoua-Mejjate basin, except for SPI3 in summer. The vegetation activity is largely controlled by the drought with clear differences between seasons and time scales at which drought is assessed. Positive correlations between the NDVI and SPI are dominant across the entire study area except in June when almost half of correlations is negative. More than 80% of the study domains exhibit a correlation exceeding 0.4 for SPI3 and SPI6 in March. Importantly, this study stresses that the irrigation status of land can introduce some uncertainties on the remote sensing drought monitoring. A weak correlation between the SPI and the SWI was observed at different time scale. The fluctuations of the piezometric levels are strongly affected by the anthropogenic overexploitation of aquifers and proliferation of irrigated plots.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Ait Brahim Y, Saidi MEM, Kouraiss K et al (2017) Analysis of observed climate trends and high resolution scenarios for the 21st century in Morocco. J Mater Env Sci 8:1375–1384

    Google Scholar 

  2. Almazroui M, Islam MN (2019) Coupled model inter-comparison project database to calculate drought indices for Saudi Arabia: a preliminary assessment. Earth Syst Environ 3:419–428. https://doi.org/10.1007/s41748-019-00126-9

    Article  Google Scholar 

  3. Ambroggi R, Thuille G (1952) Les plaines et les plateaux du domaine marginal de l’Atlas, Haouz de Marrakech. In: Hydrogéologie du Maroc. Notes mémoire Services Géologique, Maroc

  4. Amossé C, Jeuffroy M-H, David C (2013) Relay intercropping of legume cover crops in organic winter wheat: effects on performance and resource availability. F Crop Res 145:78–87. https://doi.org/10.1016/j.fcr.2013.02.010

    Article  Google Scholar 

  5. Benabdelouahab T, Gadouali F, Boudhar A, Lebrini Y, Hadria R, Salhi A (2020) Analysis and trends of rainfall amounts and extreme events in the Western Mediterranean region. Theor Appl Climatol 141:309–320. https://doi.org/10.1007/s00704-020-03205-4

    Article  Google Scholar 

  6. Benassi M (2008) Drought and climate change in Morocco. Analysis of precipitation field and water supply. Options Méditérr 80:83–87

    Google Scholar 

  7. Bennaceur M, Gharbi MS, Paul R (1999) L’amélioration variétale et les autres actions contribuant à la sécurité alimentaire en Tunisie, en matière de céréales. Sécheresse (Montrouge) 10:27–33

    Google Scholar 

  8. Bhuiyan C (2004) Various drought indices for monitoring drought condition in Aravalli terrain of India. In: Proceedings of the XXth ISPRS Congress. Istanbul, Turkey, pp 12–23

    Google Scholar 

  9. Bijaber N, El Hadani D, Saidi M et al (2018) Developing a remotely sensed drought monitoring indicator for Morocco. Geosciences 8:55. https://doi.org/10.3390/geosciences8020055

    Article  Google Scholar 

  10. Bordi I, Sutera A (2001) Fifty years of precipitation: some spatially remote teleconnnections. Water Resour Manag 15:247–280. https://doi.org/10.1023/A:1013353822381

    Article  Google Scholar 

  11. Bouamri H, Boudhar A, Gascoin S, Kinnard C (2018) Performance of temperature and radiation index models for point-scale snow water equivalent (SWE) simulations in the Moroccan High Atlas Mountains. Hydrol Sci J 63:1844–1862. https://doi.org/10.1080/02626667.2018.1520391

    Article  Google Scholar 

  12. Boudhar A, Hanich L, Boulet G et al (2009) Evaluation of the snowmelt runoff model in the Moroccan High Atlas Mountains using two snow-cover estimates. Hydrol Sci J 54:1094–1113. https://doi.org/10.1623/hysj.54.6.1094

    Article  Google Scholar 

  13. Bhunia P, Das P, Maiti R (2020) Meteorological drought study through SPI in three drought prone districts of West Bengal, India. Earth Syst Environ 4:43–55. https://doi.org/10.1007/s41748-019-00137-6

    Article  Google Scholar 

  14. Bzioui M (2004) Rapport national 2004 sur les ressources en eau au Maroc. UN Water-Africa, Rabat

  15. Caccamo G, Chisholm LA, Bradstock RA, Puotinen ML (2011) Assessing the sensitivity of MODIS to monitor drought in high biomass ecosystems. Remote Sens Environ 115:2626–2639. https://doi.org/10.1016/j.rse.2011.05.018

