Application of remote-sensing techniques in geological and structural mapping of Atalla Shear Zone and Environs, Central Eastern Desert, Egypt

Abstract

The Atalla Shear Zone (ASZ) is one of the crucial megashears which are geometrically and kinematically akin to the Najd-Shear Corridor in the central Eastern Desert of Egypt. The Landsat-8 and ASTER-based mapping techniques integrated with extensive petrographic and structural-field investigations enhanced the geological and structural maps of the study area. The Neoproterozoic basement complex in the study area discriminated into ditinctive rock suites: Meatiq Group, ophiolitic melange, arc assemblage, syn- to late-tectonic granitoids, Dokhan Volcanics, Hammamat Sediments, post-Hammamat Felsites and post-tectonic granitoids. The true color composites (TCC) (4 3 2 for Landsat-8; 3 2 1 for ASTER), false color composites (FCC) (1 6 4, 1 6 7 and 7 5 1 for Landsat-8; 5 4 3 and 9 6 4 for ASTER), principal component analysis (PCA) (1 2 3, 3 2 1 and 6 4 2 for Landsat-8; 1 2 3 and 5 4 2 for ASTER), minimum noise fraction (MNF) (1 2 3 and 3 5 1 for Landsat-8; 1 2 4 and 3 2 1 for ASTER) and band ratios (BR) (6/2, 6/7, 6/5*4/3 and 7/6, 7/5, 5/3 for Landsat-8; 2/6, 7/5, 7/6 and 4/7, 3/4, 2/1 for ASTER besides the new created ratio 2/6, 7/5, 7/6) are the best combinations that demonstrate efficiency in discrimination of lithologic contacts and structural elements, using the spectral signature of different rock units. Moreover, the BR b7/b5, b5/b7 and b6/b4 of grey scale for Landsat-8 are used as a tool for mineral detection along with the spectral indices created to detect muscovite (b7/b6), ferrous silicates b5/b4 (biotite, chlorite and amphiboles) and ferrous iron b5/b3 (mafic minerals). The automatic lineament extraction utilizing the SRTM data advocated the role of NE- to NNE-trending lineaments in the tectonic framework of the study area. The structural fabric of the study area is evaluated in three main structural domains: Meatiq (MD), Atalla Shear Zone (ASZD) and Wadi Hammamat (WHD). The pronounced structural implication is the transposition of NE-oriented fabric in MD into NW-oriented penetrative shear-related fabric, fully in the ASZD and partly in WHD. The combination of transcurrent shearing with ENE-directed shortening along the ASZ that was resulted in noteworthy transpressive structures resemble in many respects those observed in the Ajjaj Shear Belt in Western Arabia. Among these structures are shear zone-related folds, imbricated thrust sheets, antiformal stacks and thrust duplexes. The deformation history of the investigated area proposed four phases of deformation (D1D4). It depicts a long lasted deformational event covering the main accretion-collision phases concurrent with the E-W assembly of Gondwana, and the subsequent post-collision Najd-related transpressional phase which resulted in several major left-lateral transcurrent shear zones along with the exhumation of gneissic core complexes in the Arabian-Nubian Shield.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Abdeen MM, Greilling RO (2005) A quantitative structural study of Late Pan-African compressional deformation in the central Eastern Desert (Egypt) during Gondwana assembly. Gondwana Res 8(4):457–471

    Article  Google Scholar 

  2. Abd EL-Rahman AM (1996) Pan–African volcanism petrography and geochemistry of the Dokhan Volcanic suite in the northern Nubian Shield. Geol Mag 133(1):17–31

    Article  Google Scholar 

  3. Abd El-Rahman Y, Ploat A, Dilek Y, Fryer BJ (2009) Geochemistry and tectonic evolution of Neoproterozoic incipient arc–fore arc crust in the Fawakheir Area, central Eastern Desert. Precambrian Res 175:116–134

