Hydrochar-based soil amendments for agriculture: a review of recent progress

Abstract

Hydrochar is a carbon-rich material produced by the hydrothermal carbonization (HTC) of biomass. As a new concept, hydrochar has generated much research interest due to its ability to employ wet and dry biomass as feedstocks and its application in the agronomical, environmental, and energy sectors. This review considers the developments made with hydrochar as a soil amendment in terms of soil fertility, carbon sequestration, and fate of pollutants based on the available data. Moreover, the economic feasibility using a life cycle assessment of hydrochar has also been discussed. This review assessed that the hydrochar is an environmentally friendly soil amendments for plant growth by slow release of nutrients and carbon sequestration. Hydrochar application to the soil may increase the soil’s water-holding capacity but decreases the bulk density, although the water-holding capacity of hydrochar depends on the reaction temperature and particle size of the materials. Furthermore, the hydrochar may exert a positive effect on growth and abundance of different soil microbes. This paper not only summarizes the recent advances made in developing hydrochar as a soil amendment, it also discusses the challenges and limitations of hydrochar in a wider context.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

All data are available.

References

  1. Abel S, Peters A, Trinks S, Schonsky H, Facklam M, Wessolek G (2013) Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202:183–191. https://doi.org/10.1016/j.geoderma.2013.03.003

    Article  Google Scholar 

  2. Agegnehu G, Srivastava AK, Bird MI (2017) The role of biochar and biochar-compost in improving soil quality and crop performance: a review. Appl Soil Ecol 119:156–170. https://doi.org/10.1016/j.apsoil.2017.06.008

    Article  Google Scholar 

  3. Altieri MA (1999) The ecological role of biodiversity in agroecosystems, Agric Ecosyst Environ. 74:19–31. https://doi.org/10.1016/S0167-8809(99)00028-6

  4. Álvarez ML, Gascó G, Plaza C, Paz-Ferreiro J, Méndez A (2017) Hydrochars from biosolids and urban wastes as substitute materials for peat. Land Degrad Dev 28:2268–2276. https://doi.org/10.1002/ldr.2756

    Article  Google Scholar 

  5. Al-Wabel MI, Rafique MI, Ahmad M, Ahmad M, Hussain A, Usman AR (2019) Pyrolytic and hydrothermal carbonization of date palm leaflets: characteristics and ecotoxicological effects on seed germination of lettuce. Saudi J Biol Sci 26(4):665–672

    Article  Google Scholar 

  6. Andert J, Mumme J (2015) Impact of pyrolysis and hydrothermal biochar on gas-emitting activity of soil microorganisms and bacterial and archaeal community composition. Appl Soil Ecol 96:225–239. https://doi.org/10.1016/j.apsoil.2015.08.019

    Article  Google Scholar 

  7. Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18. https://doi.org/10.1007/s11104-010-0464-5

    Article  Google Scholar 

  8. Bahcivanji L, Gascó G, Paz-Ferreiro J, Méndez A (2020) The effect of post-pyrolysis treatment on waste biomass derived hydrochar. Waste Manag 106:55–61

    Article  Google Scholar 

  9. Bargmann I, Rillig MC, Buss W, Kruse A, Kuecke M (2013) Hydrochar and biochar effects on germination of spring barley. J Agron Crop Sci 199:360–373. https://doi.org/10.1111/jac.12024

    Article  Google Scholar 

  10. Bargmann I, Rillig MC, Kruse A, Greef JM, Kücke M (2014) Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. J Plant Nutr Soil Sci 177:48–58. https://doi.org/10.1002/jpln.201300069

    Article  Google Scholar 

  11. Baronti S, Alberti G, GenesioL CI, Camin F, Vaccari FP, Ziller L, Maas R, Miglietta F (2017) Hydrochar enhances growth of poplar for bioenergy while marginally contributing to direct soil carbon sequestration. GCB Bioenergy 9:1618–1626. https://doi.org/10.1111/gcbb.12450

    Article  Google Scholar 

  12. Belda RM, Lidón A, Fornes F (2016) Biochars and hydrochars as substrate constituents for soilless growth of myrtle and mastic. Ind Crop Prod 94:132–142. https://doi.org/10.1016/j.indcrop.2016.08.024

    Article  Google Scholar 

  13. Benavente V, Fullana A, Berge ND (2017) Life cycle analysis of hydrothermal carbonization of olive mill waste: comparison with current management approaches. J Clean Prod 142:2637–2648 https://scihub.wikicn.top/10.1016/j.jclepro.2016.11.013