    Article  Google Scholar 

  16. Caloiero T, Veltri S, Caloiero P, Frustaci F (2018) Drought analysis in Europe and in the Mediterranean basin using the standardized precipitation index. Water 10:1043. https://doi.org/10.3390/w10081043

    Article  Google Scholar 

  17. Dadaser-Celik F, Brezonik PL, Stefan HG (2008) Agricultural and environmental changes after irrigation management transfer in the Develi Basin, Turkey. Irrig Drain Syst 22:47–66. https://doi.org/10.1007/s10795-007-9032-4

    Article  Google Scholar 

  18. De Jalón SG, Iglesias A, Cunningham R, Díaz JIP (2014) Building resilience to water scarcity in southern Spain: a case study of rice farming in Doñana protected wetlands. Reg Environ Chang 14:1229–1242. https://doi.org/10.1007/s10113-013-0569-5

    Article  Google Scholar 

  19. De Keersmaecker W, Lhermitte S, Hill MJ et al (2017) Assessment of regional vegetation response to climate anomalies: a case study for Australia using GIMMS NDVI time series between 1982 and 2006. Remote Sens 9:34. https://doi.org/10.3390/rs9010034

    Article  Google Scholar 

  20. Dhakar R, Sehgal VK, Pradhan S (2013) Study on inter-seasonal and intra-seasonal relationships of meteorological and agricultural drought indices in the Rajasthan State of India. J Arid Environ 97:108–119. https://doi.org/10.1016/j.jaridenv.2013.06.001

    Article  Google Scholar 

  21. Dikshit A, Pradhan B, Alamri AM (2020a) Short-term spatio-temporal drought forecasting using random forests model at New South Wales, Australia. Appl Sci 10:4254. https://doi.org/10.3390/app10124254

    Article  Google Scholar 

  22. Dikshit A, Pradhan B, Alamri AM (2020b) Temporal hydrological drought index forecasting for New South Wales, Australia using machine learning approaches. Atmosphere 11:585. https://doi.org/10.3390/atmos11060585

    Article  Google Scholar 

  23. Duchemin B, Hadriab R, Errakib S et al (2006) Monitoring wheat phenology and irrigation in Central Morocco: on the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric Water Manag 79:1–27. https://doi.org/10.1016/j.agwat.2005.02.013

    Article  Google Scholar 

  24. El Faïz M (1999) Les aménagements hydro-agricoles dans le grand Haouz de Marrakech: histoire d’une idée. in Usages, stratégies et cultures de l’eau en Méditerranée Occidentale: tensions, conflits et régulations, Séminaire d’Avignon, l’Harmattan, Paris, 60–78

  25. El Ibrahimi A, Abdennasser B, Couscous A, El Kamel T (2015) Étude de l’impact des variations pluviométriques sur les fluctuations piézométriques des nappes phréatiques superficielles en zone semi-aride (cas de la plaine de Saïss, Nord du Maroc). Euro Sc J 11:64–80

    Google Scholar 

  26. Ezzahar J, Chehbouni A, Hoedjes JCB, Er-Raki S, Chehbouni A, Boulet G, Bonnefond JM, de Bruin HAR (2007) The use of the scintillation technique for monitoring seasonal water consumption of olive orchards in a semi-arid region. Agric Water Manag 89:173–184. https://doi.org/10.1016/j.agwat.2006.12.015

    Article  Google Scholar 

  27. Ezzine H, Bouziane A, Ouazar D (2014) Seasonal comparisons of meteorological and agricultural drought indices in Morocco using open short time-series data. Int J Appl Earth Obs Geoinf 26:36–48. https://doi.org/10.1016/j.jag.2013.05.005

    Article  Google Scholar 

  28. Fink AH (2010) Atmosphere. In: Impacts of global change on the hydrological cycle in west and Northwest Africa. Springer-Verlag, Berlin Heidelberg, pp 132–163. https://doi.org/10.1007/978-3-642-12957-5

    Google Scholar 

  29. Fniguire F, Laftouhi NE, Saidi ME, Zamrane Z, el Himer H, Khalil N (2017) Spatial and temporal analysis of the drought vulnerability and risks over eight decades in a semi-arid region (Tensift basin: Morocco). Theor Appl Climatol 130:321–330. https://doi.org/10.1007/s00704-016-1873-z