    Article  Google Scholar 

  4. Abd El-Wahed MA (2010) The role of the Najd Fault System in the tectonic evolution of the Hammamat Molasses sediments, Eastern Desert, Egypt. Arab J Geosci 3:1–26

    Article  Google Scholar 

  5. Abd El-Wahed MA (2014) Oppositely dipping thrusts and transpressional imbricate zone in the Eastern Desert of Egypt. J Afr Earth Sci 100:42–59

    Article  Google Scholar 

  6. Abd El-Wahed MA, Harraz HZ, El-Behairy MH (2016) Transpressional imbricate thrust zones controlling gold mineralization in the central Eastern Desert of Egypt. Ore Geol Rev 78:424–446

    Article  Google Scholar 

  7. Abdullah A, Akhir JM, Abdullah I (2010) Automatic mapping of lineaments using shaded relief images derived from digital elevation models (DEMs) in the Maran-Sungi Lembing area, Malaysia. Electron J Geotech Eng 75:949–957

    Google Scholar 

  8. Abu-Elmaaty MA, Hassan MA (2000) Discrimination between some granitic phases in central Eastern Desert, Egypt. Petrology and geochemistry Ann Egypt Geol Surv 23:661–678

    Google Scholar 

  9. Abu El-Ela FF (1997) The metavolcanic rocks from Atalla-Saqia District, Eastern Desert of Egypt: remnants of marginal basin setting. The 3rd conf. Geochem., Alexandria Univ, v.1, pp. 345–374

  10. Adiri Z, El-Harti A, Jellouli A, Lhissou R, Maacha L, Zouhair M, Bachoui E (2017) Comparison of Landsat-8, ASTER and Sentinel-1 satellite remote sensing data in Automatic Lineaments Extraction: a case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas. Adv Space Res 60:2355–2367

    Article  Google Scholar 

  11. Ahmadirouhani R, Rahimi B, Karimpour MH, Shafaroudi AZ, Pou AM (2017) Fracture mapping of lineaments and recognizing their tectonic significance using SPOT-5 satellite data: a case study from the Bajestan area, Lut Block, east of Iran. J Afr Earth Sci 134:600–612

    Article  Google Scholar 

  12. Akaad MK (1996) Rock succession of the basement: an autobiography and assessment. Geol Surv Egypt Paper 71

  13. Akaad MK, Noweir AM (1969) Lithostratigraphy of the Hammamat-Um Seleimat District, Eastern Desert, Egypt. Nature 223:284–285

    Article  Google Scholar 

  14. Akaad MK, Noweir AM (1977) The post-Hammamat Felsites and their age relation with the younger granites of Egypt. Proc Egypt Acad Sci 30:163–168

    Google Scholar 

  15. Akaad MK, Noweir AM (1980) Geology and lithostratigraphy of the Arabian Desert orogenic belt of Egypt between latitudes 25° 35̀ and 26° 30̀ N. Jeddah Bull 3:127–135

    Google Scholar 

  16. Akaad MK, Shazly AG (1972) Description and petrography of the Meatiq group, Eastern Desert. Ann Geol Surv Egypt 2:215–238

    Google Scholar 

  17. Akawy A (2003) Fault characterization and paleostress analysis in the Precambrian rocks west of the Meatiq Dome, central Eastern Desert, Egypt. N Jb Geol Paläont (Abh) 228(1):1–35

    Google Scholar 

  18. Akawy A (2007) Geometry and texture of quartz veins in Wadi Atalla area, central Eastern Desert, Egypt. J Afr Earth Sci 47:73–87

    Article  Google Scholar 

  19. Ali EA, El-Khidir SO, Babikir IAA, Abd El-Rahman EM (2012) Landsat ETM+7 digital image processing techniques for lithological and structural lineament enhancement: case study around Abidiya area, Sudan. Remote Sens, J 5:83–89

