Skip to main content

Advertisement

Log in

Niche partitioning among the Mesozoic echinoderms: biotic vs abiotic traits

  • S. I. Geology of Africa
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Although niche partitioning is distinctly difficult to be quantitatively measured, the fossil record can provide the necessary archive for detecting and measuring niche differentiation at different spatial and temporal scales. The consequences of the evolution of the durophagous predators in the Mesozoic Era are well documented among many invertebrates such as mollusks and brachiopods. However, they are less characterized among the echinoderms. In order to assess the consequence of increased predation on the echinoderms and to find the causality between their diversity/dispersion and the sea level variations, the echinoderm occurrence data from the Paleobiology Database was spatiotemporally analyzed. The results indicated that life habit, diet, and locomotion of the echinoderm communities have undergone a major shift. Indeed, a steady trend of increasing the mobile and infaunal taxa, which is a well-known predator-resistant life mode, was observed. In addition, a significant positive correlation was found between carnivores and both of mobile and infaunal taxa (R = 0.70 and 0.56 respectively, p < 0.001), which indicates that mobility and infaunalization provide the opportunity to avoid predation. Moreover, there was a temporal shift in the latitudinal diversity gradient where the diversity peak occurs mainly between 10 and 40 N. Furthermore, there is a general concordance between the echinoderm diversity and the Mesozoic sea level curve. Cluster analyses and nonmetric multidimensional scaling (nMDS) indicated that with increasing sea level, the fauna which was distinct among the different geographic provinces in the Triassic became more similar during the Cretaceous. The latter suggests that sea level is a major factor controlling the biogeographic pattern of the benthic invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdelhady AA (2008) Cenomanian/Turonian mass extinction of macroinvertebrates in the context of paleoecology. A case study from north Wadi Qena, Eastern Desert, Egypt. In: Elewa AMT (ed) Mass extinction - the danger around us. Springer Verlag, Heidelberg/Berlin, pp 103–127. https://doi.org/10.1007/978e3e540e75916e4_9

    Chapter  Google Scholar 

  • Abdelhady AA (2016) Phenotypic differentiation of the Red Sea gastropods in response to the environmental deterioration: geometric morphometric approach. J Afr Earth Sci 115:191–202. https://doi.org/10.1016/j.jafrearsci.2015.12.001

    Article  Google Scholar 

  • Abdelhady AA, Abdalla MM (2018) Categorization models as a powerful tool in paleontological data analyses – the Phanerozoic bivalves. Biodiversitas 19:1769–1776. https://doi.org/10.13057/biodiv/d190525

    Article  Google Scholar 

  • Abdelhady, A.A., Elewa, A.M.T., 2010. Evolution of the upper Cretaceous oyster. A traditional morphometric approaches. In: Elewa, A.MT (Ed.), Morphometrics for non morphmetricians. Springer Verlag, Berlin/Heidelberg, pp. 157e175. https://doi.org/10.1007/978e3e540e95853e6_6

  • Abdelhady AA, Fürsich FT (2014) Macroinvertebrate palaeo–communities from the Jurassic succession of Gebel Maghara (Sinai, Egypt). J Afr Earth Sci 97:173–193

    Google Scholar 

  • Abdelhady AA, Fürsich FT (2015a) Sequence architecture of a Jurassic ramp succession from Gebel Maghara (North Sinai, Egypt): implications for eustasy. J Palaeogeogr 4:305–330

    Google Scholar 

  • Abdelhady AA, Fürsich FT (2015b) Palaeobiogeography of the Bajocian–Oxfordian macrofauna of Gebel Maghara (North Sinai, Egypt): implications for eustacy and basin topography. Palaeogeogr Palaeoclimatol Palaeoecol 417:261–273

    Google Scholar 

  • Abdelhady AA, Mohamed RSA (2017) Paucispecific macroinvertebrate communities in the Upper Cretaceous of El Hassana Dome (Abu Roash, Egypt): environmental controls vs adaptive strategies. Cretac Res 74:120–136. https://doi.org/10.1016/j.cretres.2017.02.014

