Skip to main content

Advertisement

Log in

Gabbros versus granites of the subduction regime of South Sinai, Egypt: discrimination and geochemical modelling

  • S. I. Geology of Africa
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Arabian–Nubian Shield of South Sinai, Egypt, comprises older granite (OG) and metagabbro–diorite complex (MG) outcrops pertaining to the island arc regime. The study aims to throw some light on the role played by these rocks during the tectonic evolution of the Sinai, Egypt. Three selected areas via Nesyrin, El-Fringa-Minader and Shahera outcrops are selected as case example. Field, petrography, geochemistry and thermobarometric studies are considered to elucidate discriminations and genetic variations. The OG compositions are tonalite and granodiorite, whereas MG constitutes hornblende–metagabbros, hornblende–leucogabbro and diorite. Opaque mineral contents are relatively enriched in the MG and represented by magnetite, hematite and ilmenite with few sulphides. Geochemically, the OG rocks are peraluminous, calc-alkaline and I-type and belong to syncollision volcanic arc. The MG varieties exhibit transitional calc-alkaline/tholeiite magma types and are comparable to rocks of island arc setting. Amphiboles of MG are calcic-type (actinolite, actinolite hornblende and subordinate of magnesia-hornblende). Rocks are crystallised under medium (El-Fringa-Minader and Shahera) to low (Nesyrin) pressure. Amphiboles from the OG have the composition of actinolitic hornblende (Shahera area), ferroedenite to ferroedenitic hornblende (Nesyrin area). They are formed under low pressure. Plagioclase ranges in composition from oligoclase to andesine. Biotite of the OG is Mg-rich (Shahera area), Fe-rich (Nesyrin area) and lepidomelane. OG rocks exhibit calc-alkaline magma affinity. The thermobarometric study indicates that MG rocks are formed at a temperature between 600 and 730 °C and the pressure of emplacement varies from 2 to 4 kbar. OG rocks gave a temperature of 648–717 °C and an emplacement pressure of 1–4 kbar. Both modelling and thermobarometric calculations prove that magmas are generated at a depth of about 30 km for OG and from 15 to 35 km for MG. Geochemical modelling favours that MG is derived from 40% partial melting of the lower crust followed by 15% to 35% fractional crystallisation. Granodiorite is derived through the 25% to 45% fractional crystallisation of MG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Karim AM (1995) Late Precambrian metagabbro-diorite complex from Southwest Sinai, Egypt. Egypt J Geol 39:215–238

    Google Scholar 

  • Abdel-Karim AM (2003) Petrogenetic aspects of Wadi Akhdar-Wadi El-Sheikh granitoid rocks, central Southern Sinai, Egypt: evidence from the chemistry of amphiboles and biotites. Arab Gulf J Sci Res (Bahrain) 21(1):48–63

    Google Scholar 

  • Abdel-Karim AM (2009) Petrographic and chemical characterization of Fe-Ti oxides and sulfides hosted in mafic intrusions, South Sinai, Egypt: implication for genesis. J Geol Min Res 1(3):067–093

    Google Scholar 

  • Abdel-Karim AM (2013) Petrology, geochemistry and petrogenetic aspects of younger gabbros from South Sinai: a transition from arc to active continental margin. Chem Erde 73:89–104

    Article  Google Scholar 

  • Abdel-Karim AM, Arva-Sos E (1992) Geology and K-Ar ages of some older and younger granites in Southwestern Sinai, Egypt. Proc. 3rd Conf. Geol. Sinai Develop., Ismailia 261–266

  • Abdel-Karim AM, Kubovics I, Molnar Z (1999) Geochemistry, mineral chemistry and tectonic setting of the older granitoids from East of El-Tor, SW-Sinai, Egypt. Acta Mineral.-Petrogr, XL, pp 77–96

    Google Scholar 

  • Abdel-Karim AM, El-Awady AA, Helmy H, Al-Afandy AH, Abdalla Sh (2011) Younger Gabbros from Egypt: a transition from tholeiitic to alkaline basaltic magma and from arc to within plate rifting regime. The 6th Environmental Conference, Faculty of Science, Zagazig University, Zagazig 194–220

