A nonlinear multiparameter prestack seismic inversion method based on hybrid optimization approach

  • Qiang Guo
  • Hongbing Zhang
  • Jingbo Tian
  • Lifeng Liang
  • Zuoping Shang
Original Paper


Multiparameter prestack seismic inversion is one of the most powerful techniques in quantitatively estimating subsurface petrophysical properties. However, it remains a challenging problem due to the nonlinearity and ill-posedness of the inversion process. Traditional regularization approach can stabilize the solution but at the cost of smoothing valuable geological boundaries. In addition, compared with linearized optimization methods, global optimization techniques can obtain better results regardless of initial models, especially for multiparameter prestack inversion. However, when solving multiparameter prestack inversion problems, the application of standard global optimization algorithms maybe limited due to the issue of high computational cost (e.g., simulating annealing) or premature convergence (e.g., particle swarm optimization). In this paper, we propose a hybrid optimization-based multiparameter prestack inversion method. In this method, we introduce a prior constraint term featured by multiple regularization functions, intended to preserve layered boundaries of geological formations; in particular, to address the problem of premature convergence existing in standard particle swarm optimization algorithm, we propose a hybrid optimization strategy by hybridizing particle swarm optimization and very fast simulating annealing to solve the nonlinear optimization problem. We demonstrate the effectiveness of the proposed inversion method by conducting synthetic test and field data application, both of which show encouraging results.


Prestack seismic inversion Hybrid optimization Particle swarm optimization Edge-preserving regularization 



The authors gratefully acknowledge the National Natural Science Foundation of China (41674113) (41374116), the Project of CNOOC (CNOOC-KJ-125-ZDXM-07-LTD-NFGC-2014-04), and the Fundamental Research Funds for the Central Universities (KYLX16_0758) for supporting the research. The authors appreciate the two anonymous reviews for offering constructive comments leading to great improvements in this paper.