    Article  Google Scholar 

  • Abdelhady AA, Seuss E-DMH, Obaidalla NH, Mahfouz AK, Hussien SAA (2018a) The unitary association method in biochronology and its potential stratigraphic resolving power: a case study from Paleocene-Eocene strata of southern Egypt. Geobios 51(4):259–268

    Google Scholar 

  • Abdelhady AA, Abdelrahman E, Elewa AMT, Fan J, Zhang S, Xiao J (2018b) Phenotypic plasticity of the gastropod Melanoides tuberculata: a pollution-induced stabilizing selection. Mar Pollut Bull 133:701–710. https://doi.org/10.1016/j.marpolbul.2018.06.026

    Article  Google Scholar 

  • Abdelhady AA, Khalil M, Ismail E, Mohamed R, Ali A, Snousy M, Fan D, Zhang S, Xiao J (2019a) Potential biodiversity threats associated with the metal pollution in the Nile-Delta ecosystem (Manzala lagoon, Egypt). Ecol Indic 98:844–853. https://doi.org/10.1016/j.ecolind.2018.12.002

    Article  Google Scholar 

  • Abdelhady AA, Khalil M, Ismail E, Fan D, Zhang S, Xiao J (2019b) Water chemistry and substrate type as major determinants for molluscan feeding habit and life-mode in lagoon sediments. Estuar Coast Shelf Sci 220:120–130. https://doi.org/10.1016/j.ecss.2019.02.019

    Article  Google Scholar 

  • Abdelhady AA, Mohamed R, Fathy D, Ali A (2020) Benthic invertebrate communities as a function of sea-level fluctuations and hydrodynamics: a case from the Cenomanian-Turonian of Wadi Tarfa (Eastern Desert, Egypt). J Afr Earth Sci 168:103870. https://doi.org/10.1016/j.jafrearsci.2020

    Article  Google Scholar 

  • Abdel-Raheem KHM, Ali MSM, Azab MM, Abdelhady AA (2020) Paleoecology and paleobiogeography of the Cenomanian-Turonian bivalves from the Southern Galala Plateau (Eastern Desert, Egypt). J Afr Earth Sci 103873. https://doi.org/10.1016/j.jafrearsci.2020.103873

  • Alberti M, Fürsich FT, Abdelhady AA, Andersen N (2017) Middle to Late Jurassic equatorial seawater temperatures and latitudinal temperature gradients based on stable isotopes of brachiopods and oysters from Gebel Maghara, Egypt. Palaeogeogr Palaeoclimatol Palaeoecol. https://doi.org/10.1016/j.palaeo.2016.11.052

  • Alroy J (2008) Dynamics of origination and extinction in the marine fossil record. – Proc. Natl Acad. Sci. USA 105:11536–11542

    Google Scholar 

  • Alroy J, Marshall CR, Bambach RK, Bezusko K, Foote M, Fursich FT, Hansen TA, Holland SM, Ivany LC, Jablonski D, Jacobs DK, Jones DC, Kosnik MA, Lidgard S, Low S, Miller AI, Novack-Gottshall PM, Olszewski TD, Patzkowsky ME, Raup DM, Roy K, Sepkoski JJ, Sommers MG, Wagner PJ, Webber A (2001) Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc Natl Acad Sci 98:6261–6266

    Google Scholar 

  • Ayoub-Hannaa WS, Abdelhady AA, Fürsich FT (2017) Costinuculana magharensis n. gen. n. sp. (Bivalvia, Nuculanidae) from the Middle Jurassic of Gebel Maghara, North Sinai, Egypt. J Paleontol 91(3):434–443. https://doi.org/10.1017/jpa.2016.161

    Article  Google Scholar 

  • Barnes R (1987) Invertebrate zoology. Dryden Press, Orlando 893 p

    Google Scholar 

  • Baumiller TK, Gahn FJ (2013) Reconstructing predation pressure on crinoids: estimating arm-loss rates from regenerating arms. Paleobiology 39(1):40–51

