GIS-based DRASTIC and modified DRASTIC techniques for assessing groundwater vulnerability to pollution in Torghabeh-Shandiz of Khorasan County, Iran

Abstract

The condition of groundwater pollution in Torghabeh-Shandiz of Khorasan County has become a major problem, especially in regard to the expanding population and human activities. The aim of this study of assessing the groundwater vulnerability of this region using a GIS, DRASTIC, and modified DRASTIC techniques. The layer of seven parameters (depth to the water table, net recharge, aquifer media, soil media, topography, the impact of vadose zone, and hydraulic conductivity) was converted to thematic maps with GIS. The DRASTIC map was combined with the land use map for producing the modified DRASTIC map to assess the effect of land use activities on the groundwater vulnerability. The result of the difference area% between DRASTIC and modified DRASTIC methods shows that the percentage of low vulnerability areas have decreased by 27.4%, by applying this modified method. In contrast, the areas of moderate to very high vulnerability increased by 19.8% and 5.4%, respectively. In DRASTIC and modified DRASTIC methods, the very high vulnerability zone is present towards the northeast region. The river flows from the northeast region of the watershed allows more recharge of water, which may drain the fertilizers from the surrounding agricultural lands along with it to the groundwater and hence leads to groundwater vulnerability of this region. The very low vulnerability and low vulnerability zones are present in the western and central portions of the watershed. To check the reliability of the modified DRASTICindex map in the field condition, groundwater samples were collected for the analysis of nitrate, which is found as one of the pollutants in groundwater resulting due to use of fertilizers during agriculture. The calibration results suggested that the modified DRASTICindex significantly affects the study area. Nitrate is important to obtain better results in the vulnerability map, considering that most of the lands in the study area are agricultural.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Acharya T, Subedi A, Lee D (2018) Evaluation of water indices for surface water extraction in a Landsat 8 Scene of Nepal. Sensors 18:2580. https://doi.org/10.3390/s18082580

    Article  Google Scholar 

  2. Adnan S, Iqbal J, Maltamo M, Valbuena R (2018) GIS-based DRASTIC model for groundwater vulnerability and pollution risk assessment in the Peshawar District, Pakistan. Arab J Geosci 11:458. https://doi.org/10.1007/s12517-12018-13795-12519

    Article  Google Scholar 

  3. Ahmed A (2009) Using generic and pesticide DRASTIC GIS-based models for vulnerability assessment of the quaternary aquifer at Sohag, Egypt. Hydrogeol J 17:1203–1217. https://doi.org/10.1007/s10040-009-0433-3

    Article  Google Scholar 

  4. Al-Adamat RAN, Foster IDL, Baban SMJ (2003) Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Appl Geogr 23:303–324. https://doi.org/10.1016/j.apgeog.2003.08.007

    Article  Google Scholar 

  5. Alam F, Umar R, Ahmed S, Dar FA (2014) A new model (DRASTIC-LU) for evaluating groundwater vulnerability in parts of Central Ganga Plain, India. Arab J Geosci 7:927–937. https://doi.org/10.1007/s12517-012-0796-y

    Article  Google Scholar 

  6. Alaya M, Saidi S, Zemni T, Zargouni F (2014) Suitability assessment of deep groundwater for drinking and irrigation use in the Djeffara aquifers (Northern Gabes, south-eastern Tunisia). Environ Earth Sci 71:3387–3421. https://doi.org/10.1007/s12665-013-2729-9

    Article  Google Scholar 

  7. Albuquerque MTD, Sanz G, Oliveira SF, Martínez-Alegría R, Antunes IMHR (2013) Spatio-temporal groundwater vulnerability assessment - a coupled remote sensing and GIS approach for historical land cover reconstruction. Water Resour Manag 27:4509–4526. https://doi.org/10.1007/s11269-013-0422-0

    Article  Google Scholar 

  8. Aller L, Lehr JH, Petty R, Bennett T (1987) Drastic: a standhrdized system to evaluate groundwater pollution potential using hydrugedlugic settings. EPA/600/2-87/035:38-57

  9. Al-Shatnawi AM, Al-Shboul R, Al-Fawwaz BM, Al-Sharafat W, Khalf RMB (2014) Vulnerability assessment using raster calculation and DRASTIC model for the Jordan Valley Subsurface Basin (AB1) imaging maps. J Geogr Inf Syst 6:585–593. https://doi.org/10.4236/jgis.2014.66048

    Article  Google Scholar 

  10. Ayed B, Jmal I, Sahal S, Bouri S (2017) Assessment of groundwater vulnerability using a specific vulnerability method: case of Maritime Djeffara shallow aquifer (Southeastern Tunisia). Arab J Geosci 10:262. https://doi.org/10.1007/s12517-017-3035-8