    Article  Google Scholar 

  30. FAO: Food and Agricultural Organization (2018) Food and Agriculture data, available from: http://www.fao.org, last access: 1 October 2018

  31. Gao X, Giorgi F (2008) Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Glob Planet Chang 62:195–209. https://doi.org/10.1016/j.gloplacha.2008.02.002

    Article  Google Scholar 

  32. García-Haro FJ, Campos-Taberner M, Sabater N, Belda F, Moreno A, Gilabert MA, Martínez B, Pérez-Hoyos A, Meliá J (2014) Vegetation vulnerability to drought in Spain. Rev Teledetección:29–38. https://doi.org/10.4995/raet.2014.2283

  33. Gessner U, Naeimi V, Klein I, Kuenzer C, Klein D, Dech S (2013) The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia. Glob Planet Chang 110:74–87. https://doi.org/10.1016/j.gloplacha.2012.09.007

    Article  Google Scholar 

  34. Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe A (2018) The spatio-temporal meteorological drought characteristics using the Standardized Precipitation Index (SPI) in Raya and its environs, Northern Ethiopia. Earth Syst Environ 2:281–292. https://doi.org/10.1007/s41748-018-0057-7

    Article  Google Scholar 

  35. González-Hidalgo JC, Vicente-Serrano SM, Peña-Angulo D, Salinas C, Tomas-Burguera M, Beguería S (2018) High-resolution spatio-temporal analyses of drought episodes in the western Mediterranean basin (Spanish mainland, Iberian Peninsula). Acta Geophys 66:381–392. https://doi.org/10.1007/s11600-018-0138-x

    Article  Google Scholar 

  36. Gopinath G, Ambili GK, Gregory SJ, Anusha CK (2015) Drought risk mapping of south-western state in the Indian peninsula–a web based application. J Environ Manag 161:453–459. https://doi.org/10.1016/j.jenvman.2014.12.040

    Article  Google Scholar 

  37. Gouveia CM, Trigo RM, Beguería S, Vicente-Serrano SM (2017) Drought impacts on vegetation activity in the Mediterranean region: an assessment using remote sensing data and multi-scale drought indicators. Glob Planet Chang 151:15–27. https://doi.org/10.1016/j.gloplacha.2016.06.011

    Article  Google Scholar 

  38. Hadri A, Saidi ME, Saouabe T et al (2020) Temporal trends in extreme temperature and precipitation events in an arid area: case of Chichaoua Mejjate region (Morocco). J Water Clim Change:jwc2020234. https://doi.org/10.2166/wcc.2020.234

  39. Hadria R, Boudhar A, Ouatiki H et al (2019) Combining use of TRMM and ground observations of annual precipitations for meteorological drought trends monitoring in Morocco. Am J Remote Sens 7:25–34. https://doi.org/10.11648/j.ajrs.20190702.11

    Article  Google Scholar 

  40. Heim RR Jr (2002) A review of twentieth-century drought indices used in the United States. Bull Am Meteorol Soc 83:1149–1166. https://doi.org/10.1175/1520-0477-83.8.1149

    Article  Google Scholar 

  41. Herrmann SM, Didan K, Barreto-Munoz A, Crimmins MA (2016) Divergent responses of vegetation cover in southwestern US ecosystems to dry and wet years at different elevations. Environ Res Lett 11:124005

    Article  Google Scholar 

  42. Hertig E, Tramblay Y (2017) Regional downscaling of Mediterranean droughts under past and future climatic conditions. Glob Planet Chang 151:36–48. https://doi.org/10.1088/1748-9326/11/12/124005

    Article  Google Scholar 

  43. Hoerling M, Eischeid J, Perlwitz J, Quan X, Zhang T, Pegion P (2012) On the increased frequency of Mediterranean drought. J Clim 25:2146–2161. https://doi.org/10.1175/JCLI-D-11-00296.1

