Study of Aeolian transfer of mineral dust from deserts to the territory of Georgia

Abstract

In this study, numerical simulations, together with remote sensing products, are used for the first time to study the transport of Aeolian dust from deserts to Georgia. The results of calculations performed by the Weather Research and Forecasting Chemistry model (WRF-Chem) from December 2017 to November 2018 showed that nine cases of dust transfer to the territory of Georgia were recorded. Two of them, which took place on March 22–24 and July 25–26, 2018, are modeled and discussed in this article. Comparison of the calculation results with the data of observations of PM10 particulate matter and satellite products of the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and the Moderate Resolution Imaging Spectroradiometer (MODIS) showed that the chosen WRF-Chem model satisfactorily simulates the transport of desert dust to the territory of Georgia in the complex orography of the Caucasus. In addition, Aeolian dust aerosol transported from deserts turned out to be a significant pollutant and influenced the climate in Georgia. Indeed, the calculations of the WRF-Chem model showed that during the period under study, dust was transferred to the territory of Georgia equally from the deserts of Africa, the Middle East, and Central (West) Asia. It should be noted that among them, the transfer of dust from the Karakum and Kyzylkum deserts was recorded twice, the traces of which have not yet been recorded on the glaciers of the Caucasus (Elbrus and Kazbeg).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Andreae MO, Rosenfeld D (2008) Aerosol-cloud precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci Rev 89:13–41

    Google Scholar 

  2. Benjamin SG, Grell GA, Brown JM et al (2004) Mesoscale weather prediction with the RUC hybrid isentropic-terrain-following coordinate model. Mon Weather Rev 132:473–494

    Google Scholar 

  3. Charlson RJ, Schwartz SE, Hales JM et al (1992) Climate forcing by anthropogenic aerosols. Science 255(5043):423–430

    Google Scholar 

  4. Chen S, Sun W (2002) A one-dimensional time dependent cloud model. J Meteor Soc Japan 80(1):99–18

    Google Scholar 

  5. Chin M, Rood RB, Lin SJ, Muller JF, Thomspon AM (2000) Atmospheric sulfur cycle in the global model GOCART: Model description and global properties. J Geophys Res Atmos 105:24671–24687

    Google Scholar 

  6. Choobari OA, Zawar-Reza P, Sturman A (2014) The global distribution of mineral dust and its impacts on the climate system. Atmos Res 138:152–165

    Google Scholar 

  7. Davitashvili T (2018) On Some Aspects of Climate Change in Georgia. Int J Energy and Environ 12:80–86

  8. Davitashvili T (2019) Modelling transportation of desert dust to the South Caucasus using WRF Chem model. E3S Web of Conferences 99, 03011, CADUC 2019. https://doi.org/10.1051/e3sconf/20199903011

  9. Davitashvili T, Kutaladze N, Kvatadze R et al (2018) Effect of dust aerosols in forming the regional climate of Georgia. Scalable Comp: Pract and Exp 19(2):199–208

  10. Dong Z, Li Z, Xiao C et al (2009) Characteristics of aerosol dust in fresh snow in the Asian dust and non-dust periods at Urumqi glacier no 1 of eastern Tian Shan, China. Environ Earth Sci 60:1361–1368

    Google Scholar 

  11. Draxler RR, Hess GD (1998) An overview of the HYSPLIT_4 modeling system for trajectories, dispersion and deposition. Aust Meteorol Mag 47:295–308

    Google Scholar 

  12. Draxler RR, Ginoux P, Stein AF (2010) An empirically derived emission algorithm for wind-blown dust. J Geophys Res 115:D16212

    Google Scholar 

  13. Eghbali A, Mirrokni SM, Memarian MH (2016) Dust storm simulation using WRF−Chem. (case study: West Asia), Inter J Recent Research and Applied. Studies 28(1):1–12

    Google Scholar 

  14. Engelstaedter S, Tegen I, Washington R (2006) North African dust emissions and transport. Earth Sci Rev 79(1-2):73–100

  15. Erel Y, Dayan U, Rabi R et al (2006) Transboundary transport of pollutants by atmospheric mineral dust. Environ Sci Technol 40:2996–3005

    Google Scholar 

  16. Fountoukis C, Ackermann L, Ayoub MA, Gladich I, Hoehn RD, Skillern A (2016) Impact of atmospheric dust emission schemes on dust production and concentration over the Arabian Peninsula. Model Earth Syst Environ 2:1–6

