Classification of raw LiDAR point cloud using point-based methods with spatial features for 3D building reconstruction

Abstract

Building extraction from light detection and ranging (LiDAR) data for 3-dimensional (3D) reconstruction requires accurately classified LiDAR points. In recent years, approaches developed for the classification mostly based on gridded LiDAR data. In the gridding process of LiDAR data, there is a characteristic point loss which results in reduced height accuracy. The effect of such loss can be eliminated using classified raw LiDAR data. In this study, an automatic point-based classification approach for raw LiDAR data classification with spatial features has been proposed for 3D building reconstruction. Using spatial features, the hierarchical rules have been determined. The spatial features, such as height, the local environment, and multi-return, of the LiDAR points were analyzed, and every single LiDAR points automatically assigned to the classes based on these features. The proposed classification approach based on raw LiDAR data had an overall accuracy of 79.7% in the test site located in Istanbul, Turkey. Finally, 3D building reconstruction was performed using the results of the proposed automatic point-based classification approach.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Anders NS, Seijmonsbergen AC, Bouten W (2013) Geomorphological change detection using object-based feature extraction from multi-temporal LiDAR data. IEEE Geosci Remote Sens Lett 10(6):1587–1591

    Google Scholar 

  2. Antonarakis AS, Richards KS, Brasington J (2008) Object-based land cover classification using airborne LiDAR. Remote Sens Environ 112(6):2988–2998

    Google Scholar 

  3. Axelsson P (1999) Processing of laser scanner data - algorithms and applications. ISPRS J Photogramm Remote Sens 54(2–3):138–147

    Google Scholar 

  4. Axelsson P (2000) DEM generation from laser scanner data using adaptive TIN models. Int Arch Photogramm Remote Sens 33(B4/1):110–109

    Google Scholar 

  5. Becker T, Nagel C, Kolbe TH (2008) A multilayered space-event model for navigation in indoor spaces. In: Lee J, Zlatanova S (eds) 3D geo-information sciences. Springer, Berlin, Heidelberg, pp 61–78

    Google Scholar 

  6. Behan A (2000) On the matching accuracy of rasterised scanning laser altimeter data. Int Arch Photogramm Remote Sens 33(B2):75–82

    Google Scholar 

  7. Bigdeli B, Amirkolaee HA, Pahlavani P (2018) DTM generation from the point cloud using a progressive geodesic morphology and a modified particle swarm optimization. Int J Remote Sens 39(23):8450–8481

    Google Scholar 

  8. Brenner C (2005) Building reconstruction from images and laser scanning. Int J Appl Earth Obs Geoinf 6(3–4):187–198

    Google Scholar 

  9. Cai S, Zhang W, Liang X, Wan P, Qi J, Yu S, Yan G, Shao J (2019) Filtering airborne LiDAR data through complementary cloth simulation and progressive TIN densification filters. Remote Sens 11(9):1037

    Google Scholar 

  10. Champion N, Rottensteiner F, Matikainen L, Liang X, Hyyppä J, Olsen BP (2009) A test of automatic building change detection approaches. Int Arch Photogramm Remote Sens Spat Inf Sci 37(B4):297–303

    Google Scholar 

  11. Charaniya AP, Manduchi R, Lodha SK (2004) Supervised parametric classification of aerial LiDAR data. Computer Vision and Pattern Recognition Workshop 2004:30–30

    Google Scholar 

  12. Chehata N, Bretar F (2008) Terrain modeling from lidar data: hierarchical K-means filtering and Markovian regularization. 15th IEEE International Conference on Image Processing, San Diego, CA, pp 1900-1903

  13. Chehata N, Guo L, Mallet C (2009) Airborne LiDAR feature selection for urban classification using random forests. Int Arch Photogramm Remote Sens Spat Inf Sci 38-3(W8):207–212

    Google Scholar 

  14. Chen D, Zhang L, Li J, Liu R (2012) Urban building roof segmentation from airborne LiDAR point clouds. Int J Remote Sens 33(20):6497–6515

    Google Scholar 

  15. Clode SP, Kootsookos P, Rottensteiner F (2004) The automatic extraction of roads from LiDAR data. Int Arch Photogramm Remote Sens Spat Inf Sci 35(B3):231–236

    Google Scholar 

  16. Congalton RG, Green K (2009) Assessing the accuracy of remotely sensed data: principles and practises. Second Edition, CRC Press Taylor and Francis Group, New York

  17. Czerwinski A, Sandmann S, Stöcker-Meier E, Pluemer L (2007) Sustainable SDI for EU noise mapping in NRW - best practice for INSPIRE. Int J Spatial Data Infrastructures Res 2(1):90–111

    Google Scholar 

  18. Hao Z, Yongsheng Z, Jun L, Song J (2009) Automatic building detection using airborne LIDAR data. International Forum on Information Technology and Applications 3:668–671