    Article  Google Scholar 

  14. Bento LR, Castro AJR, Moreira AB, Ferreira OP, Bisinoti MC, Melo CA (2019) Release of nutrients and organic carbon in different soil types from hydrochar obtained using sugarcane bagasse and vinasse. Geoderma 334:24–32. https://doi.org/10.1016/j.geoderma.2018.07.034

    Article  Google Scholar 

  15. Bento LR, Melo CA, Ferreira OP, Moreira AB, Mounier S, Piccolo A, Spaccini R, Bisinoti MC (2020) Humic extracts of hydrochar and Amazonian Dark Earth: molecular characteristics and effects on maize seed germination. Sci Total Environ 708:135000

    Article  Google Scholar 

  16. Berge ND, Li L, Flora JRV, Ro KS (2015) Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes. Waste Manag 43:203–217 https://scihub.wikicn.top/10.1016/j.wasman.2015.04.029

    Article  Google Scholar 

  17. Breulmann M, van Afferden M, Müller RA, Schulz E, Fühner C (2017a) Process conditions of pyrolysis and hydrothermal carbonization affect the potential of sewage sludge for soil carbon sequestration and amelioration. J Anal Appl Pyrolysis 124:256–265. https://doi.org/10.1016/j.jaap.2017.01.026

    Article  Google Scholar 

  18. Breulmann M, Kuka K, van Afferden M, Buscot F, Fühner C, Müller R, Schulz E (2017b) Labile water soluble components govern the short-term microbial decay of hydrochar from sewage sludge. Arch Agron Soil Sci 64:873–880. 0:1–8. https://doi.org/10.1080/03650340.2017.1387779

    Article  Google Scholar 

  19. Busch D, Glaser B (2015) Stability of co-composted hydrochar and biochar under field conditions in a temperate soil. Soil Use Manag 31:251–258. https://doi.org/10.1111/sum.12180

    Article  Google Scholar 

  20. Busch D, Kammann C, Grünhage L, Müller C (2012) Simple biotoxicity tests for evaluation of carbonaceous soil additives: establishment and reproducibility of four test procedures. J Environ Qual 4:1023–1032

  21. Busch D, Stark A, Kammann CI, Glaser B (2013) Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from hydrothermal carbonization compared to biochar from pyrolysis. Ecotoxicol Environ Saf 97:59–66. https://doi.org/10.1016/j.ecoenv.2013.07.003

    Article  Google Scholar 

  22. Chakrabarti S, Dicke C, Kalderis D, Kern J (2015) Rice husks and their hydrochars cause unexpected stress response in the nematode Caenorhabditis elegans: reduced transcription of stress-related genes. Environ Sci Pollut Res 22:12092–12103. https://doi.org/10.1007/s11356-015-4491-x

    Article  Google Scholar 

  23. Chen X, Lin Q, He R, Zhao X, Li G (2017) Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresour Technol 241:236–243. https://doi.org/10.1016/j.biortech.2017.04.012

    Article  Google Scholar 

  24. Chu Q, Xue L, Singh BP, Yu S, Müller K, Wang H, Feng Y, Pan G, Zheng X, Yang L (2020) Sewage sludge-derived hydrochar that inhibits ammonia volatilization, improves soil nitrogen retention and rice nitrogen utilization. Chemosphere 245:125558

    Article  Google Scholar 

  25. Coomes OT, Miltner BC (2017) Indigenous charcoal and biochar production: potential for soil improvement under shifting cultivation systems. Land Degrad Dev 28:811–821. https://doi.org/10.1002/ldr.2500

    Article  Google Scholar 

  26. de Jager M, Giani L, Röhrdanz M (2019) Influence of hydrochar from hydrothermal carbonisation (HTC) on plant growth aspects and soil improvement. In: Erd-reich und Bodenlandschaften BGS, DBG 24.-29.08.2019, Bern Berichte der DBG (nicht begutachtete online Publikation) http://www.dbges.de

  27. De Mena PB, Doyle L, Renz M, Salimbeni A (2016) Industrial scale hydrothermal carbonization: new applications for wet biomass waste. Ttz Bremerhaven, Bremerhaven

    Google Scholar 

  28. de Resende MF, Brasil TF, Madari BE, Netto ADP, Novotny EH (2018) Polycyclic aromatic hydrocarbons in biochar amended soils: long-term experiments in Brazilian tropical areas. Chemosphere 200:641–648