  1. Aki K, Richards PG (1980) Quantitative seismology: theory and methods. W.H. Freeman and Company, San FranciscoGoogle Scholar
  2. Buland A, Omre H (2003) Bayesian linearized AVO inversion. Geophysics 68(1):185–198. CrossRefGoogle Scholar
  3. Chen J, Hoversten GM (2012) Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields. Geophysics 77(1):R65–R80. CrossRefGoogle Scholar
  4. Chunduru RK, Sen MK, Stoffa PL (1997) Hybrid optimization methods for geophysical inversion. Geophysics 62(4):1196–1207. CrossRefGoogle Scholar
  5. Downton J, Lines L (2001) Constrained three parameter AVO inversion and uncertainty analysis. SEG Expanded Abstracts:251–254Google Scholar
  6. Downton J, Ursenbach C (2006) Linearized amplitude variation with offset (AVO) inversion with supercritical angles. Geophysics 71(5):E49–E55. CrossRefGoogle Scholar
  7. Fatti JL, Smith GC, Vail PJ, Strauss PJ, Levitt PR (1994) Detection of gas in sandstone reservoirs using AVO analysis: a 3-D seismic case history using the Geostack technique. Geophysics 59(59):1362–1376. CrossRefGoogle Scholar
  8. Gardner GHF, Gardner LW, Gregory AR (1974) Formation velocity and density—the diagnostic basics for stratigraphic traps. Geophysics 39(6):770–780. CrossRefGoogle Scholar
  9. Ge X, Fan Y, Cao Y, Wang Y, Cong Y, Liu L (2015) A hybrid method for geological and geophysical data with multi-peak distributions using the PSO-GRG algorithm. J Geophys Eng 12(3):283–291. CrossRefGoogle Scholar
  10. Gholami A, Siahkoohi HR (2010) Regularization of linear and non-linear geophysical ill-posed problems with joint sparsity constraints. Geophys J Int 180(2):871–882. CrossRefGoogle Scholar
  11. Gong YJ, Li JJ, Zhou Y, Li Y, Chung SH, Shi YH, Zhang J (2016) Genetic learning particle swarm optimization. IEEE Transaction on Cybernetics 46(10):2277–2290. CrossRefGoogle Scholar
  12. Greenberg ML, Castagna JP (1992) Shear-wave velocity estimation in porous rocks: theoretical formulation, preliminary verification and applications. Geophys Prospect 40(2):195–209. CrossRefGoogle Scholar
  13. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680. CrossRefGoogle Scholar
  14. Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw, Perth, Aust:1942–1948Google Scholar
  15. Li L, Wang L, Liu L (2006) An effective hybrid PSOSA strategy for optimization and its application to parameter estimation. Appl Math Comput 179(1):135–146. Google Scholar
  16. Martin GS, Wiley R, Martfurt KJ (2006) Marmousi2: an elastic upgrade for Marmousi. Lead Edge 25(2):156–166CrossRefGoogle Scholar
  17. Ostrander WJ (1984) Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence. Geophysics 49(10):1637–1648. CrossRefGoogle Scholar
  18. Pallero JLG, Fernandez-Martinez JL, Bonvalot S, Fudym O (2017) 3D gravity inversion and uncertainty assessment of basement relief via particle swarm optimization. J Appl Geophys 139:338–350. CrossRefGoogle Scholar
  19. Ingber L (1989) Very fast simulated re-annealing. Math Comput Model 12(8):967–973. CrossRefGoogle Scholar
  20. Sen MK, Stoffa L (2013) Global optimization methods in geophysical inversion, Second edn. Cambridge University Press, Cambridge.
  21. Shaw R, Srivastava S (2007) Particle swarm optimization: a new tool to invert geophysical data. Geophysics 72(2):F75–F83. CrossRefGoogle Scholar
  22. Sun SZ, Liu L (2014) A numerical study on non-linear AVO inversion using chaotic quantum particle swarm optimization. J Seism Explor 23(4):379–392Google Scholar
  23. Sun J, Feng B, Xu WB (2004) Particle swarm optimization with particles having quantum behavior. IEEE Proc Congr Evol Comput, Portland, USA:325–331Google Scholar
  24. Shuey RT (1985) A simplification of the Zoeppritz equations. Geophysics 50(4):609–614. CrossRefGoogle Scholar
  25. Tarantola A, Valette B (1982) Generalized nonlinear inverse problems solved using the least squares criterion. Rev Geophys 20(20):219–232. CrossRefGoogle Scholar
  26. Tronicke J, Paasche H, Boniger U (2012) Crosshole traveltime tomography using particle swarm optimization: a near-surface field example. Geophysics 77(1):R19–R32CrossRefGoogle Scholar
  27. Wang L (2001) Intelligent optimization algorithms with applications. Tsinghua University and Springer Press, BeijingGoogle Scholar
  28. Wang K, Sun Z, Dong N (2015) Prestack inversion based on anisotropic Markov random field-maximum posterior probability inversion and its application to identify shale gas sweet spots. Appl Geophys 12(4):533–544. CrossRefGoogle Scholar
  29. Yan Z, Gu H (2013) Non-linear prestack seismic inversion with global optimization using an edge-preserving smoothing filter. Geophys Prospect 61(4):747–760CrossRefGoogle Scholar
  30. Zhang H, Shang Z, Yang C (2009) Adaptive reconstruction method of impedance model with absolute and relative constraints. J Appl Geophys 67(2):114–124CrossRefGoogle Scholar
  31. Zhang H, Guo Q, Liang, L, Cao C, Shang Z (2017) A nonlinear method for multiparameter inversion of pre-stack seismic data based on anisotropic Markov random field. Geophys ProspectGoogle Scholar
  32. Zhi L, Chen S, Li X (2016) Amplitude variation with angle inversion using the exact Zoeppritz equations: theory and methodology. Geophysics 81(2):N1–N15. CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  1. 1.College of Earth Science and EngineeringHohai UniversityNanjingChina
  2. 2.Department of MathematicsSimon Fraser UniversityBurnabyCanada
  3. 3.Energy Development Engineering Geophysical Prospecting Institute of Technology, CNOOCZhanjiangChina
  4. 4.College of Mechanics and MaterialsHohai UniversityNanjingChina

Personalised recommendations