    Google Scholar 

  20. Amer R, Kusky T, Ghulam A (2010) Lithological mapping in central Eastern Desert of Egypt using ASTER data. J Afr Earth Sci 56:75–82

    Article  Google Scholar 

  21. Andresen A, Augland LE, Boghdady GY, Lundmark AM, El-Nady OM, Hassan MA (2010) Structural constraints of the Meatiq Gneiss Dome (Egypt), East African Orogeny. J Afr Earth Sci 57:413–422

    Article  Google Scholar 

  22. Andrew, G., 1931. Note on the geology of the Gabal Meatiq. In: W. F. Hume (Ed.), Geology of Egypt. Geol. Surv. Egypt, 2(1), pp. 295–296

    Google Scholar 

  23. Crepani E, Medeiros JS (1994) Imagens fotográficas derivadas de MNT do Projeto SRTM para fotointerpretação na Geologia, Geomorfologia et Pedologia. São José dos Campos: INPE-11238–RPQ/761

  24. Ding C, Liu X, Liu W, Li Y (2014) Mafic and ultramafic and quartz rich rocks indices deduced ASTER thermal infrared data using a linear approximation to the Planck function. Ore Geol Rev 60:161–173

    Article  Google Scholar 

  25. Eliwa HA, Kimura JI, Itaya T (2006) Late Neoproterozoic Dokhan Volcanics, north Eastern Desert, Egypt: Geochemistry and petrogenesis. Precambrian Res 151:31–52

    Article  Google Scholar 

  26. El-Gaby S, El-Nady O, Khudeir A (1984) Tectonic evolution of the basement complex in the central Eastern Desert of Egypt. Geol Rundsch 73(3):1019–1039

    Article  Google Scholar 

  27. El-Kalioubi B (1988) Deformation events mineral facies and metamorphic conditions in the contact aureoles of the Hammamat Group around Um Had Pluton, CED, Egypt. MERC Ain Shams Univ Sci, Ser 2:172–190

    Google Scholar 

  28. El-Kalioubi, B., Fowler, A., Abdelmalik, K., 2020. The metamorphism and deformation of the basement complex in Egypt. In: Hamimi, Z. El-Barkooky, A., Martínez Frías, J., Fritz, H. and Abd El-Rahman, Y., The Geology of Egypt, Regional Geology Reviews, Springer Nature Switzerland, pp. 191–251. https://doi.org/10.1007/978-3-030-15265-9_2

    Google Scholar 

  29. El-Ramly MF, Akaad MK (1960) The basement complex in the central Eastern Desert of Egypt between latitude 24°30 ́ and longitude 25° 40 ́N. Geol. Surv. Egypt, Paper 8

  30. El-Ramly MF, Greiling RO, Rashwan AA, Ramsy AH (1993) Explanatory note to accompany the geological and structural maps of Wadi Hafafit area, Eastern Desert of Egypt. Ann Geol Egypt 9:1–53

    Google Scholar 

  31. El-Sayed MM, Furnes H, Mohamed FH (1999) Geochemical constraints on the tectonomagmatic evolution of the Late Precambrian Fawakhir Ophiolite, central Eastern Desert, Egypt. J Afr Earth Sci 29:515–533

    Article  Google Scholar 

  32. El-Sharkawy MA, El-Bayoumi R (1979) The ophiolites of Wadi Ghadir area, Eastern Desert, Egypt. Ann Geol Surv Egypt 9:125–135

    Google Scholar 

  33. Fowler A, El-Kalioubi B (2004) Gravitational collapse origin of shear zones, foliations and linear structures in the Neoproterozoic cover nappes, Eastern Desert, Egypt. J Afr Earth Sci 38:23–40

    Article  Google Scholar 

  34. Fowler, A., Hamimi, Z., 2020. Structural and tectonic framework of Neoproterozoic basement of Egypt: from Gneiss Domes to transpression belts. In: Hamimi, Z. El-Barkooky, A., Martínez Frías, J., Fritz, H. and Abd El-Rahman, Y., The Geology of Egypt, Regional Geology Reviews, Springer Nature Switzerland, pp. 81–129. https://doi.org/10.1007/978-3-030-15265-9_2, Precambrian Basement Complex of Egypt