    Article  Google Scholar 

  44. Jarlan L, Khabba S, Er-Raki S, le Page M, Hanich L, Fakir Y, Merlin O, Mangiarotti S, Gascoin S, Ezzahar J, Kharrou MH, Berjamy B, Saaïdi A, Boudhar A, Benkaddour A, Laftouhi N, Abaoui J, Tavernier A, Boulet G, Simonneaux V, Driouech F, el Adnani M, el Fazziki A, Amenzou N, Raibi F, el Mandour A, Ibouh H, le Dantec V, Habets F, Tramblay Y, Mougenot B, Leblanc M, el Faïz M, Drapeau L, Coudert B, Hagolle O, Filali N, Belaqziz S, Marchane A, Szczypta C, Toumi J, Diarra A, Aouade G, Hajhouji Y, Nassah H, Bigeard G, Chirouze J, Boukhari K, Abourida A, Richard B, Fanise P, Kasbani M, Chakir A, Zribi M, Marah H, Naimi A, Mokssit A, Kerr Y, Escadafal R (2015) Remote sensing of water resources in semi-arid Mediterranean areas: the joint international laboratory TREMA. Int J Remote Sens 36:4879–4917. https://doi.org/10.1080/01431161.2015.1093198

    Article  Google Scholar 

  45. Karrou M, Oweis T (2014) Assessment of the severity and impact of drought spells on rainfed cereals in Morocco. Afr J Agric Res 9:3519–3530

    Google Scholar 

  46. Kelley C, Ting M, Seager R, Kushnir Y (2012) Mediterranean precipitation climatology, seasonal cycle, and trend as simulated by CMIP5. Geophys Res Lett 39. https://doi.org/10.1029/2012GL053416

  47. Khan R, Gilani H, Iqbal N, Shahid I (2020) Satellite-based (2000–2015) drought hazard assessment with indices, mapping, and monitoring of Potohar plateau, Punjab, Pakistan. Environ Earth Sci 79:23. https://doi.org/10.1007/s12665-019-8751-9

    Article  Google Scholar 

  48. Lana X, Serra C, Burgueño A (2001) Patterns of monthly rainfall shortage and excess in terms of the standardized precipitation index for Catalonia (NE Spain). Int J Climatol A J R Meteorol Soc 21:1669–1691. https://doi.org/10.1002/joc.697

    Article  Google Scholar 

  49. Le Page M, Berjamy B, Fakir Y et al (2012) An integrated DSS for groundwater management based on remote sensing. The case of a semi-arid aquifer in Morocco. Water Resour Manag 26:3209–3230. https://doi.org/10.1007/s11269-012-0068-3

    Article  Google Scholar 

  50. Lebrini Y, Boudhar A, Hadria R, Lionboui H, Elmansouri L, Arrach R, Ceccato P, Benabdelouahab T (2019) Identifying agricultural systems using SVM classification approach based on phenological metrics in a semi-arid region of Morocco. Earth Syst Environ 3:277–288. https://doi.org/10.1007/s41748-019-00106-z

    Article  Google Scholar 

  51. Li Z, Zhou T, Zhao X, Huang K, Wu H, du L (2016) Diverse spatiotemporal responses in vegetation growth to droughts in China. Environ Earth Sci 75:55. https://doi.org/10.1007/s12665-015-4781-0

    Article  Google Scholar 

  52. Lloyd-Hughes B, Saunders MA (2002) A drought climatology for Europe. Int J Climatol A J R Meteorol Soc 22:1571–1592. https://doi.org/10.1002/joc.846

    Article  Google Scholar 

  53. Lorenzo-Lacruz J, Vicente-Serrano SM, González-Hidalgo JC, López-Moreno JI, Cortesi N (2013) Hydrological drought response to meteorological drought in the Iberian Peninsula. Clim Res 58:117–131. https://doi.org/10.3354/cr01177

    Article  Google Scholar 

  54. Lorenzo-Lacruz J, Vicente-Serrano SM, López-Moreno JI, Beguería S, García-Ruiz JM, Cuadrat JM (2010) The impact of droughts and water management on various hydrological systems in the headwaters of the Tagus River (Central Spain). J Hydrol 386:13–26. https://doi.org/10.1016/j.jhydrol.2010.01.001

    Article  Google Scholar 

  55. Loukas A, Vasiliades L (2004) Probabilistic analysis of drought spatiotemporal characteristics inThessaly region, Greece. Nat Hazards Earth Syst Sci 4:719–731. https://doi.org/10.5194/nhess-4-719-2004

    Article  Google Scholar 

  56. Masek JG, Vermote EF, Saleous NE, Wolfe R, Hall FG, Huemmrich KF, Gao F, Kutler J, Lim TK (2006) A Landsat surface reflectance dataset for North America, 1990-2000. IEEE Geosci Remote Sens Lett 3:68–72. https://doi.org/10.1109/LGRS.2005.857030

