The Mazafran river (western Sahel of Algiers): superimposition or antecedence?

  • Djamal Akziz
  • Mostefa Guendouz
  • Mohamed Said Guettouche
  • Tahar Khelil
ArabGU2016
  • 300 Downloads
Part of the following topical collections:
  1. Current Advances in Geology of North Africa

Abstract

At the western Sahel of Algiers, the watercourse of the Mazafran river is perpendicular to the Sahel fold, forming a gorge that has developed in a tectono-eustatic context characteristic of the Sahel region. This gorge has formed in a regime of superimposition which involves the evolution of antecedence in relation to the Sahel uplift. This deduction is the result of multiple analyses that are based on a stratigraphic study which characterizes the succession of continental and marine deposits and the analyses of lineament map of tectonic evolution during the Quaternary which is marked by the Sahel folding. In order to correlate the chronology between the fluvial and marine sedimentary dynamics, a geomorphological study of the Mazafran alluvial terraces associated with the paleoshorelines was realized. The obtained results reveal that the development of the Mazafran river gorge is complex.

Keywords

Superimposition Antecedence Tectono-eustatic Stratigraphy Alluvial terraces 

Notes

Acknowledgements

The authors are grateful to the director of Geomorphology and Georisks laboratory (Faculty of Earth Sciences, USTHB, Algeria) for providing the necessary laboratory facilities and other logistic support and discussion for the study and we would like to thank Professor S. Maouche (CRAAG, Algeria) for his help and precious pieces of advice.