  • Abu-Alam TS, Hamdy M (2014) Thermodynamic modelling of Sol Hamed serpentinite, South Eastern Desert of Egypt: implication for fluid interaction in the Arabian-Nubian Shield ophiolites. J Afr Earth Sci 99:7–23

    Article  Google Scholar 

  • Abu-Alam TS, Stüwe K (2009) Exhumation during oblique transpression: the Feiran–Solaf region, Egypt. J Metamorph Geol 27(6):439–459. https://doi.org/10.1111/j.1525-1314.2009.00827.x

    Article  Google Scholar 

  • Abu-Alam TS, Stüwe K, Hauzenberger (2010) Calc-silicates from Wadi Solaf region, Sinai, Egypt. J Afr Earth Sci 58 (3:475–488. https://doi.org/10.1016/j.jafrearsci.2010.05.004

    Article  Google Scholar 

  • Abu-Alam TS, Hassan M, Stüwe K, Meyer SE, Passchier CW (2014) Multistage tectonism and metamorphism during Gondwana collision: Baladiyah complex, Saudi Arabia. J Petrol 55(10):1941–1964. https://doi.org/10.1093/petrology/egu046

    Article  Google Scholar 

  • Abu Anbar MM (2009) Petrogenesis of the Nesyrin gabbroic intrusion in SW Sinai, Egypt: new contributions from mineralogy, geochemistry, Nd and Sr isotopes. Mineral Petrol 95:87–103

    Article  Google Scholar 

  • Abu El-Enen M, Abu-Alam TS, Whitehouse M, Ali K, Okrusch M (2016) P-T path and age of crustal thickening during the collision of East and West Gondwana: a case study from the Hafafit Metamorphic Complex, Eastern Desert of Egypt. Lithos 263:213–238

    Article  Google Scholar 

  • Allegre CJ, Treail M, Minster JF, Minster B, Albarede F (1977) Systematic use of trace elements in igneous processes. Part I: fractional crystallization processes in volcanic suites. Contrib Mineral Petrol 60:57–75

    Article  Google Scholar 

  • Ali BH, Wilde SA, Gabr MMA (2008) Granitoid evolution in Sinai, Egypt, based on precise SHRIMP U–Pb zircon geochronology. Gondwana Res 15:38–48

    Article  Google Scholar 

  • Anderson JL, Smith DR (1995) The effect of temperature and oxygen fugacity on Al-in-hornblende barometry. Am Mineral 80:549–559

    Article  Google Scholar 

  • Arth JG (1976) Behavior of trace elements during magmatic processes a summary of theoretical models and their applications. J Res US Geol Surv 4:41–47

    Google Scholar 

  • Avigad D, Gvirtzman Z (2009) Late Neoproterozoic rise and fall of the northern Arabian–Nubian Shield: the role of lithospheric mantle delamination and subsequent thermal subsidence. Tectonophysics 477(3–4):217–228

    Article  Google Scholar 

  • Azer MK, Abu El-Ela FF, Ren M (2012) The petrogenesis of late Neoproterozoic mafic dyke-like intrusion in South Sinai, Egypt. J Asian Earth Sci 54–55:91–109

    Article  Google Scholar 

  • Azer MK, El-Gharbawy RI (2011) Contribution to the Neoproterozoic layered mafic-ultramafic intrusion of Gabal Imleih, South Sinai, Egypt: implication of post-collisional magmatism in the north Arabian-Nubian Shield. J Afr Earth Sci 60:253–272

    Article  Google Scholar 

  • Azer MK, Farahat ES (2011) Late Neoproterozoic volcano-sedimentary successions of Wadi Rufaiyil, Southern Sinai, Egypt: a case of transition from late-to post-collisional magmatism. J Asian Earth Sci 42:1187–1203