    Article  Google Scholar 

  57. Mathbout S, Lopez-Bustins JA, Royé D, Martin-Vide J, Bech J, Rodrigo FS (2018) Observed changes in daily precipitation extremes at annual timescale over the eastern Mediterranean during 1961–2012. Pure Appl Geophys 175:3875–3890. https://doi.org/10.1007/s00024-017-1695-7

    Article  Google Scholar 

  58. McKee TB (1995) Drought monitoring with multiple time scales. In: Proceedings of 9th Conference on Applied Climatology, Boston

  59. Merabti A, Martins DS, Meddi M, Pereira LS (2018) Spatial and time variability of drought based on SPI and RDI with various time scales. Water Resour Manag 32:1087–1100. https://doi.org/10.1007/s11269-017-1856-6

    Article  Google Scholar 

  60. Milewski A, Seyoum WM, Elkadiri R, Durham M (2020) Multi-scale hydrologic sensitivity to climatic and anthropogenic changes in northern Morocco. Geosciences 10:13

    Article  Google Scholar 

  61. Mishra Ashok K, Singh Vijay P (2010) A review of drought concepts [J]. J Hydrol 391:202–216

    Article  Google Scholar 

  62. Morell FJ, Lampurlanés J, Álvaro-Fuentes J, Cantero-Martínez C (2011) Yield and water use efficiency of barley in a semiarid Mediterranean agroecosystem: long-term effects of tillage and N fertilization. Soil Tillage Res 117:76–84

    Article  Google Scholar 

  63. Mu Q, Zhao M, Kimball JS, McDowell NG, Running SW (2013) A remotely sensed global terrestrial drought severity index. Bull Am Meteorol Soc 94:83–98

    Article  Google Scholar 

  64. Mustafa A, Rahman G (2018) Assessing the spatio-temporal variability of meteorological drought in Jordan. Earth Syst Environ 2:247–264. https://doi.org/10.1007/s41748-018-0071-9

    Article  Google Scholar 

  65. Nicholson SE, Tucker CJ, Ba MB (1998) Desertification, drought, and surface vegetation: an example from the west African Sahel. Bull Am Meteorol Soc 79:815–830

    Article  Google Scholar 

  66. Okin GS, Dong C, Willis KS, Gillespie TW, MacDonald GM (2018) The impact of drought on native southern California vegetation: remote sensing analysis using MODIS-derived time series. J Geophys Res Biogeosci 123:1927–1939

    Article  Google Scholar 

  67. Oroud IM (2018) Global warming and its implications on meteorological and hydrological drought in the southeastern Mediterranean. Environ Process 5:329–348

    Article  Google Scholar 

  68. Ouatiki H, Boudhar A, Ouhinou A, Arioua A, Hssaisoune M, Bouamri H, Benabdelouahab T (2019) Trend analysis of rainfall and drought over the Oum Er-Rbia River Basin in Morocco during 1970–2010. Arab J Geosci 12:128

    Article  Google Scholar 

  69. Ozelkan E, Chen G, Ustundag BB (2016) Multiscale object-based drought monitoring and comparison in rainfed and irrigated agriculture from Landsat 8 OLI imagery. Int J Appl Earth Obs Geoinf 44:159–170. https://doi.org/10.1016/j.jag.2015.08.003

    Article  Google Scholar 

  70. Ozkan B, Akcaoz H (2002) Impacts of climate factors on yields for selected crops in the southern Turkey. Mitig Adapt Strateg Glob Chang 7:367–380

    Article  Google Scholar 

  71. Paniagua LL, García-Martín A, Moral FJ, Rebollo FJ (2019) Aridity in the Iberian Peninsula (1960–2017): distribution, tendencies, and changes. Theor Appl Climatol 138:811–830

    Article  Google Scholar 

  72. Piras M, Mascaro G, Deidda R, Vivoni ER (2014) Quantification of hydrologic impacts of climate change in a Mediterranean basin in Sardinia, Italy, through high-resolution simulations. Hydrol Earth Syst Sci Discuss 11:8493–8535

    Google Scholar 

  73. Quenum GMLD, Klutse NAB, Dieng D, Laux P, Arnault J, Kodja JD, Oguntunde PG (2019) Identification of potential drought areas in West Africa under climate change and variability. Earth Syst Environ 3:429–444. https://doi.org/10.1007/s41748-019-00133-w