References

  1. Avouac JP, Peltzer G (1993) Active tectonics in southern Xinjiang, China: analysis of terrace riser and normal fault scarp degradation along the Hotan-Qira fault system. J Geophys Res 98:21 773–21 807CrossRefGoogle Scholar
  2. Ayme A, Ayme J M, Magne J (1954) Etude des terrains néogènes de la cluse du Mazafran (Sahel d’Alger), Bull. du Serv. de la carte geol.de l’Algérie, pp. 129–150Google Scholar
  3. Ayme A (1952) Le Quaternaire littoral des environs d’Alger. Actes du Cong. Panaf. de préhistoire, II session, Alger 1952, pp.243–246Google Scholar
  4. Blum MD, Straffin EC (2001) Fluvial responses to external forcing: examples from the French Massif Central, the Texas Coastal Plain (USA), the Sahara of Tunisia, and the lower Mississippi Valley (USA). In: Maddy D, Macklin M, Woodward J (eds) River basin sediment systems: archives of environmental change. Balkema, Rotterdam, pp 195–228Google Scholar
  5. Boudiaf A (1996) Etude sismotectonique de la région d’Alger et de la Kabylie. PhD. Dissertation, Univ. Montpellier, 274 pGoogle Scholar
  6. Bowman D, Svoray T, Devora S, Shapira I, Laronne JB (2010) Extreme channel incision and shape evolution in response to a continuous, rapid base-level fall, the Dead Sea, Israel. Geomorphology 114(3):227–237CrossRefGoogle Scholar
  7. Bridgland DR (2000) River terrace systems in north-west Europe: an archive of environmental change, uplift and early human occupation. Quat Sci Rev 19:1293–1303CrossRefGoogle Scholar
  8. Bull WB (1991) Geomorphic responses to climatic change. Oxford University Press, New York 321 pGoogle Scholar
  9. Bull WB (1990) Stream-terraces genesis: implications for soil development. Geomorphology 3:351–367CrossRefGoogle Scholar
  10. Carcaillet J, Mugnier JL, Koci R, Jouanne F (2009) Uplift and active tectonics of southern Albania inferred from incision of alluvial terraces. Quat Res 71(3):465–476CrossRefGoogle Scholar
  11. Dalloni M (1933) Le Pliocène du sahel oriental et de la Kabylie, B.S.H.N.Afr. Du Nord, t. XXIV, p. 9–18Google Scholar
  12. De Lamothe G (1911) Les anciennes lignes de rivage du Sahel d’Alger et d’une partie de la côte Algérienne, Soc. Géol. France, Comp. Rendus, n 3Google Scholar
  13. Ficheur E (1910) Carte géologique de Koléa. Algérie, feuille n° 41, B4. C16Google Scholar
  14. Ficheur E (1896) Aperçu sommaire sur les terrains néogènes du Sahel d’Alger. B.S.G. F (3eme série), t. XXIV, p. 973–981Google Scholar
  15. Finnegan NJ, Sklar LS, Fuller TK (2007) Interplay of sediment supply, river incision, and channel morphology revealed by the transient evolution of an experimental bedrock channel. J Geophys Res 112(F3):F03S11CrossRefGoogle Scholar
  16. Formento-Trigilio ML, Burbank DW, Nicol A, Schulmeister J, Rieser U (2002) River response to an active fold-and-thrust belt in a convergent margin setting, North Island, New Zealand. Geomorphology 49:125–152CrossRefGoogle Scholar
  17. Gignoux M (1915) L’étage calabrien (Pliocène supérieur marin) sur le versant nord est de l’Apennin entre le Monte Gargano et Plaisance. Extrait du Bulletin de la Société Géologique de France, 4e série, t. XIV, p. 324Google Scholar
  18. Glangeaud L, Ayme A, Caire A, Mattauer M, Muraour P (1952) Histoire géologique de la province d’Alger, Publ. XIX C.G.I., Alger, Mono. Reg., 1° Serie, Algérie, 25, 40 Fig., 3 pl.h.t. 142 pGoogle Scholar
  19. Glangeaud L (1932) Etude géologique de la région littorale de la province d’Alger. Thèse Doct. Sci., Paris, Bull. Serv. Carte géol. Alger 2ème Série, Stratig. N°8, 608 pGoogle Scholar
  20. Hancock GS, Anderson RS (2002) Numerical modeling of fluvial strath-terrace formation in response to oscillating climate. Geol Soc Am Bull 114:1131–1142Google Scholar
  21. Harbi A, Maouche S, Ayadi A, Benouar D, Panza GF, Benhallou H (2004) Seismicity and tectonic structures in the site of Algiers and its surroundings: a step towards microzonation. Pageoph 161:949–967CrossRefGoogle Scholar
  22. Karner DB, Marra F (1998) Correlation of fluvio-deltaic aggradational sections with glacial climate history: a revision of the Pleistocene stratigraphy of Rome. Geol Soc Am Bull 110:748–758CrossRefGoogle Scholar
  23. Lague D (2010) Reduction of long-term bedrock incision efficiency by short-term alluvial cover intermittency. Geophysical Research 115(2):F02011Google Scholar
  24. Lavé J, Avouac JP (2001) Fluvial incision and tectonic uplift across the Himalaya of central Nepal. Geophysical Research 106:26561–26591CrossRefGoogle Scholar
  25. Maouche S, Meghraoui M, Morhange C, Belabbes S, Bouhadad Y, Haddoum H (2011) Active coastal thrusting and folding, and uplift rate of the Sahel Anticline and Zemmouri earthquake area (Tell Atlas, Algeria). J Tectonophys 509(1–2):69–80CrossRefGoogle Scholar