    Google Scholar 

  35. Fowler TJ, Osman AF (2001) Gneiss–cored interference dome associated with two phases of Late Pan-African thrusting in the central Eastern Desert, Egypt. Precambrian Res 108:17–43

    Article  Google Scholar 

  36. Fritz H, Loizenbauer J, Wallbrecher E (2014) Magnetic and solid state structures of the Abu Ziran Pluton: deciphering transition from thrusting to extension in the Eastern Desert of Egypt. J Afr Earth Sci 99:122–135

    Article  Google Scholar 

  37. Fritz H, Wallbrecher E, Kudeir AA, Abu El-Ela FF (1996) Formation of Neoproterozoic Metamorphic Core Complexes during oblique convergence (Eastern Desert, Egypt). J Afr Earth Sci 23(3):311–329

    Article  Google Scholar 

  38. Garson MS, Shalaby IM (1976) Precambrian-Lower Paleozoic plate tectonics and metallogenesis in the Red Sea region. Spec Pap geol Assoc Can 14:573–596

    Google Scholar 

  39. Greiling RO, Abdeen MM, Dardir AA, EL-Akhal H, El-Ramly MF, Kamal El-Din GM, Osman AF, Rashwan AA, Ries AH, Sadek MF (1994) A structural synthesis of the Proterozoic Arabian Nubian Shield in Egypt. Int J Earth Sci 83:484–501

    Google Scholar 

  40. Greiling RO, de Wall H, Sadek MF, Dietl C (2014) Late Pan-African granite emplacement during regional deformation, evidence from magnetic fabric and structural studies in the Hammamat–Atalla area, central Eastern Desert of Egypt. J Afr Earth Sci 99:109–121

    Article  Google Scholar 

  41. Habib ME, El-Gaby S, El-Nady OM (1988) Structures and deformational history of the area west of Gabal El-Rubbshi, Eastern Desert, Egypt. Bull Fac Sci Assuit Univ 7:99–114

    Google Scholar 

  42. Habib ME, Ahmed AA, El-Nady OM (1985) Two orogenies in the Meatiq area of the central Eastern Desert. Precambrian Res 30:83–111

    Article  Google Scholar 

  43. Hamdy MM, Abd El-Wahed MA, Gamal El-Din H, Morishita T (2017) Garnet hornblendite in the Meatiq Core Complex, central Eastern Desert of Egypt: implications for crustal thickening preceding the ∼600 Ma extensional regime in the Arabian-NubianShield. Precambrian Res 298:593–614

    Article  Google Scholar 

  44. Hamimi Z, Abd El-Wahed MA (2020) Suture(s) and major shear zones in the Neoproterozoic basement of Egypt. In: Hamimi Z, El-Barkooky A, Martínez Frías J, Fritz H, Abd El-Rahman Y (eds) The Geology of Egypt, Regional Geology Reviews. Springer Nature, Switzerland, pp 153–189. https://doi.org/10.1007/978-3-030-15265-9_2

    Google Scholar 

  45. Hamimi Z, Abd El-Wahed MA, Gahlan HA, Kamh SZ (2019) Tectonics of the Eastern Desert of Egypt: key to understanding the Neoproterozoic evolution of the Arabian-Nubian Shield (East African Orogen). In: Bendaoud A, Hamimi Z, Hamoudi M, Djemai S, Zoheir B (eds) Geology of the Arab World- An Overview. Springer Geology, pp 1–81. https://doi.org/10.1007/978-3-319-96794-3_1

  46. Hassanen MA (1985) Petrology and geochemistry of ultramafic rocks in the Eastern Desert, Egypt, with special reference to Fawakhir area. Ph.D. Thesis. Alexandria Univ., Egypt. 348p