    Article  Google Scholar 

  74. Radfar M, Van Camp M, Walraevens K (2013) Drought impacts on long-term hydrodynamic behavior of groundwater in the tertiary–quaternary aquifer system of Shahrekord Plain, Iran. Environ Earth Sci 70:927–942. https://doi.org/10.1007/s12665-012-2182-1

    Article  Google Scholar 

  75. Ruf T (2017) L’accès à l’eau, une question de justice pluriscalaire. In: "Un défi pour la planète", IRD Éditions, pp 253–262. https://doi.org/10.4000/books.irdeditions.21441

    Google Scholar 

  76. Ruf T, Kleiche-Dray M (2018) Les eaux d’irrigation du Haouz de Marrakech: un siècle de confrontations des modèles de gestion publics, privés et communautaires. EchoGéo 43(43). https://doi.org/10.4000/echogeo.15258

  77. Rulinda CM, Dilo A, Bijker W, Stein A (2012) Characterising and quantifying vegetative drought in East Africa using fuzzy modelling and NDVI data. J Arid Environ 78:169–178. https://doi.org/10.1016/j.jaridenv.2011.11.016

    Article  Google Scholar 

  78. Salmon JM, Friedl MA, Frolking S, Wisser D, Douglas EM (2015) Global rain-fed, irrigated, and paddy croplands: a new high resolution map derived from remote sensing, crop inventories and climate data. Int J Appl Earth Obs Geoinf 38:321–334. https://doi.org/10.1016/j.jag.2015.01.014

    Article  Google Scholar 

  79. Schillinger WF, Schofstoll SE, Alldredge JR (2008) Available water and wheat grain yield relations in a Mediterranean climate. F Crop Res 109:45–49. https://doi.org/10.1016/j.fcr.2008.06.008

    Article  Google Scholar 

  80. Seager R, Osborn TJ, Kushnir Y, Simpson IR, Nakamura J, Liu H (2019) Climate variability and change of Mediterranean-type climates. J Clim 32:2887–2915. https://doi.org/10.1175/JCLI-D-18-0472.1

    Article  Google Scholar 

  81. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389. https://doi.org/10.1080/01621459.1968.10480934

    Article  Google Scholar 

  82. Simonneaux V, Le Page M, Helson D et al (2009) Estimation spatialisée de l’Evapotranspiration des cultures irriguées par télédétection. Application à la gestion de l’Irrigation dans la plaine du Haouz (Marrakech, Maroc). Sci Chang planétaires/Sécheresse 20:123–130

    Google Scholar 

  83. SINAN M, BOUSSETTA M, EL RHERARI A (2009) Changements climatiques: causes et conséquences sur le climat et les ressources en eau. Séminaire International sur le dessalement des eaux. Anafid J, 142

  84. Sippel S, Otto FEL (2014) Beyond climatological extremes-assessing how the odds of hydrometeorological extreme events in south-East Europe change in a warming climate. Clim Chang 125:381–398. https://doi.org/10.1007/s10584-014-1153-9

    Article  Google Scholar 

  85. Sousa PM, Trigo RM, Aizpurua P, Nieto R, Gimeno L, Garcia-Herrera R (2011) Trends and extremes of drought indices throughout the 20th century in the Mediterranean. Nat Hazards Earth Syst Sci 11:33–51. https://doi.org/10.5194/nhess-11-33-2011

    Article  Google Scholar 

  86. Speth P, Christoph M, Diekkrüger B (2010) Impacts of global change on the hydrological cycle in west and Northwest Africa. Springer-Verlag, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-12957-5

    Google Scholar 

  87. Strohmeier S, López López P, Haddad M, Nangia V, Karrou M, Montanaro G, Boudhar A, Linés C, Veldkamp T, Sterk G (2019) Surface runoff and drought assessment using global water resources datasets - from Oum Er Rbia Basin to the Moroccan country scale. Water Resour Manag 34:2117–2133. https://doi.org/10.1007/s11269-019-02251-6

    Article  Google Scholar 

  88. Theil H (1950) A rank-invariant method of linear and polynominal regression analysis (parts 1–3). In: Ned. Akad. Wetensch. Proc. Ser. A. pp. 1397–1412

  89. Tognetti R, Lasserre B, Di Febbraro M, Marchetti M (2019) Modeling regional drought-stress indices for beech forests in Mediterranean mountains based on tree-ring data. Agric For Meteorol 265:110–120. https://doi.org/10.1016/j.agrformet.2018.11.015