    Article  Google Scholar 

  • Azer MK, Obeid MA, Gahlan HA (2016) Late Neoproterozoic layered mafic intrusion of arc-affinity in the Arabian-Nubian Shield: a case study from the Shahira layered mafic intrusion, Southern Sinai, Egypt. Geol Acta 14:237–259

    Google Scholar 

  • Basta EZ (1970) Different types of ilmenite-magnetite intergrowths and their origin. Bull Fac Sci Cairo University 44:195–211

    Google Scholar 

  • Basta EZ, Takla MA (1968) Mineralogy and origin of Abu Ghalaga ilmenite occurrence, Eastern Desert, Egypt. J Geol, URA 12(2):87–136

    Google Scholar 

  • Basta EZ, Takla MA (1974) Distribution of opaque minerals and the origin of the metagabbros of Egypt. Bull Fac Sci Cairo University 47:346–364

    Google Scholar 

  • Be’eri-Shlevin Y, Eyal M, Eyal Y, Whitehouse MJ, Litvinovsky B (2012) The Sa’al volcano-sedimentary complex (Sinai, Egypt): a latest Mesoproterozoic volcanic arc in the northern Arabian Nubian Shield. Geology 40:403–406. https://doi.org/10.1130/G32788.1

    Article  Google Scholar 

  • Be’eri-Shlevin Y, Katzir Y, Whitehouse MJ, Kleinhanns IC (2009) Contribution of pre Pan-African crust to formation of the Arabian Nubian Shield: new secondary ionization mass spectrometry U-Pb and O studies of zircon. Geol. 37(10):899–902

    Article  Google Scholar 

  • Belasy MR (1991) Geology, petrography and geochemistry of the metamorphic rocks of Wadi Feiran-Solaf Area, Southwestern Sinai, Egypt. Ph.D. thesis, Zagazig University, Zagazig, Egypt, 366 pp

  • Bentor YK (1985) The crustal evolution of the Arabo-Nubian Massif with special reference to the Sinai Peninsula. Precambrian Res 28:1–74

    Article  Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron titanium oxide minerals and synthetic equivalents. J Petrol 5(310):357

    Google Scholar 

  • Carr M (1995) Program IgPet. Terra Softa, Somerset

    Google Scholar 

  • Clarke D, Mengel F, Coish RA, Kosinowski MHF (1994) NewPet for DOS, version 94.01.07. St. John’s: Department of Earth Sciences, Memorial University of Newfoundland.

  • Condie KC (1973) Archean magmatism and crustal thickening. Geol Soc Am Bull 84:2981–2991

    Article  Google Scholar 

  • Condie KC, Hunter DR (1976) Trace element geochemistry of Archean granitic rocks from the Barberton region, South Africa. Earth Planet Sci Lett 29:389–400

    Article  Google Scholar 

  • Conrad WK (1987) A FORTRAN program for simulating major and trace element variations during Rayleigh fractionation with melt replenishment or assimilation. Comput Geosci 13:1–12

    Article  Google Scholar 

  • Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. George Allen and Union, London, 450 pp

    Book  Google Scholar 

  • Dachs E (1998) PET: petrological elementary tools for Mathematica. Comput Geosci 24:219–223

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock forming minerals, 2nd edn. Longman, London, 696 p

    Google Scholar 

  • Depaolo DJ (1981) Trace element and isotopic effects of combined wall rock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Article  Google Scholar 

  • Dostal DC, Carron JP, Guen L, de Kerneizon M, Maury RC (1983) Partition coefficients of trace elements: application to volcanic rocks of St Vincent, West Indies. Geochim Cosmochim Acta 47:525–533

    Article  Google Scholar 

  • Dungan MA, Lindstrom MM, McMillan NJ, Moorbath S, Hoefs J, Haskin LA (1986) Open system magmatic evolution of the Taos Plateau volcanic field, northern New Mexico: 1. The petrology and geochemistry of the Servilleta Basalt. J Geophys Res 91:5999–6028

    Article  Google Scholar 

  • EGSMA (Egyptian Geological Survey and Mining Authority) (1994) Geologic map of South Sinai, Sheet no. 1, Scale 1:250000

  • Ehlers EG, Blatt H (1982) Petrology: igneous, sedimentary and metamorphic. W. H. Freeman, New York, 732.