    Google Scholar 

  17. Ginoux P, Prospero JM, Gill TE et al (2012) Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys 50(RG3005):1–36. https://doi.org/10.1029/2012RG000388

    Article  Google Scholar 

  18. Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29:1693–1712

    Google Scholar 

  19. Grell GA, Peckham SE, Schmitz R et al (2005) Fully coupled “online” chemistry within the WRF model. Atmos Environ 39:6957–6976

    Google Scholar 

  20. Grousset FE, Ginoux P, Bory A et al (2003) Case study of a Chinese dust plume reaching the French Alps. Geophys Res Lett 30(6):1277

    Google Scholar 

  21. Han Y, Dai X, Fang X et al (2008) Dust aerosols: A possible accelerant for an increasingly arid climate in North China. J Arid Environ 72:1476–1489

    Google Scholar 

  22. Huang J, Minnis P, Yan H et al (2010) Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements. Atmos Chem Phys 10:6863–6687

    Google Scholar 

  23. Huang JX, Guan, Ji F (2012) Enhanced cold-season warming in semi-arid regions. Atmos Chem Phys 12:5391–5398. https://doi.org/10.5194/acp-12-5391-2012

    Article  Google Scholar 

  24. Huang J, Ji M, Xie Y, Wang S, He Y, Ran J (2016) Global semi-arid climate change over last 60 years. Clim Dyn 46(3-4):1131–1150. https://doi.org/10.1007/s00382-015-2636-8

    Article  Google Scholar 

  25. Huang JH, Yu A, Dai Y, Wei, Kang L (2017) Drylands face potential threat under 2 °C global warming target. Nat Clim Chang 7(6). https://doi.org/10.1038/NCLIMATE3275

  26. Hui WJ, Cook BI, Ravi S, Fuentes JD, Odorico PD (2008) Dust-rainfall feedbacks in the West African Sahel. Water Resour Res 44:W05202. https://doi.org/10.1029/2008WR006885

    Article  Google Scholar 

  27. Iacono MJ, Delamere JS, Mlawer EJ et al (2008) Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J Geophys Res 113:1–8

    Google Scholar 

  28. IPCC: Climate Change (2007) The Physical Science Basis. In: Solomon S, Qin D, Manning M et al (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York

  29. Janjic ZI (2002) Nonsingular implementation of the Millor-Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437:61

  30. Javakhishvili S (1988) Georgian Climate Description by the Months. Publishing House “Ganatleba”, Tbilisi

    Google Scholar 

  31. Kang S, Zhang Y, Zhang Y et al (2010) Variability of atmospheric dust loading over the central Tibetan Plateau based on ice core glaciochemistry. Atmos Environ 44:2980–2989

    Google Scholar 

  32. Kim KW, Kim YJ, Oh SJ (2001) Visibility impairment during Yellow Sand periods in the urban atmosphere of Kwangju, Korea. Atmos Environ 35(30):5157–5167

    Google Scholar 

  33. Kordzakhia M (1961) Climate of Georgia. Publishing house “Metsniereba”, Tbilisi

  34. Kutuzov SS, Mikhalenko VN, Shahgedanova MV et al (2014) Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus. Ice and Snow 54(3):5–15

  35. Kutuzov S, Shahgedanova M, Mikhalenko V et al (2013) High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009–2012 using snow pit and firn core records. The Cryosphere 7:1481–1498

  36. Kutuzov SS, Mikhalenko VN, Grachev AM et al (2016) First geophysical and shallow ice core investigation of the Kazbek plateau glacier. Caucasus Mountains. Environ Earth Sci 75(23):1–15

    Google Scholar 

  37. Li L, Sokolik IN (2018) Analysis of Dust Aerosol Retrievals Using Satellite Data in Central Asia. Atmosphere 9:288

    Google Scholar 

  38. Li Z, Zhao S, Edwards R et al (2011) Characteristics of individual aerosol particles over U¨ ru¨mqi Glacier No. 1 in eastern Tianshan, central Asia, China. Atmos Res 99:57–66

    Google Scholar 

  39. Lin YL, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Appl Meteorol Climatol 22:1065–1092

    Google Scholar 

  40. Ma X, Bartlett K, Harmon K, Yu F (2013) Comparison of AOD between CALIPSO and MODIS: significant differences over major dust and biomass burning regions. Atmos Meas Tech 6:2391–2401

