Evaluation of Sentinel-1 data for flood mapping in the upstream of Sidi Salem dam (Northern Tunisia)

  • Ahmed Ezzine
  • Fadila Darragi
  • Hamadi Rajhi
  • Anis Ghatassi
Original Paper


Flood mapping is a powerful asset that allows drawing better strategies to contain possible economic repercussions and to rescue the affected population. This work is directly unfolded after the rainfall events that occurred in the north of the country, in February 2015, during which certain cities located in the vicinity of the Tunisian basin of Medjerda were flooded by the overflow of the Medjerda river, causing important damage to the towns of Jendouba and Bou Salem. The present research illustrates the potentiality of Sentinel-1 sensor in detecting flood areas in the upstream of Medjerda river. The Medjerda is the most important river in Tunisia, with an annual water potential reaching 0.8 billion m3. We compared the signature of flood water in vertical transmit and horizontal received (VH) and vertical transmit and vertical received (VV) polarizations of radar data. The study proves that the segregation of land/water areas with a threshold technique is better observed in VH polarization rather than VV polarization.


SAR Flood mapping Sentinel-1 Polarization Medjerda basin 



The authors thank Mohamed Amin Hammami for his language assistance.

Funding information

This research is supported by the National Center of Mapping and Remote Sensing and the Ministry of Higher Education and Scientific Research of Tunisia.