    Article  Google Scholar 

  29. Ding Y, Liu Y, Liu S, Li Z, Tan X, Huang X, Zeng G, Zhou L, Zheng B (2016) Biochar to improve soil fertility. A review. Agron Sustain Dev 36(2):36

    Article  Google Scholar 

  30. Do Santos JV, Fregolente LG, Moreira AB, Ferreira OP, Mounier S, Viguier B, Hajjoul H, Bisinoti MC (2020) Humic-like acids from hydrochars: study of the metal complexation properties compared with humic acids from anthropogenic soils using PARAFAC and time-resolved fluorescence. Sci Total Environ 722:137815

    Article  Google Scholar 

  31. Doyle L, Renz M, de Mena B, Hitzl M, Salimbeni A, Knauer C, Corma A, Moloeznik D, Owsianiak M, Ryberg MW (2016) In industrial scale hydrothermal carbonization: new applications for wet biomass waste, De Mena Pardo B, Doyle L, Renz M, Salimbeni A (Eds). 2016

  32. Eibisch N, Helfrich M, Don A, Mikutta R, Kruse A, Ellerbrock R, Flessa H (2013) Properties and degradability of hydrothermal carbonization products. J Environ Qual 42:1565–1573. https://doi.org/10.2134/jeq2013.02.0045

    Article  Google Scholar 

  33. Eibisch N, Durner W, Bechtold M, Fuß R, Mikutta R, Woche SK, Helfrich M (2015a) Does water repellency of pyrochars and hydrochars counter their positive effects on soil hydraulic properties? Geoderma 245:31–39. https://doi.org/10.1016/j.geoderma.2015.01.009

    Article  Google Scholar 

  34. Eibisch N, Schroll R, Fuß R (2015b) Effect of pyrochar and hydrochar amendments on the mineralization of the herbicide isoproturon in an agricultural soil. Chemosphere 134:528–535. https://doi.org/10.1016/j.chemosphere.2014.11.074

    Article  Google Scholar 

  35. El-Naggar A, Lee SS, Awad YM, Yang X, Ryu C, Rizwan M, Rinklebe J, Tsang DC, Ok YS (2018) Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. Geoderma 332:100–108. https://doi.org/10.1016/j.geoderma.2018.06.017

    Article  Google Scholar 

  36. El-Naggar A, Lee MH, Hur J, Lee YH, Igalavithana AD, Shaheen SM, Ryu C, Rinklebe J, Tsang DC, Ok YS (2020) Biochar-induced metal immobilization and soil biogeochemical process: an integrated mechanistic approach. Sci Total Environ 698:134112. https://doi.org/10.1016/j.scitotenv.2019.134112

    Article  Google Scholar 

  37. Eskandari S, Mohammadi A, Sandberg M, Eckstein RL, Hedberg K, Granström K (2019) Hydrochar-amended substrates for production of containerized pine tree seedlings under different fertilization regimes. Agronomy 9(7):350

    Article  Google Scholar 

  38. Fang J, Zhan L, OkYS GB (2018) Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J Ind Eng Chem 57:15–21. https://doi.org/10.1016/j.jiec.2017.08.026

    Article  Google Scholar 

  39. Farooque AA, Zaman Q, Abbas F, Hammad HM, Acharya B, Easu T (2020) How can potatoes be smartly cultivated with biochar as a soil nutrient amendment technique in Atlantic Canada? Arab J Geosci 13:336. https://doi.org/10.1007/s12517-020-05337-3

    Article  Google Scholar 

  40. Flora JF, Lu X, Li L, Flora JR, Berge ND (2013) The effects of alkalinity and acidity of process water and hydrochar washing on the adsorption of atrazine on hydrothermally produced hydrochar. Chemosphere 93:1989–1996. https://doi.org/10.1016/j.chemosphere.2013.07.018

    Article  Google Scholar 

  41. Fornes F, Belda RM, Lidón A (2015) Analysis of two biochars and one hydrochar from different feedstock: focus set on environmental, nutritional and horticultural considerations. J Clean Prod 86:40–48. https://doi.org/10.1016/j.jclepro.2014.08.057

    Article  Google Scholar 

  42. Fregolente LG, Miguel TBAR, de Castro ME, de Almeida MC, Moreira AB, Ferreira OP, Bisinoti MC (2019) Toxicity evaluation of process water from hydrothermal carbonization of sugarcane industry by-products. Environ Sci Pollut Res 26(27):27579–27589

