Advertisement

Aeromagnetic study of buried basement structures and lineaments of Sahel region (Eastern Tunisia, North Africa)

  • H. Azaiez
  • H. Gabtni
  • M. Bédir
  • S. Campbell
AGIC 2017
  • 142 Downloads
Part of the following topical collections:
  1. Geology of North Africa and Mediterranean regions

Abstract

This study presents original results regarding the use of aeromagnetic to explore deep subsurface structuring in southern part of Tunisian Sahel petroleum province (Eastern Tunisia, North Africa). Several filters and techniques were applied to the total magnetic intensity (TMI) grid. First, an adequate reduce to the pole (RTP) grid was generated. The RTP map shows 17 positive and negative anomalies associated with short- and long-wavelength amplitude anomalies. Positive anomalies correspond to high magnetic basement structures estimated from seismic lines in the area. Circular anomalies are also distinguished locally and can be explained by Cretaceous magmatic rocks recognized in numerous petroleum wells. Second, specific qualitative and quantitative filters (e.g., residual-regional separation, horizontal tilt angle (TDX), tilt angle (TILT), total horizontal derivative of tilt angle (THDTILT)) were applied to elucidate the form and the extent of buried magnetic anomalies and lineaments. The resulting deep structural map revealed the presence of NW-SE, N-S, and E-W regional magnetic basement structures and lineaments and a regional tectonic node surrounding Henchir Keskes-Agareb-Mahres-Hachichina area. Two magnetic inversion models calculated across the study area highlight west to east crustal thinning trend and permit depth to basement estimation. These results are valuable for future conventional and unconventional petroleum exploration in this underexplored southern part of Sahel plain.

Keywords

Aeromagnetic Tunisia Sahel Basement Anomalies Lineaments Structuring Modeling 

Notes

Acknowledgments

This research was supported by the Centre de Recherches et des Technologies des Eaux (CERTE; Borj Cedria Technopark, Tunisia). We are very grateful to the Getech group plc (license agreement A14013) for the scientific support.