  1. Abidi S (2017) Contribution à l'étude de la reconstruction et de la prévision des crues de la Medjerda à l'amont du barrage de Sidi Salem. Doctoral Thesis, National Institute of Agronomy, Tunis. p.1Google Scholar
  2. Abidi S, Hajji O, Hermassi T, Habaieb H (2014) Influence of considering tributaries to reconstruct flood hydrograph of an extreme event on the upstream portion of Medjerda River. Int Res J Public Environ Health 1(3):54–62Google Scholar
  3. Ahtonen P, Hallikainen M (2005) Automatic detection of water bodies from spaceborne SAR images. 2005 I.E. International Geoscience and Remote Sensing Symposium, IGARSS 2005, Seoul, pp. 3845–3848Google Scholar
  4. Badji M, Dautrebande S (1997) Characterization of flood inundated areas and delineation of poor drainage soil using ERS-1 SAR imagery. Hydrol Process 11(10):1441–1450CrossRefGoogle Scholar
  5. Baghdadi N, Bernier M, Gauthier R, Neeson I (2001) Evaluation of C-band SAR data for wetlands mapping. Int J Remote Sens 22:71–88CrossRefGoogle Scholar
  6. Bates PD, Wilson MD, Horritt MS, Mason DC, Holden N, Currie A (2006) Reach scale floodplain inundation dynamics observed using airborne synthetic aperture radar imagery: data analysis and modelling. J Hydrol 328(1–2):306–318CrossRefGoogle Scholar
  7. Ben Mansoura A, Garchi S, Daly H (2001) Analyzing forest users’ destructive behavior in Northern Tunisia. Land Use Policy 18:153–163CrossRefGoogle Scholar
  8. Bonn F, Dixon R (2005) Monitoring flood extent and forecasting excess runoff risk with RADARSAT-1 data. Nat Hazards 35(3):377–393CrossRefGoogle Scholar
  9. Bonn F, Rochon G (1996) Précis de télédétection: applications thématiques, vol 2. Presses Universitaires du Québec-Edit. AUPELF-UREF, MontréalGoogle Scholar
  10. Brivio PA, Colombo R, Maggi M, Tomasoni R (2002) Integration of remote sensing data and GIS for accurate mapping of flooded areas. Int J Remote Sens 23(3):429–441CrossRefGoogle Scholar
  11. Boni G et al. (2007) High resolution COSMO/SkyMed SAR data analysis for civil protection from flooding events, Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International, pp. 6–9Google Scholar
  12. Ezzine A, Abidi S, Lazreg A, Bacha S, Habaieb H, Bel Hadj Ali A, Policelli FS, Habib S, David J (2014) Sensitivity analysis of the flood forecasting with crest model in the upstream of Medjerda river (Tunisia). J Remote Sens GIS 2(2):2014Google Scholar
  13. Fdhila MK (2006) Étude de la dynamique fluviale de la Medjerda en période de crue et élaboration des cartes d’inondation. Mémoire de mastère, INAT, p 119Google Scholar
  14. Gan TY, Zunic F, Kuo CC, Strobl T (2012) Flood mapping of Danube River at Romania using single and multi-date ERS2-SAR images. Int J Appl Earth Obs Geoinf 18(0):69–81CrossRefGoogle Scholar
  15. Gharbi M, Soualmia A (2012) Simulation des crues éclair au niveau du bassin versant de la Medjerda (Boussalem). Oral communication in the 3ème Forum de l’eau: vers une gestion participative des ressources en eau, Djerba, TunisieGoogle Scholar
  16. Giordano F, Goccia M, Dellepiane S (2005) Segmentation of coherence maps for flood damage assessment ICIP 2005. IEEE International Conference on Image Processing, pp. II-233-6Google Scholar
  17. Henry J-B (2004) Systèmes d’information spatiaux pour la gestion du risque d’inondation de plaine. Thèse de doctorat, Géographie physique, Université de Strasbourg I, p 192Google Scholar
  18. Henry J-B, Matgen P, Tholey N, Pfister L, Hooffman L, et De Fraipont P (2003) Vers une intégration des techniques spatiales pour la gestion des inondations. Numéro Spécial ‘Hydrologie Spatialisée’, Bulletin de la SFPT, No. 172, pp 99–106Google Scholar
  19. Henry J-B, Chastanet P, Fellah K, Desnos Y-L (2006) Envisat multi-polarized ASAR data for flood mapping. Int J Remote Sens 27(10):1921–1929CrossRefGoogle Scholar
  20. Hess LL, Melack JM, Filoso S, Wang Y (1995) Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar. IEEE Trans Geosci Remote Sens 33(4):896–904CrossRefGoogle Scholar
  21. Horritt MS (1999) A statistical active contour model for SAR image segmentation. Image Vis Comput 17(3–4):213–224CrossRefGoogle Scholar
  22. Hoque R, Nakayama D, Matsuyama H, Matsumoto J (2011) Flood monitoring, mapping and assessing capabilities using RADARSAT remote sensing, GIS and ground data for Bangladesh. Nat Hazards 57(2):525–548CrossRefGoogle Scholar
  23. Lee J-S, Jurkevich L, Dewaele P, Wambacq P, Oosterlinck A (1994) Speckle filtering of synthetic aperture radar images: a review. Remote Sens Rev 8:313–340CrossRefGoogle Scholar
  24. Liu C (2016) Analysis of Sentinel-1 SAR data for mapping standing water in the Twente region. Master Thesis on Science in Geo-information Science and Earth Observation, University of Twente, EnschedeGoogle Scholar
  25. Liu Y, Nishiyama S, Yano T (2004) Analysis of four change detection algorithms in bi-temporal space with a case study. Int J Remote Sens 25(11):2121–2139CrossRefGoogle Scholar
  26. Maggi M, Brivio PA, Colombo R, Tomasoni R (1998) Flooded areas estimation using radar images and digital elevation model. In: Cecchi G, Zilioli E (eds) Earth surface remote sensing II. Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie). Spie-Int Soc optical engineering, Bellingham, pp 46–53CrossRefGoogle Scholar
  27. Martinis S, Twele A, Voigt S (2009) Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSar-X data. Nat Hazards Earth Syst Sci 9:303–314CrossRefGoogle Scholar
  28. Matgen P, Schumann G, Henry JB, Hoffmann L, Pfister L (2007) Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management. Int J Appl Earth Obs Geoinf 9(3):247–263CrossRefGoogle Scholar
  29. Musa ZN, Popescu I, Mynett A (2015) A review of applications of satellite SAR, optical, altimetry and DEM data for surfacewatermodelling, mapping and parameter estimation. Hydrol Earth Syst Sci 19(3755–3769):3Google Scholar
  30. Oberstadler R, HÖNsch H, Huth D (1997) Assessment of the mapping capabilities of ERS-1 SAR data for flood mapping: a case study in Germany. Hydrol Process 11(10):1415–1425CrossRefGoogle Scholar
  31. Sanyal J, Lu XX (2004) Application of remote sensing in flood management with special reference to monsoon Asia: a review. Nat Hazards 33(2):283–301CrossRefGoogle Scholar
  32. Schumann G, Matgen P, Hoffmann L, Hostache R, Pappenberger F, Pfister L (2007) Deriving distributed roughness values from satellite radar data for flood inundation modelling. J Hydrol 344(1–2):96–111CrossRefGoogle Scholar
  33. Schumann GJP, Bates PD, Di Baldassarre G, Mason DC (2012) The use of radar imagery in riverine flood inundation studies. In: Fluvial remote sensing for science and management. John Wiley & Sons, Ltd, Chichester, pp 115–140Google Scholar
  34. Smith LC (1997) Satellite remote sensing of river inundation area, stage, and discharge: a review. Hydrol Process 11(10):1427–1439CrossRefGoogle Scholar
  35. Talbi S, Soualmia H, Gharbi M (2012) Etude de la dynamique fluviale et modélisation de la propagation de l’onde de crues au niveau de la Medjerda. Revue Scientifique du Ministère de l’Équipement en Tunisie, pp 4–16Google Scholar
  36. Sohn HG, Song YS, Kim GH (2005) Detecting water area during flood event from SAR image. In: Gervasi O et al (eds) International Conference on Computational Science and Its Applications - ICCSA 2005. Springer, Berlin, Heidelberg, pp 771–780Google Scholar
  37. Vinu Chandran R, Ramakrishnan D, Chowdary VM, Jeyaram A, Jha AM (2006) Flood mapping and analysis using air-borne synthetic aperture radar: a case study of July 2004 flood in Baghmati river basin, Bihar. Curr Sci 90(2):249–256Google Scholar
  38. Zwenzner H, Voigt S (2009) Improved estimation of flood parameters by combining space based SAR data with very high resolution digital elevation data. Hydrol Earth Syst Sci 13(5):567–576CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Ahmed Ezzine
    • 1
    • 2
  • Fadila Darragi
    • 2
  • Hamadi Rajhi
    • 1
  • Anis Ghatassi
    • 2
  1. 1.National Center of Mapping and Remote SensingTunisTunisia
  2. 2.Geology DepartmentFaculty of Sciences of TunisTunisTunisia

Personalised recommendations