  26. Meghraoui M (1991) Blind reverse faulting system associated with the Mont Chenoua-Tipaza earthquake of 29 October 1989 (north-central Algeria). Terra Nova 3:84–93CrossRefGoogle Scholar
  27. Meghraoui M. (1988) Geologie des zones sismiques du nord de l’Algérie. Paleosismologie, Tectonique active et synthesesismo-tectonique, these de Doc. Es. Sci., Univ Paris VI, 356 pGoogle Scholar
  28. Merritts DJ, Vincent KR, Wohl EE (1994) Long river profiles, tectonismandeustasy: a guide to interpreting fluvial terraces. J Geophys Res 99:14031–14050CrossRefGoogle Scholar
  29. Mizutani T (1998) Laboratory experiment and digital simulation of multiple fill-cut terrace formation. Geomorphology 24:353–361CrossRefGoogle Scholar
  30. Moshe LB, Haviv I, Enzel Y, Zilberman E, Matmon A (2008) Incision of alluvial channels in response to a continuous base level fall: field characterization, modeling, and validation along the Dead Sea. Geomorphology 93:524–536CrossRefGoogle Scholar
  31. Pan B, Su H, Hu Z, Hu X, Gao H, Li J, Kirby E (2009) Evaluating the role of climate and tectonics during non-steady incision of the Yellow River: evidence from a 124 Ma terrace record near Lanzhou, China. Quat Sci Rev 28(2009):3281–3290CrossRefGoogle Scholar
  32. Pan B, Burbank D, Wang Y, Wu G, Li J, Guan Q (2003) A 900 k.y. record of strata terrace formation during glacial-interglacial transitions in northwest China. Geology 31(11):957–960CrossRefGoogle Scholar
  33. Pazzaglia FJ, Gardner TW, Merritts DJ (1998) Bedrock fluvial incision and longitudinal profile development over geologic time scales determined by fluvial terraces Geophysical Monograph Series. American Geophysical Union, WashingtonGoogle Scholar
  34. Rockwell TK, Keller EA, Clark MN, Johnson DL (1984) Chronology and rates of faulting of Ventura River terraces, California. GeolSoc Am Bull 95:1466–1474CrossRefGoogle Scholar
  35. Saoudi N (1989) Pliocène et pléistocène inferieur et moyen du Sahel occidental d’Alger, Entr. Nat. Du Livre, n° 2020/85, 71 fig., 10 photo. h.tGoogle Scholar
  36. Törnqvist TE (1998) Longitudinal profile evolution of the Rhine Meuse system during the last deglaciation: interplay of climate change and glacioeustasy? Terra Nova 10:11–15CrossRefGoogle Scholar
  37. Valla PG, Van Der Beek PA, Lague D (2010) Fluvial incision into bedrock: insights from morphometric analysis and numerical modeling of gorges incising glacial hanging valleys (Western Alps, France). Geophysical Research 115(F2):F02010CrossRefGoogle Scholar
  38. Van den Berg MW, Van Hoof T (2001) The Maas terrace sequence at Maastricht, SE Netherlands: evidence for 200 m of late Neogene and Quaternary surface uplift. In D. Maddy, M. Macklin &J. Woodward (eds), River Basin Sediment Systems: Archives of Environmental Change. Balkema, Rotterdam, 45–86Google Scholar
  39. Weisrock A (2002) L’incision des vallées : une question de temps. Revue Géographique de l’Est 4:155–161Google Scholar
  40. Westaway R, Cordier S, Bridgland D (2009) Étude du soulèvement Pléistocène dans le nord-est de la France et le sud-ouest de l’Allemagne d’après les terrasses du bassin de la Moselle : relation avec les propriétés crustales, Quaternaire, vol. 20/1. 2009Google Scholar
  41. Westaway R (2002a) Geomorphological consequences of weak lower continental crust, and its significance for studies of uplift, landscape evolution, and the interpretation of river terrace sequences. Neth J Geosci 81:283–304Google Scholar
  42. Westaway R (2002b) Long-term river terrace sequences: evidence for global increases in surface uplift rates in the Late Pliocene and early Middle Pleistocene caused by flow in the lower continental crust induced by surface processes. Neth J Geosci 81:305–328Google Scholar
  43. Westaway R, Maddy D, Bridgland D (2002) Flow in the lower continental crust as a mechanism for the Quaternary uplift of south-east England: constraints from the Thames terrace record. Quat Sci Rev 21:559–603CrossRefGoogle Scholar
  44. Westaway R, Bridgland D, Mishra S (2003) Rheological differences between Archaean and younger crust can determine rates of Quaternary vertical motions revealed by fluvial geomorphology. Terra Nova 15:287–298CrossRefGoogle Scholar
  45. Yassini I (1973) Nouvelles données stratigraphiques et microfaunistiques sur la limite Pliocène inférieur/Pliocène moyen (Plaisancien-Astien) dans la région d’Alger. Rev. Micropaleonto., 16, n°4Google Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  1. 1.Geography Department, Faculty of Earth SciencesUniversity of Sciences and Technology, Houari BoumedieneAlgiersAlgeria
  2. 2.Geology Department, Faculty of Earth SciencesUniversity of Sciences and Technology, Houari BoumedieneAlgiersAlgeria

Personalised recommendations