    Google Scholar 

  41. Mikhalenko V, Sokratov S, Kutuzov S et al (2015) Investigation of a deep ice core from the Elbrus western plateau the Caucasus, Russia. Cryosphere 9:2253–2270

    Google Scholar 

  42. Nakanishi M, Niino H (2009) Development of an improved turbulence closure model for the atmospheric boundary layer. J Meteorol Soc Jpn 87(5):895–912

    Google Scholar 

  43. Omar AH, Winker DM, Kittaka C et al (2009) The calipso automated aerosol classification and lidar ratio selection algorithm. J Atmos Ocean Technol 26:1994–2014

    Google Scholar 

  44. Prasad AK, Yang K-HS, El-Askary HM et al (2009) Melting of major Glaciers in the western Himalayas: evidence of climatic changes from long term MSU derived tropospheric temperature trend (1979–2008). Ann Geophys 27:4505–4519

    Google Scholar 

  45. Remer LA, Kaufman YJ, Tanré D et al (2005) The MODIS algorithm, products and validation. J Atmos Sci 62:947–973

    Google Scholar 

  46. Rizza U, Anabor V, Mangia C, Miglietta MM, Degrazia GA, Passerini G (2016) WRF-Chem Simulation of a saharan dust outbreak over the mediterranean regions. 38:330–336. https://doi.org/10.5902/2179460X20249

  47. Rizza U, Barnaba F, Miglietta MM et al (2017) WRF-Chem model simulations of a dust outbreak over the central Mediterranean and comparison with multi-sensor desert dust observations. Atmos Chem Phys 17:93–115

    Google Scholar 

  48. Rosenfeld D, Rudich Y, Lahav R (2001) Desert dust suppressing precipitation: A possible desertification feedback loop. Proc Natl Acad Sci USA 98:5975–5980

    Google Scholar 

  49. Schwikowski M, Brütsch S, Gäggeler HW et al (1999) A high-resolution air chemistry record from an Alpine ice core: Fiescherhorn glacier, Swiss Alps. J Geophys Res 104:13709–13719

    Google Scholar 

  50. Shahgedanova M, Kutuzov S, White KH et al (2013) Using the significant dust deposition event on the glaciers of Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009 to develop a method for dating and “provenancing” of desert dust events recorded in snow pack. Atmos Chem Phys 13:1797–1808

    Google Scholar 

  51. Shao Y, Ishizuka M, Mikami M, Leys JF (2011a) Parameterization of size-resolved dust emission and validation with measurements. J Geophys Res 116:1–19

    Google Scholar 

  52. Shao Y, Wyrwoll KH, Chappell A et al (2011b) Dust cycle: An emerging core theme in Earth system science. Aeolian Res 2:181–204

    Google Scholar 

  53. Sodemann H, Palmer AS, Schwierz C et al (2006) The transport history of two Saharan dust events archived in an Alpine ice core. Atmos Chem Phys 6:667–668

    Google Scholar 

  54. Solomos S, Kalivitis N, Mihalopoulos N et al (2018) From Tropospheric Folding to Khamsin and Foehn Winds: How Atmospheric Dynamics Advanced a Record-Breaking Dust Episode in Crete. Atmosphere 9:240

    Google Scholar 

  55. Twomey S (1974) Pollution and the planetary albedo. Atmos Environ 8:1251–1256

    Google Scholar 

  56. Wang X, Huang J, Ji M, Higuchi K (2008) Variability of East Asia dust events and their long-term trend. Atmos Environ 4:3156–3165

    Google Scholar 

  57. Winker D, Hunt W, McGill M (2007) Initial Performance Assessment of CALIOP. Geophys Res Lett 34:L19803

    Google Scholar 

  58. Zhang XY, Arimoto R, An ZS (1997) Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J Geophys Res 102:28041–28047

    Google Scholar 

Download references

Funding

This research was funded by the Shota Rustaveli National Scientific Foundation Grant N FR17_548.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Teimurazi Davitashvili.

Additional information

Responsible Editor: Zhihua Zhang

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davitashvili, T., Samkharadze, I. Study of Aeolian transfer of mineral dust from deserts to the territory of Georgia. Arab J Geosci 14, 67 (2021). https://doi.org/10.1007/s12517-020-06407-2

Download citation

Keywords

  • Aeolian dust
  • WRF-Chem
  • Modelling
  • Caucasus
  • Georgia