  • Essawy MA, El-Metwally AA (1992) Feiran mafic-ultramafic complex: three episode crustal evolution in the Southwestern Sinai Shield. J Afr Earth Sci 14:471–476

    Article  Google Scholar 

  • Essawy MA, El-Metwally AA, Althaus E (1997) A Pan African layered mafic–ultramafic cumulate complex in the SW Sinai Massif: mineralogy, geochemistry and crustal growth. Chem Der Erde 57:137–156

    Google Scholar 

  • El-Metwally AA (1986) Mafic and ultramafic rocks North of Wadi Feiran, Southwestern Sinai, Egypt. Ph.D. thesis, Mansoura University, Egypt, 212 pp

  • El-Metwally AA (1997) Petrogenesis of metagabbro-diorite complex from SW Sinai massif: implications for subduction at Neoproterozoic continental margin. Proceedings of Egyptian Academic Sciences 47: 273–295

  • El-Metwally AA, Mashal SE (1989) Geochemistry and tectonic environment of older granites of Wadi Ager, Southwest Sinai. Egypt Mans Sci Bull 16:1–20

    Google Scholar 

  • El-Mezayen AM, Abdel-Meguid AA, Shahin HA (1994) Petrology, geochemistry and tectonic evolution of older and younger granitoid rocks, Southwest Sinai, Egypt. Al-Azhar Bull, Sci 5:835–857

    Google Scholar 

  • El-Tokhi MM (1983) Geology of Wadi El-Sheikh Area, Sinai, Egypt. MSc Thesis, El-Mansoura University, El-Mansoura, Egypt, 160 pp

  • El-Tokhi MM, Katta LA (1993) Geochemistry, mineral chemistry and petrogenetic evolution of intrusive gabbro–diorite complex, SW Sinai, Egypt. Egypt Mineral 5:81–103

    Google Scholar 

  • Foster MD (1960) Interpretation of the composition of trioctahedral mica. U.S. Geol Surv Prof Pap 354-B:11–49

    Google Scholar 

  • Fritz H, Abdelsalam M, Ali KA, Bingen B, Collins AS, Fowler AR, Ghebreab W, Hauzenberger CA, Johnson PR, Kusky TM, Macey P, Muhongo S, Stern RJ, Viola G (2013) Orogen styles in the East African Orogen: a review of the Neoproterozoic to Cambrian tectonic evolution. J Afr Earth Sci 86:65–106

    Article  Google Scholar 

  • Furnes H, Shimron AE, Roberts D (1985) Geochemistry of Pan-African volcanic arc sequences in Southeastern Sinai Peninsula and plate tectonic implications. Precambrian Res 29:359–382

    Article  Google Scholar 

  • Gamal El Dien H, Hamdy M, Abu El Ela A, Abu Alam TS, Hassan A, Kil Y, Mizukami T, Soda Y (2016) Neoproterozoic serpentinites from the Eastern Desert of Egypt: insights into Neoproterozoic mantle geodynamics and processes beneath the Arabian–Nubian Shield. Precambrian Res 286:213–233

    Article  Google Scholar 

  • Ghoneim MF, Aly SM, Abdel Tawab M, El-Baragah M (1991) Geological evolution of the Madsus area, Southeast Sinai. Ann Geol Surv Egypt 17:67–71

    Google Scholar 

  • Ghoneim MF, Lebda EM, Abu Anbar MM, Abdel-Wahed MA (2007) Toward a new concept for the classification of granitic rocks of the Eastern Desert, Egypt. Geothermobarometry constrains. The Fifth international conference on the geology of Africa, Assiut University, Fac. Sci., Geol. Depart., Assiut, Egypt, vol. I, pp. 131–142.

