Automated mapping of snow/ice surface temperature using Landsat-8 data in Beas River basin, India, and validation with wireless sensor network data

  • Dhiraj Kumar Singh
  • Hemendra Singh Gusain
  • Varunendra Mishra
  • Neena Gupta
  • Rajiv Kumar Das
Original Paper


In this paper, an automated method for retrieval of snow surface temperature (SST) in Beas River Basin, India, using Landsat-8 thermal data is proposed. Digital number (DN) values of thermal data were converted into Top of Atmospheric (TOA) radiance. Surface radiance has been estimated from TOA radiance using a single channel method. The estimated surface radiance was then converted into SST. Cloud free Landsat-8 data for January and February 2017 has been used to estimate SST. Snow and Avalanche Study Establishment (SASE) has established a wireless sensor network (WSN) in an avalanche prone slope in Beas River Basin, India. Landsat-8 retrieved SST has been compared and validated with recorded SST at WSN stations. The retrieved SST using proposed algorithm was in good agreement with SST recorded on ground by sensor network. The mean absolute error (MAE) and root-mean-square error (RMSE) between estimated and recorded SST has been observed as ~ 1.1 K and ~ 1.5 K for 23 January 2017 and ~ 0.7 and ~ 1.6 K for 24 February 2017. Algorithm has shown a potential for automated mapping of snow and ice surface temperature using Landsat-8 data for snow cover and glaciers in Himalaya.


Surface temperature Landsat-8 thermal data Wireless sensor network 



The authors are grateful to A. Ganju, Director, Snow and Avalanche Study Establishment (SASE) for providing facilities to carry out this work and constant motivation during the investigation. The authors would like to acknowledge SASE staff for collecting ground data. Thanks are due to R.K.Garg for providing WSN data. The Landsat-8 data made available by earth explorer ( is thankfully acknowledge. We are also thankful to Google earth for providing high resolution image of the study area.