    Google Scholar 

  • Baumiller TK, Mooi RM, Charles G (2008) Urchins in the meadow: paleobiological and evolutionary implications of cidaroid predation on crinoids. Paleobiology 34(1):22–34

    Google Scholar 

  • Baumiller T, Salamon M, Gorzelak P, Mooi R, Messing C, Gahn F (2010) Post-Paleozoic crinoid radiation in response to benthic predation preceded the Mesozoic marine revolution. Proc Natl Acad Sci 107(13):5893–5896

    Google Scholar 

  • Borszcz T, Zatoń M (2013) The oldest record of predation on echinoids: evidence from the M. Jurassic of Poland. Lethaia 46:141–145

    Google Scholar 

  • Boucot AJ (1975) Evolution and extinction rate controls. Elsevier, Amsterdam

    Google Scholar 

  • Díaz S, Fargione J, Chapin FS, Tilman D (2006) Biodiversity loss threatens human well-being. PLoS Biol 4:e27

    Google Scholar 

  • Dietl G, Kelley P (2002) The fossil record of predator-prey arms races: coevolution and escalation hypotheses. Paleontological Society Papers 8:353–374

    Google Scholar 

  • Du H, Bao Z, Hou R, Wang S, Su H et al (2012) Transcriptome sequencing and characterization for the sea cucumber Apostichopus japonicus (Selenka, 1867). PLoS One 7(3):333–311

    Google Scholar 

  • Elewa AMT, Abdelhady AA (2020) Past, present, and future mass extinctions. J Afr Earth Sci 164:103780. https://doi.org/10.1016/j.jafrearsci.2019.103678

    Article  Google Scholar 

  • Finnegan S, McClain C, Kosnik M, Payne J (2011) Escargots through time: an energetic comparison of marine gastropod assemblages before and after the Mesozoic marine revolution. Paleobiology 37(2):252–269

    Google Scholar 

  • Foote M (2000) Origination and extinction components of taxonomic diversity: general problems. Paleobiology 36:72–102

    Google Scholar 

  • Foote M (2014) Environmental controls on geographic range size in marine animal genera. Paleobiology 40(3):440–458

    Google Scholar 

  • Gorzelak P (2018) Microstructural evidence for stalk autotomy in Holocrinus – the oldest stem-group isocrinid Palaeogeography, Palaeoclimatology, Palaeoecology. 506:202–207

  • Gorzelak P, Salamon MA, Baumiller TK (2012) Predator-induced macroevolutionary trends in Mesozoic crinoids. Proc Natl Acad Sci U S A 109(18):7004–7007

    Google Scholar 

  • Gorzelak P, Salamon MA, Trzęsiok D, Lach R, Baumiller TK (2016) Diversity dynamics of post-Palaeozoic crinoids - in quest of the factors affecting crinoid macroevolution. Lethaia 49(2):231–244

    Google Scholar 

  • Gould SJ (1988) Trends as changes in variance: a new slant on progress and directionality in evolution. J Paleontol 62:319–329

    Google Scholar 

  • Groth P, Frew J, Santos E, Koop D, Maxwell T, Doutriaux C, Ellqvist T, Potter G, Freire J, Williams D, Silva C (2012) Designing a provenance-based climate data analysis application. In: Provenance and Annotation of Data and Processes, vol 7525. Springer, Berlin Heidelberg, pp 214–219. https://doi.org/10.1016/j.geobios.2018.06.005

    Chapter  Google Scholar 

  • Guensburg TE, Sprinkle J (1992) Rise of echinoderms in the Paleozoic evolutionary fauna: significance of paleoenvironmental controls. Geology 20:407–410

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) The chronology of the fluctuating sea level since the Triassic. Science 235:1156–1167

    Google Scholar 

  • Harnik PG, Jablonski D, Krug AZ, Valentine JW (2010) Genus age, provincialarea, the taxonomic structure of marine faunas. Proc R Soc B Biol Sci 277:3427–3435