    Article  Google Scholar 

  43. Fuertes AB, Arbestain MC, Sevilla M, Maciá-Agulló JA, Fiol S, López R, Smernik RJ, Aitkenhead WP, Arce F, Macias F (2010) Chemical and structural properties of carbonaceous products obtained by pryrolysis and hydrothermal carbonisation of corn stover. Aust J Soil Res 48:618–626. https://doi.org/10.1071/SR10010

    Article  Google Scholar 

  44. Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin 4:160–177. https://doi.org/10.1002/bbb.198

    Article  Google Scholar 

  45. Gajić A, Ramke HG, Hendricks A, Koch HJ (2012) Microcosm study on the decomposability of hydrochars in a Cambisol. Biomass Bioenergy 47:250–259. https://doi.org/10.1016/j.biombioe.2012.09.036

    Article  Google Scholar 

  46. Gao P, Zhou Y, Meng F, Zhang Y, Liu Z, Zhang W, Xue G (2016) Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization. Energy 97:238–245. https://doi.org/10.1016/j.energy.2015.12.123

    Article  Google Scholar 

  47. George C, Wagner M, Kȕcke M, Rillig MC (2012) Divergent consequences of hydrochar in the plant–soil system: Arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects. Appl Soil Ecol 59:68–72. https://doi.org/10.1016/j.apsoil.2012.02.021

    Article  Google Scholar 

  48. George E, Ventura M, Panzacchi P, Scandellari F, Tonon G (2017) Can hydrochar and pyrochar affect nitrogen uptake and biomass allocation in poplars? J Plant Nutr Soil Sci 180:178–186. https://doi.org/10.1002/jpln.201600563

    Article  Google Scholar 

  49. Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The'Terra Preta'phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88(1):37–41

    Article  Google Scholar 

  50. Gronwald M, Don A, Tiemeyer B, Helfrich M (2015) Effects of fresh and aged chars from pyrolysis and hydrothermal carbonization on nutrient sorption in agricultural soils. Soil 1(1):475

    Article  Google Scholar 

  51. Han L, Ro KS, Sun K, Sun H, Wang Z, Libra JA, Xing B (2016) New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants. Environ Sci Technol 50:13274–13282. https://doi.org/10.1021/acs.est.6b02401

    Article  Google Scholar 

  52. Hobley E, Garcia-Franco N, Hübner R, Wiesmeier M (2018) Reviewing our options: managing water limited soils for conservation and restoration. Land Degrad Dev 29:1041–1053. https://doi.org/10.1002/ldr.2849

    Article  Google Scholar 

  53. Hu B, Wang K, Wu L, Yu SH, Antonietti M, Titirici MM (2010) Engineering carbon materials from hydrothermal carbonization process of biomass. Adv Mater 22:813–828. https://doi.org/10.1002/adma.200902812

    Article  Google Scholar 

  54. Hunt J, Du Ponte M, Sato D, Kawabata A (2010) The basics of biochar: a natural soil amendment. Soil Crop Manage 30:1–6

    Google Scholar 

  55. Igalavithana AD, Mandal S, Niazi NK, Vithanage M, Parikh SJ, Mukome FN, Rizwan M, Oleszczuk P, Al-Wabel M, Bolan N, Tsang DC (2017) Advances and future directions of biochar characterization methods and applications. Crit Rev Environ Sci Technol 47(23):2275–2330. https://doi.org/10.1080/10643389.2017.1421844

    Article  Google Scholar 

  56. Inyang M, Gao B, Pullammanappallil P, Ding W, Zimmerman AR (2010) Biochar from anaerobically digested sugarcane bagasse. Bioresour Technol 101:8868–8872

  57. Jain A, Balasubramanian R, Srinivasan MP (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J 283:789–805

    Article  Google Scholar 

  58. Kalderis D, Papameletiou G, Kayan B (2019) Assessment of orange peel hydrochar as a soil amendment: impact on clay soil physical properties and potential phytotoxicity. Waste Biomass Valori 10(11):3471–3484. https://doi.org/10.1007/s12649-018-0364-0

    Article  Google Scholar 

  59. Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Energ Rev 45:359–378. https://doi.org/10.1016/j.rser.2015.01.050

    Article  Google Scholar 

  60. Kammann C, Ratering S, Eckhard C, Müller C (2012) Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. J Environ Qual 41:1052–1066. https://doi.org/10.2134/jeq2011.0132