  47. Hassan SM, El-Kazzaz YA, Taha MMN, Mohammed AT (2017) Late Neoproterozoic basement rocks of Meatiq area, central Eastern Desert, Egypt: petrography and remote sensing characterizations. J Afr Earth Sci 131:14–31

    Article  Google Scholar 

  48. Hassan SM, Ramadan TM (2015) Mapping of the Late Neoproterozoic basement rocks and detection of the gold-bearing alteration zones at Abu Marawat-Semna area, Eastern Desert, Egypt using remote sensing data. Arab J Geosci 8:4641–4656

    Article  Google Scholar 

  49. Hewson RD, Cudahy TJ, Huntington JF (2001) Geological and alteration mapping at Mt. Fitton, South Australia using ASTER satellite-borne data. IGARSS, pp. 724–726. https://doi.org/10.1109/IGARSS.2001.976615

  50. Hume WF (1934) Geology of Egypt. Geol. surv. Egypt, v.1, 408p

  51. Johnson PR, Andresen A, Collins AS, Fowler AR, Fritz H, Ghebreab W, Kusky T, Stern RJ (2011) Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. J Afr Earth Sci 61:167–232

    Article  Google Scholar 

  52. Johnson PR, Woldehaimanot B (2003) Development of the Arabian Nubian Shield: perspectives on accretion and deformation in the Northern East African Orogeny and the assembly of Gondwana. Geol Soc London 206:289–325

    Article  Google Scholar 

  53. Kamal El-Din GM (1986) Geology of Wadi Um Had area, Eastern Desert, Egypt. M.Sc. Thesis, Assuit Univ., 175p

  54. Kumar C, Shetty A, Raval S, Sharma R, Ray PKC (2015) Lithological discrimination and mapping using ASTER SWIR data in the Udaipur area of Rajasthan, India. Procedia Earth Planet Sci 11:180–188

    Article  Google Scholar 

  55. Loizenbauer J, Wallbrecher E, Fritz H, Neumar P, Khudeir AA, Klotezli U (2001) Structural geology, single zircon ages and fluid inclusion studies of the Meatiq Core Complex: implications for Neoproterozoic tectonics in the Eastern Desert of Egypt. Precambrian Res 110:357–383

    Article  Google Scholar 

  56. Mars JC, Rowan LC (2006) Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere 2:161–186

    Article  Google Scholar 

  57. Mars JC, Rowan LC (2010) Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sens Environ 114:2011–2025

    Article  Google Scholar 

  58. Masoud AA, Koike K (2017) Applicability of computer-aided comprehensive tool (LINDA: Lineament Detection and Analysis) and shaded digital elevation model for characterizing and interpreting morphotectonic features from lineaments. Comput Geosci 106:89–100

    Article  Google Scholar 

  59. McClay K, Bonora M (2001) Analog models of restraining stepovers in strike-slip fault systems. AAPG Bull 85(2):233–260

    Google Scholar 

  60. Morris K (1991) Using knowledge base rules to map the three dimensional nature of geological features. Photogramm Eng Remote Sens 57:1209–1219

    Google Scholar 

  61. Mshiu EE (2011) Landsat Remote Sensing data as an alternative approach for geological mapping in Tanzania: a case study in the rung we volcanic province, south-western Tanzania. Tanz J Sci 37:26–36

    Google Scholar 

  62. Mulder VL, de Bruin S, Schaepman ME, Mayr TR (2011) The use of remote sensing in soil and terrain mapping – a review. Geoderma 162:1–19

    Article  Google Scholar 

  63. Nasseef AO, Bakor AR, Hashad AH (1980) Petrography of possible ophiolitic rocks along the Qift-Quseir road, Eastern desert, Egypt. Inst Appl Geol Bull, King Abdulaziz Univ, Jeddah 4:157–186