References

  1. Azaiez H, Gabtni H, Tanfous D, Bédir M (2008) Modélisation géophysique des structures profondes dans la région de Bir Ali Ben Khalifa. Troisièmes journées tunisiennes de Géologie appliquée, Sousse, 21–23 mars 2008, Tunisie, Expanded abstracts, p. 48Google Scholar
  2. Azaiez H, Gabtni H, Tanfous-Amri D, Bédir M, Soussi M (2009) Structuration profonde de la région de Mezzouna-Bir Ali Ben Khalifa (Sahel de Tunisie) et des réservoirs du Crétacé inférieur associés: sismique réflexion et Gravimétrie. Congrès Maghrébin de Géophysique Appliquée 4 (CMGA 4), Hammamet 26–28 mars 2009 TunisieGoogle Scholar
  3. Beall AO, Law CW (1996) Hydrocarbon potential of a new Jurassic play, Central Tunisia. United States: Am Assoc Pet Geol AAPG Ann Conv 5:12–13Google Scholar
  4. Bédir M, Zargouni F, Tlig S, Bobier C (1992) Subsurface geodynamics and petroleum geology of transform margin basins in the Sahel of Mahdia and El Jem (eastern Tunisia). AAPG 76(9):1417–1442Google Scholar
  5. Ben Ferjani A, Burollet P, Mejri F (1990) Petroleum geology of Tunisia. Entreprise Tunisienne des Activités Pétrolières (ETAP publication), Tunis, p 194Google Scholar
  6. Bishop WF (1975) Geology of Tunisia and adjacent parts of Algeria and Libya. AAPG Bull 59:413–450Google Scholar
  7. Blakely RJ, Simpson RW (1986) Approximating edges of source bodies from magnetic and gravity anomalies. Geophysics 51:1494–1498CrossRefGoogle Scholar
  8. Bouaziz S, Barrier E, Soussi M, Turki MM, Zouari H (2002) Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics 357:227–253CrossRefGoogle Scholar
  9. Buness H, 19 others (1992) The EGT’85 seismic experiment in Tunisia: a reconnaissance of the deep structures. In: Freeman R, Muller S (eds) Sixth Workshop on the European Geotraverse project, data compilations and synoptic interpretation. European Science Foundation, Strasbourg, pp 197–210Google Scholar
  10. Burollet PF (1956) Contribution à l’étude stratigraphique de la Tunisie centrale. Ann Mines Géol, Tunis 18:350Google Scholar
  11. Burollet PF (1991) Structures and tectonics of Tunisia. Tectonophysics 195:359–369CrossRefGoogle Scholar
  12. Chaabouni M (2003) Potentiality of Jurassic play in Ali Ben Khalifa Prospect, Tunisia. 1st North Africa/Mediterranean Petroleum & Geoscience Conference & Exhibition Tunis, 6–9 October 2003, p. 4Google Scholar
  13. Cordell L, Grauch VJS (1985) Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico. In: Hinzc WJ (ed) The utility of regional gravity and magnetic anomaly maps: Soc. Expl. Geophys, pp 181–197CrossRefGoogle Scholar
  14. Delteil J, Zouari H, Chikhaoui M, Creuzot G, Ouali J, Turki MM, Yaïch C, Zargouni F (1991) Relation entre ouvertures téthysienne et mésogéenne en Tunisie. Bulletin Société Géologique de France 162:1173–1181Google Scholar
  15. Dhaoui M, Gabtni H, Jallouli C, Jleilia A, Mickus KL, Turki MM (2014) Gravity analysis of the Precambrian basement topography associated with the northern boundary of Ghadames Basin (southern Tunisia). J Appl Geophys 111:299–311CrossRefGoogle Scholar
  16. Finetti I (1982) Structure, stratigraphy and evolution of Central Mediterranean. Boll Geof Teor Appl 24(96):247–312Google Scholar
  17. Frizon de Lamotte D, Leturmy P, Missenard Y, Khomsi S, Ruiz G, Saddiqi O, Guillocheau F, Michard A (2009) Mesozoic and Cenozoic vertical movements in the atlas system (Algeria, Morocco, Tunisia): an overview. Tectonophysics 475, 1:9–28CrossRefGoogle Scholar
  18. Gabtni H (2005) Apport de la gravimétrie à l’étude des structures profondes du Sahel de Tunisie (cas de la région de Kairouan–Sousse–Monastir). Gravity contribution on the deep structure study of the Tunisian Sahel domain (a Kairouan–Sousse–Monastir area case). CR. Géosciences 337:1409–1414CrossRefGoogle Scholar
  19. Glenn WE, Badgery RA (1998) High resolution aeromagnetic surveys for hydrocarbon exploration: prospect scale interpretation. Can J Explor Geophys 34(1–2):97–102Google Scholar
  20. Guiraud R (1998) Mesozoic rifting and basin inversion along the northern African Tethyan margin: an overview. In Macgregor, DS, Moody, RTJ, and Clark-Lowes, DD, eds, Petroleum geology of North Africa: Geological Society, London, Special Publication 132, p. 217–229Google Scholar
  21. Khomsi S, Bédir M, Ben Jemia GM (2004) Mise en évidence d’un nouveau front de chevauchement dans l’Atlas tunisien oriental de Tunisie par sismique réflexion. Contexte structural régional et rôle du Trias salifère. C. R. Geoscience 336:1401–1408CrossRefGoogle Scholar