    Article  Google Scholar 

  61. Kruse A, Funke A, Titirici MM (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17(3):515–521

    Article  Google Scholar 

  62. Kruse A, Koch F, Stelzl K, Wüst D, Zeller M (2016) Fate of nitrogen during hydrothermal carbonization. Energy Fuel 30:8037–8042. https://doi.org/10.1021/acs.energyfuels.6b01312

    Article  Google Scholar 

  63. Lech M, Fronczyk J, Radziemska M, Sieczka A, Garbulewski K, Koda E, Lechowicz Z (2016) Monitoring of total dissolved solids on agricultural lands using electrical conductivity measurements. Appl Ecol Environ Res 14:285–295

    Article  Google Scholar 

  64. Lehmann J (2009) Terra Preta Nova—where to from here. In: Amazonian Dark Earths: Wim Sombroek’s vision. Springer Science, Dordrecht, pp 473–486. https://doi.org/10.1007/978-1-4020-9031-8-28

    Google Scholar 

  65. Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems–a review. Mitig Adapt Strat Glob Change 11:403–427. https://doi.org/10.1007/s11027-005-9006-5

    Article  Google Scholar 

  66. Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici MM, Fühner C, Bens O, Kern J, Emmerich KH (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2:71–106. https://doi.org/10.4155/bfs.10.81

    Article  Google Scholar 

  67. Løes AK, Sandquist J, Meyer G (2017) Elemental composition and phosphorus availability in hydrochars from seaweed and organic waste digestate. Acta Agric Scand Sect B Soil Plant Sci 68:57–66. https://doi.org/10.1080/09064710.2017.1363909

    Article  Google Scholar 

  68. Ma D, Feng Q, Chen B, Cheng X, Chen K, Li J (2019) Insight into chlorine evolution during hydrothermal carbonization of medical waste model. J Hazard Mater 380:120847. https://doi.org/10.1016/j.jhazmat.2019.120847

    Article  Google Scholar 

  69. Malghani S, Jüschke E, Baumert J, Thuille A, Antonietti M, Trumbore S, Gleixner G (2015) Carbon sequestration potential of hydrothermal carbonization char (hydrochar) in two contrasting soils; results of a 1-year field study. Biol Fertil Soils 51:123–134. https://doi.org/10.1007/s00374-014-0980-1

    Article  Google Scholar 

  70. Meisel K, Clemens A, Fühner C, Breulmann M, Majer S, Thrän D (2019) Comparative life cycle assessment of HTC concepts valorizing sewage sludge for energetic and agricultural use. Energies 12(5):786

    Article  Google Scholar 

  71. Melo TM, Bottlinger M, Schulz E, Leandro WM, de Aguiar Filho AM, Ok YS, Rinklebe J (2017) Effect of biosolid hydrochar on toxicity to earthworms and brine shrimp. Environ Geochem Health 39:1351–1364. https://doi.org/10.1007/s10653-017-9995-5

    Article  Google Scholar 

  72. Melo TM, Bottlinger M, Schulz E, Leandro WM, de Oliveira SB, de Aguiar Filho AM, El-Naggar A, Bolan N, Wang H, Ok YS, Rinklebe J (2019) Management of biosolids-derived hydrochar (Sewchar): effect on plant germination, and farmers' acceptance. J Environ Manag 237:200–214

    Article  Google Scholar 

  73. Meyer S, Glaser B, Quicker P (2011) Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ Sci Technol 45:9473–9483. https://doi.org/10.1021/es201792c

    Article  Google Scholar 

  74. Naisse C, Girardin C, Lefevre R, Pozzi A, Maas R, Stark A, Rumpel C (2015) Effect of physical weathering on the carbon sequestration potential of biochars and hydrochars in soil. GCB Bioenergy 7:488–496. https://doi.org/10.1111/gcbb.12158

    Article  Google Scholar 

  75. Neina D (2019) The role of soil pH in plant nutrition and soil remediation. Appl Environ Soil Sci 5794869. https://doi.org/10.1155/2019/5794869

  76. Novak JM, Spokas KA, Cantrell KB, Ro KS, Watts DW, Glaz B, Busscher WJ, Hunt PG (2014) Effects of biochars and hydrochars produced from lignocellulosic and animal manure on fertility of a Mollisol and Entisol. Soil Use Manag 30:175–181. https://doi.org/10.1111/sum.12113