    Google Scholar 

  64. Neumayr P, Hoinkes G, Puhl J, Mogessie A, Khudeir AA (1998) The Meatiq Dome (Eastern Desert, Egypt) a Precambrian Metamorphic Core Complex: petrological and geological evidence. J Metamorph Geol 16(2):259–279

    Article  Google Scholar 

  65. Neumayr P, Mogessie A, Hoinkes G, Puhl J (1996) Geological setting of the Meatiq Metamorphic Core Complex in the Eastern Desert of Egypt based on amphibolite geochemistry. J Afr Earth Sci 23(3):331–345

    Article  Google Scholar 

  66. Ninomiya Y (2004) Lithologic mapping with multispectral ASTER TIR and SWIR data. PROCSPIE Int Soc Opt Eng 5234:180–190

    Google Scholar 

  67. Osman AF, El-Alfy ZS, Abd EL-Rahman SH, Abd EL-Ghaffar NI (2010) Discrimination of Neoproterozoic granitic phases in the central Eastern Desert of Egypt, using enhanced thematic mapper data with field and petrographic studies. Egypt J Geol 54:99–116

    Google Scholar 

  68. Osman AF, El-Kalioubi BA (2014) Neoproterozoic post-collisional granitoids in the central Eastern Desert of Egypt: Petrological and geochemical constraints. J Afr Earth Sci 99:39–50

    Article  Google Scholar 

  69. Qaoud N (2014) Utilization of space-borne imagery for lithologic mapping: A case study from Um Had area, central Eastern Desert, Egypt. JGG 6(2):113–123

    Article  Google Scholar 

  70. Ragab AI, EL-Gharabawy RI, El-Alfy Z (1993) Pan-African tectonostratigraphic assemblage of Gabel Meatiq Wadi Atalla area, Eastern Desert, Egypt, evidence for arc – arc suturing. M.E.R.C. Ain Shams Univ 7:131–145

    Google Scholar 

  71. Ries AC, Shackleton RM, Graham RH, Fitches WR (1983) Pan-African structures, ophiolites and mélanges in the Eastern Desert of Egypt: a traverse at 26° N. Geol Soc London 140:75–95

    Article  Google Scholar 

  72. Rouskov K, Popov K, Stoykov S, Yamaguchi Y (2005) Some applications of the remote sensing in geology by using of ASTER images. Sci. Conf. Space Ecology Safety, 10–13 June, Varna, Bulgaria, pp. 167–173

  73. Sadek MF, Ali-Bik MW, Hassen SM (2015) Late Proterozoic of Kadabora- Suwayqat area, central Eastern Desert, Egypt. Arab J Geosci 8:10459–10479

    Article  Google Scholar 

  74. Sadek MF, Hassan SM (2009) Rock discrimination and geological mapping of the basement rocks at Gabal Gharib area, north Eastern Desert of Egypt with application of Landsat ETM and Egyptsat-1 data. Proc. SPIE Int. Soc. Opt. Eng., v.7478, 74780-J4

  75. Saepuloh A, Haeruddin H, Heriawan MN, Kubo T, Malik D (2018) Application of lineament density extracted from dual orbit of synthetic aperture radar (SAR) images to detecting fluids paths in the Wayang Windu geothermal field (West Java, Indonesia). Geothermics 72:145–155

    Article  Google Scholar 

  76. Schürmann JME (1966) The Precambrian rocks along the Gulf of Suez and the northern part of Red Sea. E. J. Birll, Leiden 404 p

    Google Scholar 

  77. Shazly AG (1966) Geology of the area south of Gebel Meatiq, Eastern Desert. M.Sc. Thesis, Assuit Univ., Egypt

  78. Stern RJ (1985) The Najd fault system Saudi Arabia and Egypt: a late Precambrian rift related transform system. Tectonics 4:497–511