    Article  Google Scholar 

  11. Baalousha HM (2011) Mapping groundwater contamination risk using GIS and groundwater modelling. A case study from the Gaza Strip, Palestine. Arab J Geosci 4:483–494. https://doi.org/10.1007/s12517-010-0135-0

    Article  Google Scholar 

  12. Babiker IS, Mohamed MAA, Hiyama T, Kato K (2005) A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Sci Total Environ 345:127–140. https://doi.org/10.1016/j.scitotenv.2004.11.005

    Article  Google Scholar 

  13. Chandoul I, Bouaziz S, Dhia H (2014) Groundwater vulnerability assessment using GIS-based DRASTIC models in shallow aquifer of Gabes North (South East Tunisia). Arab J Geosci:1–11. https://doi.org/10.1007/s12517-014-1702-6

  14. Chandrasekar N, Selvakumar S, Srinivas Y, John Wilson JS, Simon Peter T, Magesh NS (2014) Hydrogeochemical assessment of groundwater quality along the coastal aquifers of southern Tamil Nadu, India. Environ Earth Sci 71:4739–4750. https://doi.org/10.1007/s12665-013-2864-3

    Article  Google Scholar 

  15. Chitsazan M, Akhtari Y (2009) A GIS-based DRASTIC model for assessing aquifer vulnerability in Kherran Plain, Khuzestan, Iran. Water Resour Manag 23:1137–1155. https://doi.org/10.1007/s11269-008-9319-8

    Article  Google Scholar 

  16. Davraz A, Özdemir A (2014) Groundwater quality assessment and its suitability in Çeltikçi plain (Burdur/Turkey). Environ Earth Sci 72:1167–1190. https://doi.org/10.1007/s12665-013-3036-1

    Article  Google Scholar 

  17. Duarte L, Teodoro AC, Gonçalves JA, Guerner Dias AJ, Espinha Marques J (2015) A dynamic map application for the assessment of groundwater vulnerability to pollution. Environ Earth Sci 74:1–13. https://doi.org/10.1007/s12665-015-4222-0

    Article  Google Scholar 

  18. Fernandes LFS, Cardoso LVRQ, Pacheco FAL, Leitão S, Moura JP (2014) DRASTIC and GOD vulnerability maps of the Cabril River Basin, Portugal. Rem: Revista Escola de Minas 67:133–142. https://doi.org/10.1590/S0370-44672014000200002

    Article  Google Scholar 

  19. Ghosh A, Tiwari AK, Das S (2015) A GIS based DRASTIC model for assessing groundwater vulnerability of Katri Watershed, Dhanbad, India. Model Earth Syst Environ 1(3):11. https://doi.org/10.1007/s40808-015-0009-2

    Article  Google Scholar 

  20. Guo L, Liu R, Men C, Wang Q, Miao Y, Zhang Y (2019) Quantifying and simulating landscape composition and pattern impacts on land surface temperature: a decadal study of the rapidly urbanizing city of Beijing, China. Sci Total Environ 654:430–440. https://doi.org/10.1016/j.scitotenv.2018.1011.1108

    Article  Google Scholar 

  21. Gupta N (2014) Groundwater vulnerability assessment using DRASTIC method in Jabalpur District of Madhya Pradesh. Int J Recent Technol Eng 3:36–46

    Google Scholar 

  22. Huan H, Wang J, Teng Y (2012) Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: a case study in Jilin City of northeast China. Sci Total Environ 440:14–23. https://doi.org/10.1016/j.scitotenv.2012.08.037

    Article  Google Scholar 

  23. Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213. https://doi.org/10.1016/S0034-4257(1002)00096-00092

    Article  Google Scholar 

  24. Irimo K (2018) Iranian Meteorological Office Data Processing Center. Islamic Republic of Iran Meteorological Office, Khorasan

    Google Scholar 

  25. Jhariya DC, Kumar T, Pandey HK, Kumar S, Kumar D, Gautam AK, Baghel VS, Kishore N (2019) Assessment of groundwater vulnerability to pollution by modified DRASTIC model and analytic hierarchy process. Environ Earth Sci 78:610. https://doi.org/10.1007/s12665-12019-18608-12662

    Article  Google Scholar 

  26. Jilali A, Zarhloule Y, Georgiadis M (2015) Vulnerability mapping and risk of groundwater of the oasis of Figuig, Morocco: application of DRASTIC and AVI methods. Arab J Geosci 8:1611–1621. https://doi.org/10.1007/s12517-014-1320-3

    Article  Google Scholar 

  27. Kaliraj S, Chandrasekar N, Peter TS, Selvakumar S, Magesh NS (2014) Mapping of coastal aquifer vulnerable zone in the south west coast of Kanyakumari, South India, using GIS-based DRASTIC model. Environ Monit Assess 187:1–27. https://doi.org/10.1007/s10661-014-4073-2