    Article  Google Scholar 

  77. Owsianiak M, Ryberg MW, Renz M, Hitzl M, Hauschild MZ (2016) Environmental performance of hydrothermal carbonization of four wet biomass waste streams at industry-relevant scales. ACS Sustain Chem Eng 4:6783–6791. https://doi.org/10.1021/acssuschemeng.6b01732

    Article  Google Scholar 

  78. Owsianiak M, Brooks J, Renz M, Laurent A (2017) Evaluating climate change mitigation potential of hydrochars: compounding insights from three different indicators. GCB Bioenergy 10(4):230–245 https://scihub.wikicn.top/10.1111/gcbb.12484

    Article  Google Scholar 

  79. Paneque M, Marıa J, Rosa D, Arago’n C, Kern J, Conte P (2015) Sewage sludge hydrochars: properties and agronomic impact as related to different production conditions. Geophysical Res Abstracts—EGU Gen Assembly 17:3–4

    Google Scholar 

  80. Paneque M, Knicker H, Kern J, la Rosa D, María J (2019) Hydrothermal carbonization and pyrolysis of sewage sludge: effects on Lolium perenne germination and growth. Agronomy 9(7):363

    Article  Google Scholar 

  81. Panwar NL, Pawar A, Salvi BL (2019) Comprehensive review on production and utilization of biochar. SN Appl Sci 1(2):168. https://doi.org/10.1007/s42452-019-0172-6

    Article  Google Scholar 

  82. Peng N, Li Y, Liu T, Lang Q, Gai C, Liu Z (2017) Polycyclic aromatic hydrocarbons and toxic heavy metals in municipal solid waste and corresponding hydrochars. Energy Fuel 31:1665–1671. https://doi.org/10.1021/acs.energyfuels.6b02964

    Article  Google Scholar 

  83. Puccini M, Ceccarini L, Antichi D, Seggiani M, Tavarini S, Hernandez Latorre M, Vitolo S (2018) Hydrothermal carbonization of municipal woody and herbaceous prunings: hydrochar valorisation as soil amendment and growth medium for horticulture. Sustainability 10(3):846. https://doi.org/10.3390/su10030846

    Article  Google Scholar 

  84. Reibe K, Götz KP, Roß CL, Döring TF, Ellmer F, Ruess L (2015a) Impact of quality and quantity of biochar and hydrochar on soil Collembola and growth of spring wheat. Soil BiolBiochem 83:84–87. https://doi.org/10.1016/j.soilbio.2015.01.014

    Article  Google Scholar 

  85. Reibe K, Roß CL, Ellmer F (2015b) Hydro-/biochar application to sandy soils: impact on yield components and nutrients of spring wheat in pots. Arch Agron Soil Sci 61(8):1055–1060. https://doi.org/10.1080/03650340.2014.977786

    Article  Google Scholar 

  86. Ren J, Wang F, Zhai Y, Zhu Y, Peng C, Wang T, Li C, Zeng G (2017) Effect of sewage sludge hydrochar on soil properties and Cd immobilization in a contaminated soil. Chemosphere 189:627–633. https://doi.org/10.1016/j.soilbio.2015.01.014

    Article  Google Scholar 

  87. Rex D, Schimmelpfennig S, Jansen-Willems A, Moser G, Kammann C, Müller C (2015) Microbial community shifts 2.6 years after top dressing of Miscanthus biochar, hydrochar and feedstock on a temperate grassland site. Plant Soil 397:261–271

    Article  Google Scholar 

  88. Reza MT, Lynam JG, Uddin MH, Coronella CJ (2013) Hydrothermal carbonization: fate of inorganics. Biomass Bioenergy 49:86–94. https://doi.org/10.1016/j.biombioe.2012.12.004

    Article  Google Scholar 

  89. Rillig MC, Wagner M, Salem M, Antunes PM, George C, Ramke HG, Titirici MM, Antonietti M (2010) Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza. Appl Soil Ecol 45:238–242. https://doi.org/10.1016/j.apsoil.2010.04.011

    Article  Google Scholar 

  90. Ro KS, Novak JM, Johnson MG, Szogi AA, Libra JA, Spokas KA, Bae S (2016) Leachate water quality of soils amended with different swine manure-based amendments. Chemosphere 142:92–99. https://doi.org/10.1016/j.chemosphere.2015.05.023

    Article  Google Scholar 

  91. Roehrdanz M, Greve T, de Jager M, Buchwald R, Wark M (2019) Co-composted hydrochar substrates as growing media for horticultural crops. Sci Hortic 252:96–103