    Article  Google Scholar 

  79. Stern RJ (2017) Neoproterozoic formation and evolution of Eastern Desert continental crust—the importance of the infrastructure-superstructure transition. J Afr Earth Sci 146:15–27

    Article  Google Scholar 

  80. Stern RJ, Hedge CE (1985) Geochronologic and isotopic constraints on Late Precambrian crustal evolution in the Eastern Desert of Egypt. Amer J Sci 285:97–127

    Article  Google Scholar 

  81. Stern RJ, Johnson PR, Kröner A, Yibas B (2004) Neoproterozoic ophiolites of the Arabian Shield. Precam Ophio Relat Rock 13:95–128

    Article  Google Scholar 

  82. Sultan M, Arvidson RE, Duncan IJ, Stern RJ, El-Kalioubi B (1988) Extension of the Najd shear system from Saudi Arabia to the central Eastern Desert of Egypt based on integrated field and Landsat observations. Tectonics 7:1291–1306

    Article  Google Scholar 

  83. Suzen ML, Toprak V (1998) Filtering of satellite images in geological lineament analyses: an application to a fault zone in Central Turkey. Int J Remote Sens 19:1101–1114

    Article  Google Scholar 

  84. Tagnon BQ, Assoma VT, Mangoua JMO, Douagui AG, Savané I (2018) Contribution of SAR/RADARSAT-1 and ASAR/ENVISAT images to geological structural mapping and assessment of lineaments density in Divo-Oume area (Côte d’Ivoire). Egypt J Remote Sens Space Sci. https://doi.org/10.1016/j.ejrs.2018.12.001

  85. Turner FJ, Verhoogen J (1960) Igneous and metamorphic petrology, 2nd edn. Mc Graw-Hill, New York, 694 p

    Google Scholar 

  86. Wallbrecher E, Fritz H, Khudeir AA, Farahat F (1993) Kinematics of Pan-African thrusting and extension in Egypt. In: Thorweihe U, Schandehneier H (eds) Geosci. Res. Northeast Afri. Balkema, Rotterdam, pp 27–30

    Google Scholar 

  87. Yajima T, Yamaguchi Y (2013) Geological mapping of the Francistown area in northeastern Botswana by surface temperature and spectral emissivity information derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared data. Ore Geol Rev 53:134–144

    Article  Google Scholar 

  88. Yeomans CM, Middleton M, Shail RK, Grebby S, Lusty PAJ (2019) Integrated Object-Based Image Analysis for semi-automated geological lineament detection in southwest England. Comput Geosci 123:137–148

    Article  Google Scholar 

  89. Zhumabek Z, Assylkhan B, Alexandr F, Dinara T (2017) Automated lineament analysis to assess the geodynamic activity areas. Procedia Comput Sci 121:699–706

    Article  Google Scholar 

  90. Zoheir B, Deshesh F, Broman C, Pitcairn I, El-Metwally A, Mashaal SH (2018) Granitoid -associated gold mineralization in Egypt: a case study from the Atalla Mine. Mineral Deposita 53(5):701–720

    Article  Google Scholar 

  91. Zoheir BA, Lehmann B (2015) Re–Os geochronology of gold mineralization in the Fawakheir area, Eastern Desert, Egypt. Int Geol Rev 57:1418–1432

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Dr. Wilfried Bauer (Editor) and Prof. Ahmed Madani (Cairo University, Egypt) for their vital comments which much help improve the paper manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wael Hagag.

Additional information

This article is part of the Topical Collection on Current Advances in Geological Research of Egypt.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamimi, Z., Hagag, W., Kamh, S. et al. Application of remote-sensing techniques in geological and structural mapping of Atalla Shear Zone and Environs, Central Eastern Desert, Egypt. Arab J Geosci 13, 414 (2020). https://doi.org/10.1007/s12517-020-05324-8

Download citation

Keywords

  • Atalla Shear Zone
  • Najd-related transpression
  • Pan-African belt of Egypt
  • Arabian-Nubian Shield