  • Green DH, Ringwood AE (1967) The stability fields of aluminous pyroxene peridotite and garnet peridotite and their relevance in upper mantle structure. Earth Planet Sci Lett 3:151–160

    Article  Google Scholar 

  • Green TH, Pearson NJ (1983) Effect of pressure on rare earth element partition coefficients in common magmas. Nature 305:414–416

    Article  Google Scholar 

  • Green TH, Pearson NJ (1985) Experimental determination of REE partition coefficients between amphibole and basaltic liquids at high pressure. Geochim Cosmochim Acta 49:1465–1468

    Article  Google Scholar 

  • Green TH, Sie SH, Ryan CG, Cousens DR (1989) Proton microprobe-determined partitioning of Nb, Ta, Zr, Sr and Y between garnet, clinopyroxene and basaltic magma at high pressure and temperature. Chem Geol 74:201–216

    Article  Google Scholar 

  • Harrison TM, Watson EB (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contrib Mineral Petrol 84:66–72

    Article  Google Scholar 

  • Hassanen MA (1989) Geochemistry and petrogenetic evolution of a Late Precambrian metagabbro–diorite complex, Southeast Sinai, Egypt. In: 1st Conference on Geochemistry, Alex University, Egypt, pp 118–139

    Google Scholar 

  • Hassan M, Abu-Alam TS, Stüwe K, Fowler A, Hassen I (2014) Metamorphic evolution of the Sa’al–Zaghra Complex in Sinai: evidence for Mesoproterozoic Rodinia break-up? Precambrian Res 241:104–128. https://doi.org/10.1016/j.precamres.2013.11.013

    Article  Google Scholar 

  • Higazy M, Abu El-Leil I, Abdel Tawab M, El-Gammal S (1989) Geological setting, structure and petrography of the granitic rocks in the northwestern part of the basement rocks of Sinai, Egypt. Ann Geol Surv Egypt XVI:149–157

    Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447

    Article  Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8(5):523–548

    Article  Google Scholar 

  • Jaques AL, Green DH (1980) Anhydrous melting of peridotite at 0-15 Kb pressure and the genesis of tholeiitic basalts. Contrib Mineral Petrol 73:287–310

    Article  Google Scholar 

  • Jarrar GH, Stern RJ, Saffarini G, Al-Zubi H (2003) Late and post-orogenic Neoproterozoic intrusions of Jordan. Implications for crustal growth in the northernmost segment of the East African orogeny. Precambrian Res 123:295–320

    Article  Google Scholar 

  • Jarrar GH, Manton WI, Stern RJ, Zachmann D (2008) Late Neoproterozoic A-type granites in the northernmost Arabian-Nubian Shield formed by fractionation of basaltic melts. Chemie der Erde – Geochemistry 68:295–312

    Article  Google Scholar 

  • Johnson PR, Andresen A, Collins AS, Fowler AR, Fritz H, Ghebreab W, Kusky T, Stern RJ (2011) Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. J Afr Earth Sci 61:167–232

    Article  Google Scholar 

  • Johnson PR, Halverson GP, Kusky TM, Stern RJ, Pease V (2013) Volcano sedimentary basins in the Arabian-Nubian Shield: markers of repeated exhumation and denudation in a Neoproterozoic Accretionary Orogen. Geosciences 3(3):389–445

    Article  Google Scholar 

  • Katta LAS (1985) Geology of Wadi Nesriyin area in Southwest Sinai, Egypt. MSc Thesis, Mansoura University, Egypt, 230 p.