    Google Scholar 

  • Harper E, Skelton P (1993) The Mesozoic marine revolution and epifaunal bivalves. Scr Geol 2:127–153

    Google Scholar 

  • Hofmann R, Hautmann M, Wasmer M, Bucher H (2013) Palaeoecology of the Spathian virgin formation (Utah, USA) and its implications for the early Triassic recovery. Acta Palaeontol Pol 58:149–173

    Google Scholar 

  • Jain S, Abdelhady AA, Alhussein M (2019) Responses of benthic foraminifera to the environmental variability: a case from the Middle Jurassic Kachchh Basin (Western India). Mar Micropaleontol 151:101749. https://doi.org/10.1016/j.marmicro.2019.101749

    Article  Google Scholar 

  • Jain S, Niazi M, Abdelhady AA, Vahidinia M, Hossein M (2020) The Campanian paleoenvironment: inferences based on benthic foraminifera from northeastern Iran. Palaeogeogr Palaeoclimatol Palaeoecol 554:109823. https://doi.org/10.1016/j.palaeo.2020.109823

    Article  Google Scholar 

  • Kerr JP, Kelley PH (2015) Assessing the influence of escalation during the Mesozoic marine revolution: shell breakage and adaptation against enemies in Mesozoic ammonites. Palaeogeogr Palaeoclimatol Palaeoecol 440:632–646

    Google Scholar 

  • Klompmaker AA, Schweitzer CE, Feldmann RM, Kowalewski M (2013) The influence of reefs on the rise of Mesozoic marine crustaceans. Geology 41(11):1179–1182

    Google Scholar 

  • Knoll AH, Follows MJ (2016) A bottom-up perspective on ecosystem change in Mesozoic oceans. Proc R Soc B Biol Sci 283:20161755

    Google Scholar 

  • Marshal DJ, Abdelhady AA, Teck Wah TD, Mustapha N, Gӧdeke SH, De Silva LC, Hall-Spencer JM (2019) Biomonitoring acidification using marine gastropods. Sci Total Environ 692:833–843. https://doi.org/10.1016/j.scitotenv.2019.07.041

    Article  Google Scholar 

  • Miller KG, Kominz MA, Browning JV, Wright JD (2005) The Phanerozoic record of global sea-level change. Science 310(5752):1293–1298

    Google Scholar 

  • Mora C, Sale P (2011) Ongoing global biodiversity loss and the need to move beyond protected areas: a review of the technical and practical shortcomings of protected areas on land and sea. Mar Ecol Prog Ser 434:251–266

    Google Scholar 

  • Nürnberg S, Aberhan M (2013) Habitat breadth and geographic range predict diversity dynamics in marine Mesozoic bivalves. Paleobiology 39(3):360–372

    Google Scholar 

  • Polly, P.D., 2014a. Phylogenetics for Mathematica. Version 3.0. Department of Geological Sciences, Indiana University: Bloomington, Indiana

  • Polly PD (2014b) Quantitative Paleontology for Mathematica. Version 4.1. Department of Geological Sciences, Indiana University, Bloomington

    Google Scholar 

  • Polly PD (2014c) Geometric morphometrics for Mathematica. Version 11.0. Department of Geological Sciences, Indiana University, Bloomington

    Google Scholar 

  • Roy K (1994) Effects of the Mesozoic marine revolution on the taxonomic, morphologic, and biogeographic evolution of a group: aporrhaid gastropods during the Mesozoic. Paleobiology 20(3):274–296

    Google Scholar 

  • Roy K, Jablonski D, Valentine JW, Rosenberg G (1998) Marine latitudinal diversity gradients: tests of causal hypotheses. Proc Natl Acad Sci 95:3699–3702

    Google Scholar 

  • Ruban DA (2010) Do new reconstructions clarify the relationships between the Phanerozoic diversity dynamics of marine invertebrates and long-term eustatic trends? Ann Paléontol 96:51–59

    Google Scholar 

  • Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate zoology, 7th edn. Cengage Learning, Boston