    Article  Google Scholar 

  92. Röhrdanz M, Rebling T, Ohlert J, Jasper J, Greve T, Buchwald R, Frieling PV, Wark M (2016) Hydrothermal carbonization of biomass from landscape management–influence of process parameters on soil properties of hydrochars. J Environ Manag 173:72–78. https://doi.org/10.1016/j.jenvman.2016.03.006

    Article  Google Scholar 

  93. Roy P, Dutta A, Gallant J (2020) Evaluation of the life cycle of hydrothermally carbonized biomass for energy and horticulture application. Renew Sust Energ Rev 132:110046 https://scihub.wikicn.top/10.1016/j.rser.2020.110046

    Article  Google Scholar 

  94. Saha N, Saba A, Reza MT (2019) Effect of hydrothermal carbonization temperature on pH, dissociation constants, and acidic functional groups on hydrochar from cellulose and wood. J Anal Appl Pyrolysis 137:138–145

    Article  Google Scholar 

  95. Salem M, Kohler J, Wurst S, Rillig MC (2013) Earthworms can modify effects of hydrochar on growth of Plantago lanceolata and performance of arbuscular mycorrhizal fungi. Pedobiologia 56:219–224. https://doi.org/10.1016/j.pedobi.2013.08.003

    Article  Google Scholar 

  96. Scheifele M, Hobi A, Buegger F, Gattinger A, Schulin R, Boller T, Mäder P (2017) Impact of pyrochar and hydrochar on soybean (Glycine max L.) root nodulation and biological nitrogen fixation. J Plant Nutr Soil Sci 180:199–211. https://doi.org/10.1002/jpln.201600419

    Article  Google Scholar 

  97. Schimmelpfennig S, Müller C, Grünhage L, Koch C, Kammann C (2014) Biochar, hydrochar and uncarbonized feedstock application to permanent grassland—effects on greenhouse gas emissions and plant growth. Agric Ecosyst Environ 191:39–52. https://doi.org/10.1016/j.agee.2014.03.027

    Article  Google Scholar 

  98. Schimmelpfennig S, Kammann C, Moser G, Grünhage L, Müller C (2015) Changes in macro-and micronutrient contents of grasses and forbs following Miscanthus x giganteus feedstock, hydrochar and biochar application to temperate grassland. Grass Forage Sci 70:582–599. https://doi.org/10.1111/gfs.12158

    Article  Google Scholar 

  99. Schimmelpfennig S, Kammann C, Mumme J, Marhan S, Bamminger C, Moser G, Müller C (2017) Degradation of Miscanthus× giganteus biochar, hydrochar and feedstock under the influence of disturbance events. Appl Soil Ecol 113:135–150

    Article  Google Scholar 

  100. Schulze M, MummeJ FA, Kern J (2016) Effects of selected process conditions on the stability of hydrochar in low-carbon sandy soil. Geoderma 267:137–145. https://doi.org/10.1016/j.geoderma.2015.12.018

    Article  Google Scholar 

  101. Semida WM, Beheiry HR, Setamou M, Simpson CR, Abd El-Mageedc TA, Rady MM, Nelson SD (2019) Biochar implications for sustainable agriculture and environment: a review. S Afr J Bot 127:333–347

    Article  Google Scholar 

  102. Shen Y, Song S, Thian BWY, Fong SL, Ee AWL, Arora S, Ghosh S, Li SFY, Tan HTW, Dai Y, Wang C (2020) Impacts of biochar concentration on the growth performance of a leafy vegetable in a tropical city and its global warming potential. J Clean Prod 264:121678

    Article  Google Scholar 

  103. Sigua GC, Novak JM, Watts DW (2016) Ameliorating soil chemical properties of a hard setting subsoil layer in coastal plain USA with different designer biochars. Chemosphere 142:168–175. https://doi.org/10.1016/j.chemosphere.2015.06.016

    Article  Google Scholar 

  104. Song C, Shan S, Müller K, Wu S, Niazi NK, Xu S, Shen Y, Rinklebe J, Liu D, Wang H (2017) Characterization of pig manure-derived hydrochars for their potential application as fertilizer. Environ Sci Pollut Res 25:25772–25779. https://doi.org/10.1007/s11356-017-0301-y