  • Khalil AES, Obeid MA, Azer MK (2015) Late Neoproterozoic post-collisional mafic magmatism in the Arabian-Nubian Shield: a case study from Wadi El-Mahash gabbroic intrusion in Southeast Sinai, Egypt. J Afr Earth Sci 105:29–46

    Article  Google Scholar 

  • Leake BE (1965) The relationship between tetrahedral aluminium and the maximum possible octahedral aluminium in natural calciferous and sub calciferous amphiboles. Am Mineral 50:843–854

    Google Scholar 

  • Leake BE (1978) Nomenclature of amphiboles. Mineral Mag 42:533–563

    Article  Google Scholar 

  • Leeman WP, Lindstrom DJ (1978) Partitioning of Ni2+ between basaltic melt and synthetic melt and olivines—an experimental study. Geochim Acta 42:801–816

    Article  Google Scholar 

  • Liew TC, Finger F, Hock V (1989) The Moldanubian granitoid plutonic of Austria, chemical and isotopic studies bearing on their environmental setting. Chem Geol 76:41–55

    Article  Google Scholar 

  • Lindstrom DJ, Weill DF (1978) Partitioning of transition metals between diopside and coexisting silicate liquids. I. Nickel, cobalt and manganese. Geochim Cosmochim Acta 42:817–831

    Article  Google Scholar 

  • Miyashiro A (1975) Volcanic rock series and tectonic setting. Annu Rev Earth Planet Sci 3:251–269

    Article  Google Scholar 

  • Moghazi AM (2002) Petrology and geochemistry of Pan-African granitoids, Kab Amiri area, Egypt: implications for tectonomagmatic stages in the Nubian Shield evolution. Mineral Petrol 75:41–67

    Article  Google Scholar 

  • Molina JF, Scarrow JH, Montero PG, Bea F (2009) High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia. Contrib Mineral Petrol 158:69–98

    Article  Google Scholar 

  • Noweir AM, Takla MA (1975) Studies on the synorogenic basic plutonites of the Central Eastern Desert between Qena-Safaga and Idfu-Mersa Alam roads. Desert Inst Bull, ARE 24 (3, 4): 77–99

  • Oriolo S, Oyhantçabal P, Wemmer K, Siegesmund S (2017) Contemporaneous assembly of Western Gondwana and final Rodinia break-up: implications for the supercontinent cycle. Geosci Front 8:1431–1445

    Article  Google Scholar 

  • Pearce JA (1983) The role of sub-continental lithosphere in magma genesis at destructive plate margins. In: Howkesworth CJ, Norry HJ (eds) Continental basalt and mantle xenoliths. Shiva, Nantwich, pp 230–249

    Google Scholar 

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variation in volcanic rocks. Contrib Mineral Petrol 69:33–47

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25(4):956–983

    Article  Google Scholar 

  • Petrelli M, Poli G, Perugini D, Peccerillo A (2005) PetroGraph: a new software to visualize, model, and present geochemical data in igneous petrology. Geochem Geophys Geosyst 6:1525–2027. https://doi.org/10.1029/2005GC000932

    Article  Google Scholar 

  • Petrik I, Broska I, Wher AP (1994) Major element geochemistry of plutonic rock suites from compressional and extensional plate boundaries. Chem Geol 26(217):235

    Google Scholar 

  • Powell R (1984) Inversion of the assimilation and fractional crystallization (AFC) equations, characterization of contaminants from isotope and trace element relationships in volcanic suites. J Geol Soc Lond 141:447–452

    Article  Google Scholar 

  • Qaoud N, Abdelnasser A (2012) Geochemistry and petrogenesis of El-Fringa metagabbro-diorite rocks, Wadi Sa’al area, South Sinai, Egypt. J Al Azhar University-Gaza (Natural Sci.) 14:111–138

    Google Scholar 

  • Raase P (1974) Al and Ti contents of hornblende, indicators of pressure and temperature of regional metamorphism. Contrib Mineral Petrol 45:231–236

    Article  Google Scholar 

  • Ramdohr P (1960) Die Erzmineralien und ihr verwachsungen. Akademie Verlag, Berlin

    Google Scholar 

  • Richard LR (1995) Mineralogical and Petrological data processing system. MinPet software (c), 1988–1995, version 2.02.

  • Ringwood AE (1975) Composition and petrology of the earth’s mantle. McGraw Hill, London, New York and Sydney, 618p

    Google Scholar 

  • Robinson FA, Bonin B, Pease V, Anderson JL (2017) Discussion on the tectonic implications of Ediacaran late- to post-orogenic A-type granite in the Northeastern Arabian Shield, Saudi Arabia. Tectonics 36:582–600

    Article  Google Scholar 

  • Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation. London (Longman Scientific and Technical), 352 p.