    Google Scholar 

  • Salamon MA, Niedzwiedzki R, Gorzelak D, Lach R, Surmik D (2012) Bromalites from the middle Triassic of Poland and the rise of the Mesozoic marine revolution. Palaeogeogr Palaeoclimatol Palaeoecol 321:142–150

    Google Scholar 

  • Signor PW, Brett CE (1984) The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10:229–245

  • Slater GJ, Harmon LJ (2013) Unifying fossils and phylogenies for comparative analyses of diversification and trait evolution. Methods Ecol Evol 4:699–702

    Google Scholar 

  • Smith AB, McGowan AJ (2007) The shape of the Phanerozoic marine palaeodiversity curve: how much can be predicted from the sedimentary rock record of Western Europe? Palaeontology 50:765–774

    Google Scholar 

  • Smith AB, Monks NEA, Gale AS (2006) Echinoid distribution and sequence stratigraphy in the Cenomanian (Upper Cretaceous) of southern England. Proc Geol Assoc 117:207–217

    Google Scholar 

  • Sorenson L, Santini F, Alfaro ME (2014) The effect of habitat on modern shark diversification. J Evol Biol 27(8):1536–1548

    Google Scholar 

  • Sørensen AM, Surlyk F, Jagt JWM (2012) Adaptive morphologies and guild structure in a high-diversity bivalve fauna from an early Campanian rocky shore, Ivö Klack (Sweden). Cretac Res 33:21–41

  • Stanley SM (1973) An explanation for Cope's rule. Evolution 27:1–26

    Google Scholar 

  • Stevenson A, Gahn FJ, Baumiller TK, Sevastopulo GD (2017) Predation on feather stars by regular echinoids as evidenced by laboratory and field observations and its paleobiological implications. Paleobiology 43(2):274–285

    Google Scholar 

  • Stöhr S, O'Hara TD, Thuy B (2012) Global diversity of brittle stars (Echinodermata: Ophiuroidea). PLoS One 7(3):e31940

    Google Scholar 

  • Tomašových A, Kidwell SM (2009) Preservation of spatial and environmental gradients by death assemblages. Paleobiology 35:122–148

    Google Scholar 

  • Varela S, González-Hernández J, Sgarbi LF, Marshall C, Uhen MD, Peters S, McClennen M (2015) paleobioDB: an R package for downloading, visualizing and processing data from the Paleobiology database. Ecography 38:419–425

    Google Scholar 

  • Vermeij GJ (1977) The Mesozoic marine revolution: evidence from snails, predators and grazers. Palaeobiology 3:245–258

    Google Scholar 

  • Vermeij GJ (1994) The evolutionary interaction among species: selection, escalation, and coevolution. Annu Rev Ecol Syst 25:219–236

    Google Scholar 

  • Walker S, Brett C (2002) Post-Paleozoic patterns in marine predation: was there a Mesozoic and Cenozoic marine revolution? Paleontol Soc Pap 8:119–194

    Google Scholar 

Download references

Acknowledgments

Two anonymous reviewers are acknowledged for their constructive comments. This contribution is based on data from the Paleobiology Database (http://paleobiodb.org/#/); therefore, we acknowledge all of the contributors to this database (e.g., Wolfgang Kiessling, Loic Villier, Franz Fürsich, Mark Patzkowsky, and Andrew Smith). This is PBDB official publication #376.

Funding

This work was supported by the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH/Centre for International Migration and Development (CIM), Germany (grant number 41704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Awad Abdelhady.

Additional information

This article is part of the Topical Collection on New Advances and Research Results on the Geology of Africa.

Electronic supplementary material

ESM 1

Occurrence and range data of the Mesozoic echinoderms. (XLSX 638 kb)

ESM 2

The Mathematica 10 code used for analyzing the dataset. (PDF 9489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelhady, A.A., Elshekhipy, A.A. Niche partitioning among the Mesozoic echinoderms: biotic vs abiotic traits. Arab J Geosci 13, 882 (2020). https://doi.org/10.1007/s12517-020-05908-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05908-4

Keywords

Navigation