  1. Aires F, Prigent C, Rossow W, Rothstein M (2001) A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwaves observations. J Geophys Res 106(14):14887–14907. CrossRefGoogle Scholar
  2. Barsi JA, Schott JR, Palluconi FD, Helder DL, Hook SJ, Markham BL, Chander G, O’Donnell EM (2003a) Landsat TM and ETM thermal band calibration. Can J Remote Sens 29(2):141–153. CrossRefGoogle Scholar
  3. Barsi JA, Barker JL, Schott JR (2003b) An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. IEEE International Geoscience and Remote Sensing Symposium 0(C):2–4. Google Scholar
  4. Basist A, Grody N, Peterson T, Williams C (1998) Using the special sensor microwave/imager to monitor land surface temperatures, wetness, and snow cover. J Appl Meteorol 37:888–911CrossRefGoogle Scholar
  5. Becker F, Li ZL (1990) Towards a local split window method over land surface. Int J Remote Sens 11(3):369–393. CrossRefGoogle Scholar
  6. Bendib A, Dridi H, Kalla MI (2016) Contribution of Landsat 8 data for the estimation of land surface temperature in Batna city, eastern Algeria. Geocarto International 32(5):503–513. CrossRefGoogle Scholar
  7. Bolch T, Kulkarni AV, Kaab A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012) The state and fate of Himalayan glaciers. Science (USA) 336:310–314. Google Scholar
  8. Buhler Y, Kumar S, Veitinger J, Christen M, Stoffer A, Snehmani (2013) Automated identification of potential snow avalanche release areas based on digital elevation models. Nat Hazards Earth Syst Sci 13(5):1321–1335CrossRefGoogle Scholar
  9. Chang ATC, Foster JL (1991) Utilization of surface cover composition to improve the microwave determination of snow water equivalent in mountain basin. Int J Remote Sens 12(11):2311–2319. CrossRefGoogle Scholar
  10. Cristobal J, Ninyerola M, Pons X (2008) Modeling air temperature through a combination of remote sensing and GIS data. J Geophys Res 113:1–13CrossRefGoogle Scholar
  11. Das I, Sarwade RN (2008) Snow depth estimation over north western Himalaya using AMSR-E. Int J Remote Sens 29(14):4237–4248CrossRefGoogle Scholar
  12. Datt P, Srivastava PK, Negi PS, Satyawali PK (2008) Surface energy balance of seasonal snow cover for snow melt estimation in N-W Himalaya. Journal of Earth System Science 117(5):567–573. CrossRefGoogle Scholar
  13. Fily M, Royer A, Goïta K, Prigent C (2003) A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in sub-arctic areas. Remote Sens Environ 85(3):328–338. CrossRefGoogle Scholar
  14. Gurung DR, Kulkarni AV, Giriraj A, Aung KS, Shrestha B (2011) Monitoring of seasonal snow cover in Bhutan using remote sensing techniques. Curr Sci 101(10):1364–1370Google Scholar
  15. Gusain HS, Mishra VD, Arora MK (2014) Estimation of net shortwave radiation flux of western Himalayan snow cover during clear sky days using remote sensing and meteorological data. Remote Sensing Letters 5(1):83–92CrossRefGoogle Scholar
  16. Gusain HS, Mishra VD, Brar GS, Ganju A (2015) A simple model for estimation of snow/ice surface temperature of Antarctic ice sheet using remotely sensed thermal band data. Indian J Radio Space Phys 44:51–55Google Scholar
  17. Haq M A, Jain K and Menon KPR (2012) Surface temperature estimation of Gangotri glacier using thermal remote sensing. International Archives of the Photogrammetry, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 39(September), 115–119. doi:, XXXIX-B8
  18. Jiménez-Muñoz JC, Sobrino JA (2003) A generalized single-channel method for retrieving land surface temperature from remote sensing data. J Geophys Res 108:4688–4695 CrossRefGoogle Scholar
  19. König M, Winther JG, Isaksson E (2001) Measuring snow and glacier properties from satellite. Rev Geophys 39(1):1–27. CrossRefGoogle Scholar
  20. Kuenzer C, Dech S (2013) Thermal infrared remote sensing: sensors, methods, applications. Remote Sens Digit Image Proces 17:429–451CrossRefGoogle Scholar
  21. Kulkarni AV, Singh SK, Mathur P, Mishra VD (2006) Algorithm to monitor snow cover using AWiFS data of RESOURCESAT-1 for the Himalayan regions. Int J Remote Sens 27(12):2449–2457. CrossRefGoogle Scholar
  22. Li ZL, Tang BH, Wu H, Ren H, Yan G, Wan Z, Trigo IF, Sobrino JA (2013) Satellite-derived land surface temperature: current status and perspectives. Remote Sens Environ 131:14–37. CrossRefGoogle Scholar
  23. Liu G, Zhang Q, Li G, Doronzo DM (2016) Response of land cover types to land surface temperature derived from Landsat-5 TM in Nanjing metropolitan region, China. Environmental Earth Sciences 75(20).
  24. Markham BL, Barker JL (1985) Spectral characteristics of the LANDSAT thematic mapper sensors. Int J Remote Sens 6(5):697–716CrossRefGoogle Scholar
  25. Negi HS, Thakur NK, Mishra VD (2007) Estimation and validation of snow surface temperature using MODIS data for snow-avalanche studies in NW-Himalaya. Journal of the Indian Society of Remote Sensing 35(4):287–299. CrossRefGoogle Scholar
  26. Njoku EG, Li L (1999) Retrieval of land surface parameters using passive microwaves measurements at 6–18 GHz. IEEE Trans Geosci Remote Sens 37(1):79–93. CrossRefGoogle Scholar
  27. Price JC (1983) Estimating surface temperature from satellite thermal infrared data: a simple formulation for atmospheric effect. Remote Sens Environ 13(4):353–361. CrossRefGoogle Scholar
  28. Qin Z, Karnieli A, Berliner P (2001) A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int J Remote Sens 22(18):3719–3746CrossRefGoogle Scholar
  29. Rafiq M, Rashid I and Romshoo A (2014) Estimating land surface temperature and its lapse rate over Kashmir valley using MODIS data. Proceedings of the 16th International Association for Mathematical Geosciences—geostatistical and geospatial approaches for the characterization of natural resources in the environment: challenges, processes and strategies, IAMG 2014, (March 2015). doi:
  30. Raj KBG, Fleming K (2008) Surface temperature estimation from Landsat ETM data for a part of the Baspa Basin, NW Himalaya, India. Bull Glaciol Res 25:19–16Google Scholar
  31. Rajasekar U, Weng QH (2009) Spatio-temporal modelling and analysis of urban heat islands by using Landsat TM and ETM + imagery. Int J Remote Sens 30(13):3531–3548. CrossRefGoogle Scholar
  32. Singh KK, Mishra VD, Negi HS (2007) Evaluation of snow parameters using passive microwave remote sensing. Def Sci J 57(2):271–278. CrossRefGoogle Scholar
  33. Singh K K, Mishra V D, Singh D K and Ganju A (2013) Estimation of snow surface temperature for NW Himalayan regions using passive microwave satellite data. Indian Journal of Radio and Space Physics, 42(1): 27–33Google Scholar
  34. Singh KK, Dewali SK, Singh DK, Mishra VD, Kaur M (2016) Monitoring of snow surface temperature in North West Himalaya using passive microwave satellite data. Indian J Radio Space Phys 45(1):20–29Google Scholar
  35. Wan Z, Dozier J (1996) A generated split-window algorithm for retrieving land surface temperature measurement form space. IEEE Trans Geosci Remote Sens 34(4):892–905. CrossRefGoogle Scholar
  36. Wang F, Qin Z, Song C, Tu L, Karnieli A, Zhao S (2015) An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote Sens 7(4):4268–4289. CrossRefGoogle Scholar
  37. Wiber AC, Kratz DP and Gupta SK (1999) Surface emissivity maps for use in retrievals of longwave radiation satellite. NASA Center for AeroSpace Information (CASI)

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Dhiraj Kumar Singh
    • 1
    • 2
  • Hemendra Singh Gusain
    • 1
  • Varunendra Mishra
    • 1
  • Neena Gupta
    • 2
  • Rajiv Kumar Das
    • 1
  1. 1.Snow and Avalanche Study EstablishmentRDC (DRDO)ChandigarhIndia
  2. 2.PEC University of TechnologyChandigarhIndia

Personalised recommendations