    Article  Google Scholar 

  105. Song C, Yuan W, Shan S, Ma Q, Zhang H, Wang X, Niazi NK, Wang H (2020) Changes of nutrients and potentially toxic elements during hydrothermal carbonization of pig manure. Chemosphere 243:125331

    Article  Google Scholar 

  106. Straka P, Sýkorová I (2018) Coalification and coal alteration under mild thermal conditions. Int J Coal Sci Technol 5(3):358–373. https://doi.org/10.1007/s40789-018-0220-7

    Article  Google Scholar 

  107. Subedi R, Kammann C, Pelissetti S, Taupe N, Bertora C, Monaco S, Grignani C (2015) Does soil amended with biochar and hydrochar reduce ammonia emissions following the application of pig slurry? Eur J Soil Sci 66:1044–1053. https://doi.org/10.1111/ejss.12302

    Article  Google Scholar 

  108. Sun XH, Sumida H, Yoshikawa K (2013) Effects of hydrothermal process on the nutrient release of sewage sludge. Int J Waste Resour 3:124. https://doi.org/10.4172/2252-5211.1000124

    Article  Google Scholar 

  109. Sun Y, Gao B, Yao Y, Fang J, Zhang M, Zhou Y, Chen H, Yang L (2014) Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem Eng J 240:574–578. https://doi.org/10.1016/j.cej.2013.10.081

    Article  Google Scholar 

  110. Tinker PB (1984) The role of microorganisms in mediating and facilitating the uptake of plant nutrients from soil. Plant Soil 76:77–91. https://doi.org/10.1007/BF02205569

    Article  Google Scholar 

  111. Wagner A, Kaupenjohann M (2014) Suitability of biochars (pyro-and hydrochars) for metal immobilization on former sewage-field soils. Eur J Soil Sci 65:139–148. https://doi.org/10.1111/ejss.12090

    Article  Google Scholar 

  112. Wang T, Zhai Y, Zhu Y, Li C, Zeng G (2018) A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew Sust Energ Rev 90:223–247. https://doi.org/10.1016/j.rser.2018.03.071

    Article  Google Scholar 

  113. Weyers SL, Spokas KA (2011) Impact of biochar on earthworm populations: a review. Appl Environ Soil Sci 2011:541592. https://doi.org/10.1155/2011/541592

    Article  Google Scholar 

  114. Wiedner K, Naisse C, Rumpel C, Pozzi A, Wieczorek P, Glaser B (2013) Chemical modification of biomass residues during hydrothermal carbonization – what makes the difference, temperature or feedstock? Org Geochem 54:91–100. https://doi.org/10.1016/j.orggeochem.2012.10.006

    Article  Google Scholar 

  115. Woods WI, McCann JM (1999) The anthropogenic origin and persistence of Amazonian Dark Earths. Yearb Conf Latin Am Geogr 25:7–14 www.jstor.org/stable/25765871

    Google Scholar 

  116. Yu S, FengY XL, Sun H, Han L, Yang L, Sun Q, Chu Q (2019) Biowaste to treasure: application of microbial-aged hydrochar in rice paddy could improve nitrogen use efficiency and rice grain free amino acids. J Clean Prod 240:118180

    Article  Google Scholar 

  117. Yue Y, Yao Y, Lin Q, Li G, Zhao X (2017) The change of heavy metals fractions during hydrochar decomposition in soils amended with different municipal sewage sludge hydrochars. J Soils Sediments 17:763–770. https://doi.org/10.1007/s11368-015-1312-2

    Article  Google Scholar 

  118. Zhang JH, Lin QM, Zhao XR (2014) The hydrochar characters of municipal sewage sludge under different hydrothermal temperatures and durations. J Integr Agric 13:471–482. https://doi.org/10.1016/S2095-3119(13)60702-9

    Article  Google Scholar 

Download references

Code availability

Not applicable.

Funding

Authors received The World Academy of Sciences (TWAS)-research grant, RGA No. 17-511 RG/CHE/AS-G-FR 3240300143 for this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Md. Atikul Islam.

Ethics declarations

All sections are relevant to the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Haroun Chenchouni

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Islam, M.A., Limon, M.S.H., Romić, M. et al. Hydrochar-based soil amendments for agriculture: a review of recent progress. Arab J Geosci 14, 102 (2021). https://doi.org/10.1007/s12517-020-06358-8

Download citation

Keywords

  • Hydrothermal carbonization
  • Wet pyrolysis
  • Feedstock characteristics
  • Nutrient dynamics
  • Environmental sustainability