  22. Khomsi S, Bédir M, Soussi M, Ben Jemia MG, Ben Ismail-Lattrache K (2006) Mise en évidence en subsurface d’événements compressifs Eocène moyen-supérieur en Tunisie orientale (Sahel): Généralité de la phase atlasique en Afrique du Nord. C R Geosci 338:41–49CrossRefGoogle Scholar
  23. Khomsi S, Ben Jemi MG, Frizon de Lamotte D, Maherssi C, Echihi O, Meznia R (2009) An overview of the late Cretaceous–Eocene positive inversions and Oligo-Miocene subsidence events in the foreland of the Tunisian atlas: structural style and implications for the tectonic agenda of the Maghrebian atlas system. Tectonophysics 475, 1:38–58CrossRefGoogle Scholar
  24. Khomsi S, Echihi O, Slimani N (2012) Structural control on the deep hydrogeological and geothermal aquifers related to the fractured Campanian-Miocene reservoirs of North-Eastern Tunisia foreland constrained by subsurface data. C R Geosci 344:247–265CrossRefGoogle Scholar
  25. Klett TR (2001) Total petroleum systems of the Pelagian Province, Tunisia, Libya, Italy, and Malta, the Bou Dabbous–Tertiary and Jurassic–Cretaceous composite, U.S. Geol Surv Bull, 2202-D, version 10, p. 149Google Scholar
  26. Laaridhi Ouazaa N, Bédir M (2004) Les migrations tectono-magmatiques du Trias au Miocène sur la marge orientale de la Tunisie. Africa Geosci Rev 11(2):177–194Google Scholar
  27. Lucazeau F, Ben Dhia H (1989) Preliminary heat-flow density data from Tunisia and the Pelagian Sea. Revue canadienne des Sciences de la Terre 26(5):993–1000CrossRefGoogle Scholar
  28. Mattoussi Kort H, Gasquet D, Ikenne M, Laaridhi Ouazaa N (2009) Cretaceous crustal thinning in North Africa: implications for magmatic and thermal events in the eastern Tunisian margin and the Pelagic Sea. J Afr Earth Sci 55:257–264CrossRefGoogle Scholar
  29. Mejri F, Burollet PF, Ben Ferjani A (2006) Petroleum geology of Tunisia. A renewed synthesis. ETAP 22:230Google Scholar
  30. Midassi M S (1982) Regional gravity of Tunisia.- Master of Science, Univ. Carolina, p. 152Google Scholar
  31. Miller HG, Singh VJ (1994) Potential field tilt, a new concept for location of potential field sources. Appl Geophys 32:213–217CrossRefGoogle Scholar
  32. Roure F, Casero P, Addoum B (2012) Alpine inversion of the north African margin and delamination of its continental lithosphere. Tectonics 31:TC3006.  https://doi.org/10.1029/2011TC002989 CrossRefGoogle Scholar
  33. Roy GI (2013) Tilt angle interpretation of dipping fault model. J Appl Geophys 98:33–43CrossRefGoogle Scholar
  34. Salem A, Williams S, Fairhead JD, Ravat D, Smith R (2007) Tilt-depth method: a simple depth estimation method using first-order magnetic derivatives. Lead Edge 26:1502–1505CrossRefGoogle Scholar
  35. Salem A, Williams S, Fairhead D, Smith R, Ravat D (2008) Interpretation of magnetic data using tilt-angle derivatives. Geophysics 73:1–10CrossRefGoogle Scholar
  36. Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35(2):293–302CrossRefGoogle Scholar
  37. Steenland NC (1965) Oil fields and aeromagnetic anomalies. Geophysics 30(5):206–239CrossRefGoogle Scholar
  38. Tanfous Amri D, Bédir M, Soussi M, Azaiez H, Zitouni L, Inoubli MH, Ben Boubaker K (2005) Early halokinesis associated to the Jurassic rift faulting in Central Tunisia (Majoura-El Hfay area). C.R. Geoscience. 337(7):703–711Google Scholar
  39. Thurston JB, Smith RS (1997) Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI method. Geophysics 62:807–813CrossRefGoogle Scholar
  40. Verduzco B, Fairhead JD, Green CM (2004) New insights into magnetic derivatives for structural mapping. Lead Edge 23:116–119CrossRefGoogle Scholar
  41. Wilson M and Guiraud R (1998) Late Permian to recent magmatic activity on the African-Arabian margin of the Tethys. In Macgregor, D.S., Moody, R.T.J., and Clark-Lowes, D.D., eds., Petroleum geology of North Africa: Geological Society, London, Special Publication 132, 231–263Google Scholar
  42. Zouaghi T, Bédir M, Melki F, Gabtni H, Gharsalli R, Bessioud A, Zargouni F (2011) Neogene sediment deformations and tectonic features of northeastern Tunisia: evidence for paleoseismicity. Arab J Geosci. AJGS 4(7–8):1301–1314.  https://doi.org/10.1007/s12517-010-0225-z CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  1. 1.Laboratoire de GéoressourcesCentre de Recherches et des Technologies des Eaux (CERTE)SolimanTunisia
  2. 2.Getech Group plc, Kitson House, Elmete HallLeedsUK

Personalised recommendations