  • Schock HH (1979) Distribution of rare-earth and other trace elements in magnetites. Chem Geol 26:119–133

    Article  Google Scholar 

  • Shabani AT, Lalonde AE, Whalen JB (2003) Composition of biotite from granite rocks of the Canadian Appalachian orogeny: a potential tectono-magmatic indicator. Can Mineral 41:1381–1396

    Article  Google Scholar 

  • Sherif HMY (1998) Geology and uranium potentiality of Wadi Seih area, South-western Sinai, Egypt. PhD thesis, Cairo University, Cairo, Egypt, 229 pp.

  • Shimron AE (1984) Evolution of the Kid group, Southeast Sinai Peninsula: thrusts, melanges and implications for accretionary tectonics during the late Proterozoic of the Arabian-Nubian Shield. Geology 12:242–247

    Article  Google Scholar 

  • Soliman MM, Abdel-Karim AM, Elwan WE (2000) Mineralogical and geochemical aspects of mica, amphibole, pyroxene and zircon from some granitoid rocks, South Sinai, Egypt. J Environ Res Zag Univ 2:247–271

    Google Scholar 

  • Stern RJ, Gottfried D (1986) Petrogenesis of late Precambrian (575-600 Ma) bimodal suite in northeast Africa. Contib Min Petr 92:492–501

    Article  Google Scholar 

  • Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Article  Google Scholar 

  • Sylvester PJ (1989) Post-collisional alkaline granites. J Geol 97:261–280

    Article  Google Scholar 

  • Takla MA, Basta FF, Madbouly MI, Hussein AA (2001) The mafic ultramafic intrusions of Sinai, Egypt. Ann Geol Surv Egypt 24:1–40

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford, 312 p

    Google Scholar 

  • Thirlwall MF, Jenkins C, Vroon PZ, Mattey DP (1997) Crustal interaction during construction of ocean islands: Pb-Sr-Nd-O isotope geochemistry of the shield basalts of Gran Canaria, Canary Islands. Chem Geol 135:233–262

    Article  Google Scholar 

  • Turner SP, Foden JD, Morrison RS (1992) Derivation of some A-type granites by fractionation of basaltic magma: an example from the Pathway Ridge, south Australia. Lithos 28:151–179

    Article  Google Scholar 

  • Vojtěch Janoušek CM, Farrow Vojtěch E (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing geochemical data toolkit (GCDkit). J Petrol 47:1255–1259. https://doi.org/10.1093/petrology/eg1013

    Article  Google Scholar 

  • Weaver BL, Tarney J (1984) Major and trace element composition of the continental lithosphere. Phys Chem Earth 15:39–68

    Article  Google Scholar 

  • White AJR, Chappell BW (1983) Granitoid types and their distribution in the Lachlan fold belts, southeastern Australia. Geol Soc Amer Mem 159:21–34

    Article  Google Scholar 

  • Wones DR, Eugster HP (1965) Stability of biotite: experiment, theory and applications. Am Mineral 50:1228–1272

    Google Scholar 

Download references

Acknowledgements

Thanks are due to Dr. Tamer Abu Allam, at UiT, the Arctic University of Norway, for the thermobarometric software calculations. Dr. Samir Kamh and Mr. Hamdi Kandel, Tanta University, kindly help in the graphic improvement and manipulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El-Metwally Lebda.

Additional information

This article is part of the Topical Collection on New Advances and Research Results on the Geology of Africa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebda, EM., Ghoneim, M. & Abdel-Karim, AA. Gabbros versus granites of the subduction regime of South Sinai, Egypt: discrimination and geochemical modelling. Arab J Geosci 12, 551 (2019). https://doi.org/10.1007/s12517-019-4695-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-019-4695-3

Keywords

Navigation