    Google Scholar 

  19. He Y, Zhang C, Awrangjeb M, Fraser CS (2012) Automated reconstruction of walls from airborne LiDAR data for complete 3D building modelling. Int Arch Photogramm Remote Sens Spat Inf Sci 39(B3):115–120

    Google Scholar 

  20. Hron V, Halounová L (2015) Automatic generation of 3D building models from point clouds. In: Ivan I, Benenson I, Jiang B, Horák J, Haworth J, Inspektor T (eds) Geoinformatics for intelligent transportation, lecture notes in geoinformation and cartography. Springer, Cham

    Google Scholar 

  21. Hu X, Ye L (2013) A fast and simple method of building detection from LiDAR data based on scan line analysis. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 2-3(W1):7–13

    Google Scholar 

  22. Kaartinen H, Hyyppä J, Kukko A, Lehtomäki M, Jaakkola A, Vosselman G et al (2013) Mobile mapping - road environment mapping using mobile laser scanning. EuroSDR Official Publication 62:49–95

    Google Scholar 

  23. Karsli F, Dihkan M, Acar H, Ozturk A (2016) Automatic building extraction from very high resolution image and LiDAR data with SVM algorithm. Arab J Geosci 9(14):635

    Google Scholar 

  24. Kim HB, Sohn G (2010) 3D classification of power-line scene from airborne laser scanning data using random forests. ISPRS Archives 38(3A):126–132

    Google Scholar 

  25. Kim HB, Sohn G (2013) Point-based classification of power line corridor scene using random forests. Photogramm Eng Remote Sens 79:821–833

    Google Scholar 

  26. Knapp S, Coors V (2008) The use of eParticipation in public participation: the VEPs example. In: Coors V, Rumor M, Fendel EM, Zlatanova S (eds) Urban and regional data management. Taylor and Francis, London, pp 93–104

    Google Scholar 

  27. Kolbe TH, Gröger G, Plümer L (2008) CityGML - 3D city models for emergency response. In: Zlatanova S, Li J (eds) Geospatial information technology for emergency response. Taylor and Francis, London, pp 257–274

    Google Scholar 

  28. Kraus K, Pfeifer N (2001) Advanced DTM generation from LiDAR data. Int Arch Photogramm Remote Sens Spat Inf Sci 34-3(W4):23–30

    Google Scholar 

  29. Lloyd CD, Atkinson PM (2002) Deriving DSMs from LiDAR data with kriging. Int J Remote Sens 23(12):2519–2524

    Google Scholar 

  30. Maas H, Vosselman G (1999) Two algorithms for extracting building models from raw laser altimetry data. ISPRS J Photogramm Remote Sens 54:153–163

    Google Scholar 

  31. Mallet C, Bretar F, Roux M, Soergel U, Heipke C (2011) Relevance assessment of full-waveform Lidar data for urban area classification. ISPRS J Photogramm Remote Sens 66(6):71–S84

    Google Scholar 

  32. Marinelli D, Paris C, Bruzzone L (2018) A novel approach to 3-D change detection in multitemporal LiDAR data acquired in forest areas. IEEE Trans Geosci Remote Sens 56(6):3030–3046

    Google Scholar 

  33. Morgan M, Habib A (2002) Interpolation of LiDAR data and automatic building extraction. ACSM-ASPRS 2002 Annual Conference Proceedings

  34. Moussa A, El-Sheimy N (2010) Automatic classification and 3D modeling of LiDAR data. ISPRS Archives 38(3B):155–159

    Google Scholar 

  35. Navulur K (2007) Multispectral image analysis using the object-oriented paradigm. CRC Press, Taylor and Frances Group, New York

    Google Scholar 

  36. Niemeyer J, Rottensteiner F, Soergel U (2014) Contextual classification of LiDAR data and building object detection in urban areas. ISPRS J Photogramm Remote Sens 87:152–165

    Google Scholar 

  37. O’Neil-Dunne J, MacFaden S, Royar A (2014) A versatile, production-oriented approach to high-resolution tree-canopy mapping in urban and suburban landscapes using GEOBIA and data fusion. Remote Sens 6:12837–12865

    Google Scholar 

  38. Oude Elberink S, Vosselman G (2009) Building reconstruction by target based graph matching on incomplete laser data: analysis and limitations. Sensors 9(8):6101–6118

    Google Scholar 

  39. Pingel JT, Clarke CK, MaBride AW (2013) An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS J Photogramm Remote Sens 77:21–30

    Google Scholar 

  40. Pu S, Vosselman G (2009) Knowledge based reconstruction of building models from terrestrial laser scanning data. ISPRS J Photogramm Remote Sens 64(6):575–584

    Google Scholar 

  41. Randt B, Bildstein F, Kolbe TH (2007) Use of virtual 3D landscapes for emergency driver training. In: Proceedings of 2007 IMAGE Conference, Scottsdale, Arizona