    Article  Google Scholar 

  28. Kura N, Ramli M, Ibrahim S, Sulaiman W, Aris A, Tanko A, Zaudi M (2015) Assessment of groundwater vulnerability to anthropogenic pollution and seawater intrusion in a small tropical island using index-based methods. Environ Sci Pollut Res 22:1512–1533. https://doi.org/10.1007/s11356-014-3444-0

    Article  Google Scholar 

  29. Magesh NS, Chandrasekar N (2013) Evaluation of spatial variations in groundwater quality by WQI and GIS technique: a case study of Virudunagar District, Tamil Nadu, India. Arab J Geosci 6:1883–1898. https://doi.org/10.1007/s12517-011-0496-z

    Article  Google Scholar 

  30. McLay CDA, Dragten R, Sparling G, Selvarajah N (2001) Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environ Pollut 115:191–204. https://doi.org/10.1016/S0269-7491(1001)00111-00117

    Article  Google Scholar 

  31. Mishima Y, Takada M, Kitagawa R (2011) Evaluation of intrinsic vulnerability to nitrate contamination of groundwater: appropriate fertilizer application management. Environ Earth Sci 63:571–580. https://doi.org/10.1007/s12665-010-0725-x

    Article  Google Scholar 

  32. Mogaji KA, Lim HS, Abdullah K (2014) Modeling groundwater vulnerability prediction using geographic information system (GIS)-based ordered weighted average (OWA) method and DRASTIC model theory hybrid approach. Arab J Geosci 7:5409–5429. https://doi.org/10.1007/s12517-013-1163-3

    Article  Google Scholar 

  33. Mondal I, Bandyopadhyay J, Chowdhury P (2019) A GIS based DRASTIC model for assessing groundwater vulnerability in Jangalmahal area, West Bengal, India. Sustain Water Resour Manag 5(2):557–573. https://doi.org/10.1007/s40899-018-0224-x

    Article  Google Scholar 

  34. Nadiri AA, Norouzi H, Khatibi R, Gharekhani M (2019) Groundwater DRASTIC vulnerability mapping by unsupervised and supervised techniques using a modelling strategy in two levels. J Hydrol 574:744–759. https://doi.org/10.1016/j.jhydrol.2019.1004.1039

    Article  Google Scholar 

  35. Narmada K, Bhaskaran G, Gobinath K (2015) Assessment of groundwater quality in the Amaravathi River Basin, South India. In: Ramkumar M, Kumaraswamy K, Mohanraj R (eds) . Springer International Publishing, Environmental management of river basin ecosystems, pp 549–573

    Google Scholar 

  36. Nazzal Y, Howari FM, Iqbal J, Ahmed I, Orm NB, Yousef A (2019) Investigating aquifer vulnerability and pollution risk employing modified DRASTIC model and GIS techniques in Liwa area, United Arab Emirates. Groundw Sustain Dev 8:567–578. https://doi.org/10.1016/j.gsd.2019.02.006

    Article  Google Scholar 

  37. Neshat A, Pradhan B, Dadras M (2014) Groundwater vulnerability assessment using an improved DRASTIC method in GIS. Resour Conserv Recycl 86:74–86. https://doi.org/10.1016/j.resconrec.2014.02.008

    Article  Google Scholar 

  38. Pacheco FAL, Pires LMGR, Santos RMB, Sanches Fernandes LF (2015) Factor weighting in DRASTIC modeling. Sci Total Environ 505:474–486. https://doi.org/10.1016/j.scitotenv.2014.09.092

    Article  Google Scholar 

  39. Piscopo G (2001) Groundwater vulnerability map explanatory notes-Castlereagh Catchment. Australia NSW Department of Land and Water Conservation, Parramatta

    Google Scholar 

  40. Rahman A (2008) A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Appl Geogr 28:32–53. https://doi.org/10.1016/j.apgeog.2007.07.008

    Article  Google Scholar 

  41. Rawat JS, Kumar M (2015) Monitoring land use/cover change using remote sensing and GIS techniques: a case study of Hawalbagh block, district Almora, Uttarakhand, India. Egypt J Remote Sens Space Sci 18:77–84. https://doi.org/10.1016/j.ejrs.2015.02.002

    Article  Google Scholar 

  42. Sadat-Noori SM, Ebrahimi K, Liaghat AM (2014) Groundwater quality assessment using the Water Quality Index and GIS in Saveh-Nobaran aquifer, Iran. Environ Earth Sci 71:3827–3843. https://doi.org/10.1007/s12665-013-2770-8

