Skip to main content
Log in

Numerical appraisal of rock mass anisotropy effect on elastic deformations of a circular tunnel

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The paper describes effects of anisotropic mechanical properties of rock masses on elastic behaviour of a circular tunnel under both hydrostatic and non-hydrostatic in situ stress states. This study is based on field data obtained from two actual case studies. In both cases, the rock masses have transversely isotropic structures. Hence, a 2D finite element modelling based on the equivalent continuum approach is used for the analysis. The tunnel deformation behaviour has been investigated for both isotropic and transversely isotropic conditions. To evaluate the degree of anisotropy of rock mass, an “anisotropy index” and a “normalized displacement ratio” have been defined. The effect of orientation of the isotropic planes is further investigated. The results show that in a hydrostatic stress state, the maximum displacement always occurs in a direction perpendicular to the isotropic planes. In this case, three empirical equations have been developed to compute the normalized displacement ratio, the deviation, and the direction of displacement vector at any arbitrary point on the tunnel periphery. The results further show that if the anisotropy index increases, the displacement difference (the difference between the maximum and the minimum displacements) on the tunnel walls increases too. For the non-hydrostatic stress state, simultaneous effects of stress ratio, anisotropy index, and orientation of isotropic planes on normalized displacements have been investigated. In this case, the location of maximum displacement inclines towards the direction of major principal stress. This effect is more noticeable when the isotropic planes are oriented at an angle of 90° relative to the direction of the major principal stress. The paper also provides an empirical equation to determine the location of maximum displacement on the tunnel walls. Finally, the practical application of the results is further illustrated by an actual case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Majdi.

Additional information

Responsible Editor: Murat Karakus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maazallahi, V., Majdi, A. Numerical appraisal of rock mass anisotropy effect on elastic deformations of a circular tunnel. Arab J Geosci 13, 547 (2020). https://doi.org/10.1007/s12517-020-05531-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05531-3

Keywords

Navigation