    Article  Google Scholar 

  90. Tramblay Y, Hertig E (2018) Modelling extreme dry spells in the Mediterranean region in connection with atmospheric circulation. Atmos Res 202:40–48. https://doi.org/10.1016/j.atmosres.2017.11.015

    Article  Google Scholar 

  91. Tucker CJ (1979) Monitoring the grasslands of the Sahel 1984-1985. Remote Sens Environ 8:127–150. https://doi.org/10.1080/01431168608948954

    Article  Google Scholar 

  92. Vermote E, Justice C, Claverie M, Franch B (2016) Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens Environ 185:46–56. https://doi.org/10.1016/j.rse.2016.04.008

    Article  Google Scholar 

  93. Vicente-Serrano SM (2007) Evaluating the impact of drought using remote sensing in a Mediterranean, semi-arid region. Nat Hazards 40:173–208. https://doi.org/10.1007/s11069-006-0009-7

    Article  Google Scholar 

  94. Vicente-Serrano SM, Azorin-Molina C, Peña-Gallardo M et al (2018) A high-resolution spatial ass essment of the impacts of drought variability on vegetation activity in Spain from 1981 to 2015. Nat Hazards Earth Syst Sci Discuss:1–52. https://doi.org/10.5194/nhess-2018-356

  95. Vicente-Serrano SM, Gouveia C, Camarero JJ, Begueria S, Trigo R, Lopez-Moreno JI, Azorin-Molina C, Pasho E, Lorenzo-Lacruz J, Revuelto J, Moran-Tejeda E, Sanchez-Lorenzo A (2013) Response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci 110:52–57 https://doi.org/10.1073/pnas.1207068110

    Article  Google Scholar 

  96. Vicente-Serrano SM, López-Moreno JI, Drumond A, Gimeno L, Nieto R, Morán-Tejeda E, Lorenzo-Lacruz J, Beguería S, Zabalza J (2011) Effects of warming processes on droughts and water resources in the NW Iberian Peninsula (1930− 2006). Clim Res 48:203–212. https://doi.org/10.3354/cr01002

    Article  Google Scholar 

  97. Wang H, Chen A, Wang Q, He B (2015) Drought dynamics and impacts on vegetation in China from 1982 to 2011. Ecol Eng 75:303–307. https://doi.org/10.1016/j.ecoleng.2014.11.063

    Article  Google Scholar 

  98. Wang XL (2008) Accounting for autocorrelation in detecting mean shifts in climate data series using the penalized maximal t or F test. J Appl Meteorol Climatol 47:2423–2444. https://doi.org/10.1175/2008JAMC1741.1

    Article  Google Scholar 

  99. Wang XL, Feng Y (2013) RHtestsV4 user manual, vol 17. Climate Research Division Atmospheric Science and Technology Directorate Science and Technology Branch, Environment Canada Toronto, Ontario

    Google Scholar 

  100. Wilhite DA (2000) Drought as a natural hazard: concepts and definitions. In: Wilhite DA (ed) Drought: a global assessment, natural hazards and disasters series. Routledge Publishers, London, pp 3–18

  101. Zargar A, Sadiq R, Naser B, Khan FI (2011) A review of drought indices. Environ Rev 19:333–349. https://doi.org/10.1139/a11-013

    Article  Google Scholar 

  102. Zittis G (2018) Observed rainfall trends and precipitation uncertainty in the vicinity of the Mediterranean, Middle East and North Africa. Theor Appl Climatol 134:1207–1230. https://doi.org/10.1007/s00704-017-2333-0

    Article  Google Scholar 

  103. Zkhiri W, Tramblay Y, Hanich L, Jarlan L, Ruelland D (2019) Spatiotemporal characterization of current and future droughts in the High Atlas basins (Morocco). Theor Appl Climatol 135:593–605. https://doi.org/10.1007/s00704-018-2388-6

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdessamad Hadri.

Additional information

Responsible Editor: Amjad Kallel

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hadri, A., Saidi, M.E.M. & Boudhar, A. Multiscale drought monitoring and comparison using remote sensing in a Mediterranean arid region: a case study from west-central Morocco. Arab J Geosci 14, 118 (2021). https://doi.org/10.1007/s12517-021-06493-w

Download citation

Keywords

  • Remote sensing
  • Drought
  • SPI
  • SWI
  • NDVI
  • Morocco