    Article  Google Scholar 

  43. Saidi S, Bouri S, Dhia HB (2010) Groundwater vulnerability and risk mapping of the Hajeb-jelma aquifer (Central Tunisia) using a GIS-based DRASTIC model. Environ Earth Sci 59:1579–1588. https://doi.org/10.1007/s12665-009-0143-0

    Article  Google Scholar 

  44. Shekhar S, Pandey AC, Tirkey A (2015) A GIS-based DRASTIC model for assessing groundwater vulnerability in hard rock granitic aquifer. Arab J Geosci 8:1385–1401. https://doi.org/10.1007/s12517-014-1285-2

    Article  Google Scholar 

  45. Shirazi SM, Imran HM, Akib S (2012) GIS-based DRASTIC method for groundwater vulnerability assessment: a review. J Risk Res 15:991–1011. https://doi.org/10.1080/13669877.2012.686053

    Article  Google Scholar 

  46. Shirazi SM, Imran HM, Akib S, Yusop Z, Harun ZB (2013) Groundwater vulnerability assessment in the Melaka State of Malaysia using DRASTIC and GIS techniques. Environ Earth Sci 70:2293–2304. https://doi.org/10.1007/s12665-013-2360-9

    Article  Google Scholar 

  47. Singaraja C (2015) GIS-based suitability measurement of groundwater resources for irrigation in Thoothukudi District, Tamil Nadu, India. Water Qual Expo Health:1–17. https://doi.org/10.1007/s12403-015-0159-5

  48. Singha SS, Pasupuleti S, Singha S, Singh R, Venkatesh AS (2019) A GIS-based modified DRASTIC approach for geospatial modeling of groundwater vulnerability and pollution risk mapping in Korba district, Central India. Environ Earth Sci 78(21):628. https://doi.org/10.1007/s12665-019-8640-2

    Article  Google Scholar 

  49. Su X, Yuan W, Xu W, Du S (2015) A groundwater vulnerability assessment method for organic pollution: a validation case in the Hun River basin, Northeastern China. Environ Earth Sci 73:467–480. https://doi.org/10.1007/s12665-014-3859-4

    Article  Google Scholar 

  50. Tiwari AK, Singh PK, De Maio M (2016) Evaluation of aquifer vulnerability in a coal mining of India by using GIS-based DRASTIC model. Arab J Geosci 9(6):438. https://doi.org/10.1007/s12517-016-2456-0

    Article  Google Scholar 

  51. Uhan J, Vižintin G, Pezdič J (2011) Groundwater nitrate vulnerability assessment in alluvial aquifer using process-based models and weights-of-evidence method: lower Savinja Valley case study (Slovenia). Environ Earth Sci 64:97–105. https://doi.org/10.1007/s12665-010-0821-y

    Article  Google Scholar 

  52. Varol S, Davraz A (2014) Assessment of geochemistry and hydrogeochemical processes in groundwater of the Tefenni plain (Burdur/Turkey). Environ Earth Sci 71:4657–4673. https://doi.org/10.1007/s12665-013-2856-3

    Article  Google Scholar 

  53. Venkatesan G, Pitchaikani S, Saravanan S (2019) Assessment of groundwater vulnerability using GIS and DRASTIC for Upper Palar River Basin, Tamil Nadu. J Geol Soc India 94:387–394. https://doi.org/10.1007/s12594-019-1326-2

    Article  Google Scholar 

  54. Wu W, Yin S, Liu H, Chen H (2014) Groundwater vulnerability assessment and feasibility mapping under reclaimed water irrigation by a modified DRASTIC model. Water Resour Manag 28:1219–1234. https://doi.org/10.1007/s11269-014-0536-z

    Article  Google Scholar 

  55. Yin L, Zhang E, Wang X, Wenninger J, Dong J, Guo L, Huang J (2013) A GIS-based DRASTIC model for assessing groundwater vulnerability in the Ordos Plateau, China. Environ Earth Sci 69:171–185. https://doi.org/10.1007/s12665-012-1945-z

    Article  Google Scholar 

  56. Zhang Y, Ma R, Li Z (2014) Human health risk assessment of groundwater in Hetao Plain (Inner Mongolia Autonomous Region, China). Environ Monit Assess 186:4669–4684. https://doi.org/10.1007/s10661-014-3729-2

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Biswajeet Pradhan for providing helpful suggestions to improve an early draft of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fazel Amiri.

Additional information

Responsible Editor: Angela Vallejos

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amiri, F., Tabatabaie, T. & Entezari, M. GIS-based DRASTIC and modified DRASTIC techniques for assessing groundwater vulnerability to pollution in Torghabeh-Shandiz of Khorasan County, Iran. Arab J Geosci 13, 479 (2020). https://doi.org/10.1007/s12517-020-05445-0

Download citation

Keywords

  • Groundwater vulnerability
  • Modified DRASTICindex
  • GIS
  • Torghabeh-Shandiz