  42. Rottensteiner F (2003) Automatic generation of high-quality building models from LiDAR data. IEEE Comput Graph Appl 23(6):42–50

    Google Scholar 

  43. Rottensteiner F, Briese CH (2002) A new method for building extraction in urban areas from high-resolution LiDAR data. Int Arch Photogramm Remote Sens Spat Inf Sci 34(3A):295–301

    Google Scholar 

  44. Rutzinger M, Pratihast AK, Oude Elberink SJ, Vosselman G (2011) Tree modelling from mobile laser scanning datasets. Photogramm Rec 26(135):361–372

    Google Scholar 

  45. Sajadian M, Arefi H (2014) A data driven method for building reconstruction from LiDAR point clouds. Int Arch Photogramm Remote Sens Spat Inf Sci 40-2(W3):225–230

    Google Scholar 

  46. Sampath A, Shan J (2007) Building boundary tracing and regularization from airborne LiDAR point clouds. Photogramm Eng Remote Sens 73:805–812

    Google Scholar 

  47. Sefercik UG, Glennie C, Singhania A, Hauser D (2015) Area-based quality control of airborne laser scanning 3D models for different land classes using terrestrial laser scanning: sample survey in Houston, USA. Int J Remote Sens 36:5916–5934

    Google Scholar 

  48. Sefercik UG, Buyuksalih G, Jacobsen K, Alkan M (2016) Point-based and model-based geolocation analysis of airborne laser scanning data. Opt Eng 56(1) 013101:1–10

    Google Scholar 

  49. Smith SL, Holland DA, Longley PA (2003) Interpreting interpolation: the pattern of interpolation errors in digital surface models derived from laser scanning data proceedings of GISRUK 2003

  50. Smith SL, Holland DA, Longley PA (2004) The importance of understanding error in LiDAR digital elevation models. Int Arch Photogramm Remote Sens Spat Inf Sci 35(B4):996–1001

    Google Scholar 

  51. Uzar M, Yastikli N (2013) Automatic building extraction using LiDAR and aerial photographs. Bol Ciênc Geod 19:153–171

    Google Scholar 

  52. Vosselman G (2000) Slope based filtering of laser altimetry data. Int Arch Photogramm Remote Sens Spat Inf Sci 33(B3):935–942

    Google Scholar 

  53. Vosselman G (2009) Advanced point cloud processing. In: D. Fritsch ed. Photogrammetric Week 2009, Wichmann, pp 137-146

  54. Vosselman G, Gorte B, Sithole G (2004) Change detection for updating medium scale maps using laser altimetry. Int Arch Photogramm Remote Sens Spat Inf Sci 35(B3):207–212

    Google Scholar 

  55. Vosselman G, Kessels P, Gorte B (2005) The utilisation of airborne laser scanning for mapping. Int J Appl Earth Obs Geoinf 6:177–186

    Google Scholar 

  56. Xi Y, Luo Q (2018) A morphology-based method for building change detection using multi-temporal airborne LiDAR data. Remote Sens Lett 9(2):131–139

    Google Scholar 

  57. Xiao W, Xu S, Oude Elberink S, Vosselman G (2016) Individual tree crown modeling and change detection from airborne LiDAR data. IEEE J Selected Topics Appl Earth Observ Remote Sens 9(8):3467–3477

    Google Scholar 

  58. Yastikli N, Cetin Z (2016) Classification of LiDAR data with point based classification methods. Int Arch Photogramm Remote Sens Spat Inf Sci 41(B3):441–445

    Google Scholar 

  59. Yastikli N, Cetin Z (2017) Automatic 3D building model generations with airborne LiDAR data. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 4-4(W4):411–414

    Google Scholar 

  60. Yastikli N, Uzar M (2013) Building extraction using multi-sensor systems. Int Arch Photogramm Remote Sens Spat Inf Sci 40-1(W1):379–382

    Google Scholar 

  61. Zhang K, Yan J, Chen SC (2006) Automatic construction of building footprints from airborne LiDAR data. IEEE Trans Geosci Remote Sens 44(9):2523–2533

    Google Scholar 

  62. Zinger S, Nikolova M, Roux M, Maître H (2002) 3D resampling for airborne laser data of urban areas. Int Arch Photogramm Remote Sens Spat Inf Sci 34(3B):418–423

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Metropolitan Municipality of Istanbul for supplying the LiDAR dataset covering the Zekeriyakoy study area.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Naci Yastikli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yastikli, N., Cetin, Z. Classification of raw LiDAR point cloud using point-based methods with spatial features for 3D building reconstruction. Arab J Geosci 14, 146 (2021). https://doi.org/10.1007/s12517-020-06377-5

Download citation

Keywords

  • LiDAR
  • Classification
  • Point cloud
  • Building reconstruction
  • 3D city model