Spatial distribution of stream sediment pollution by toxic trace elements at Tourtit and Ichoumellal abandoned mining areas (central Morocco)

  • Chaïma Ahmedat
  • Sanaa Dabi
  • Mohamed Zahraoui
  • Iz-Eddine El Amrani El Hassani
Original Paper
  • 50 Downloads

Abstract

This study presents a diagnostic of the current state of 114 stream sediment samples by their elemental concentrations (Sb, Cd, Pb, As, Cu, Zn, Ni, Cr, and Hg), collected from Ighardayane upstream on an area of 15 km2 located at the SE part of central Morocco where Tourtit and Ichoumellal, two abandoned mining sites of Stibnite, are located. Several approaches were used to model the analysis (i) enrichment factor (EF), (ii) sediment pollution index (IPS), (iii) probable effect concentration-quotients (PEC-Qs), and (iv) potential ecological risk index (PERI). Results show highly contaminated areas around the old mining sites by Sb As, Pb, and Cd. Cadmium and lead show 86.9 and 12.29% (respectively) of trace element pollution according to sediment pollution index. Twenty-eight percent of the sampled area is potentially highly toxic because of the presence of Hg, Pb, and Cd. The very similar distribution of pollution and toxicity of most analyzed trace elements may originate from the same source, which corresponds to mining wastes where we recorded the highest pollution and toxicity degrees. This environmental issue represents the combination of Tourtit and Ichoumellal anthropic sources responsible of Sb, As, Pb, and Cd release and a probable natural source of Hg “that needs a further study,” which contribute in the degradation of an aquatic ecosystem of the same area. Therefore, both ecotoxicological analysis and stream sediment quality management should be carried out to control this aquatic ecosystem toxication.

Keywords

Contamination and toxicity Pollution Stream sediments Stibine Mercury Abandoned mining area 

Notes

Acknowledgments

The authors of this article would like to thank Professor Michel Jébrak at the Department of Geology/Faculty of Sciences, Quebec University, Montréal, and Dr. Giovanna Armiento, ENEA Laboratory Ahead, Environmental Biochemistry Laboratory, Rome, for their constructive remarks that help within the elaboration of this work.

Compliance with ethical standards

Disclaimer

We confirm that there are no self-citations included in our manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Agard J, Morin P, Termier H, Termier G (1955) Esquisse d’une histoire géologique de la région de Mrirt (Maroc Central). Notes Mémoires Service Géologique Maroc 125:15–28Google Scholar
  2. Agnieszka B, Marek T, Tomasz K (2016) Spatial distribution of trace elements and ecotoxicity of bottom sediments in Rybnik reservoir, Silesian-Poland. Environ Sci Pollut Res Int 23(17):17255–17268.  https://doi.org/10.1007/s11356-016-6678-1. CrossRefGoogle Scholar
  3. Armiento G, Angelone M, De Cassan M, Nardi E, Proposito M, Cremisini C (2016) Uranium natural levels in water and soils: assessment of the Italian situation in relation to quality standards for drinking water. Rendiconti Lincei 27(1):39–50.  https://doi.org/10.1007/s12210-015-0462-x CrossRefGoogle Scholar
  4. Arrêté du 9 août 2006 relatif aux niveaux à prendre en compte lors d'une analyse de rejets dans les eaux de surface ou de sédiments marins, estuariens ou extraits de cours d'eau ou canaux relevant respectivement des rubriques 2.2.3.0, 4.1.3.0 et 3.2.1.0 de la nomenclature annexée à l’article R. 214–1 du code de l’environnement. NOR: DEVO0650505A. Version consolidée au 31 mai 2017.Google Scholar
  5. Baran A, Tarnawski M (2015) Assessment of heavy metals mobility and toxicity in contaminated sediments by sequential extraction and battery of bioassays. Ecotoxicology 24(6):1279–1293.  https://doi.org/10.1007/s10646-015-1499-4
  6. Bouabdelli M (1994) Tectonique de l’Est du Massif hercynien central (zone d’Azrou-Khenifra). Bull Inst Sci Rabat 18:145–168Google Scholar
  7. Burton JGA (2002) Sediment quality criteria in use around the world. Limnology 3(2):65–76.  https://doi.org/10.1007/s102010200008 CrossRefGoogle Scholar
  8. Canadian council of ministers of the environment (2001) Canadian sediment quality guidelines for the protection of aquatic life. Summary tablesGoogle Scholar
  9. Carolina SM, Renato ISA, Brisa MF et al (2016) Chemical contamination of water and sediments in the Pardo River, São Paulo, Brazil. Procedia Eng 162:230–237CrossRefGoogle Scholar
  10. Cukrov N, Franciskovic-Bilinski S, Hlaca B et al (2011) A recent history of metal accumulation in the sediments of Rijeka harbor, Adriatic Sea. Croatia. Mar Pollut Bull 62:154–167CrossRefGoogle Scholar
  11. El Amari K, Valera P, Hibti M et al (2014) Impact of mine tailings on surrounding soils and ground water: case of Kettara old mine, Morocco. J Afr Earth Sci 100:437–449CrossRefGoogle Scholar
  12. Faik F (1988) Le Paléozoïque de la région de Mrirt (Est du Maroc Central) : Évolution stratigraphique et structurales. Thèse de 3° cycle. Fac. Sci. Univ. Paul Sabatier, Toulouse. (1988) 233p.Google Scholar
  13. Ferronato C, Modestom M, stefanini I et al (2013) Chemical and microbiological parameters in fresh water and sediments to evaluate the pollution risk in the Reno River Watershed (North Italy). J Water Resour Prot 5(04):458–468.  https://doi.org/10.4236/jwarp.2013.54045 CrossRefGoogle Scholar
  14. Fiori C, Rodrigues A, Santeli R et al (2013) Ecological risk index for aquatic pollution control: a case study of coastal water bodies from the Rio de Janerio State, southeastern Brazil. Geochem Brasiliensis 27(1):24–36.  https://doi.org/10.5327/Z0102-9800201300010003 CrossRefGoogle Scholar
  15. Foestner U, Wittman GTW (1979) Metal pollution assessment from sediment analysis. In: Metal pollution in aquatic environment. Springer Verlag, Berlin, New York, pp 110–196CrossRefGoogle Scholar
  16. Fu J, Xin H, Xiancong T, Hongxia Y, Xiaowei Z (2013) Risk and toxicity assessment of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, Chaina. Chemosphere 93(2013):1887–1895.  https://doi.org/10.1016/j.chemosphere.2013.06.061 CrossRefGoogle Scholar
  17. Gagnon C, Fisher NS (1997) The bioavailability of sediment-bound Cd, Co, and Ag to the mussel Mytilus edulis. Can J Fish Aquat Sci 54(1):147–156.  https://doi.org/10.1139/f96-256 CrossRefGoogle Scholar
  18. Galán E, Gómez-Ariza JL, González I, Fernández-Caliani JC, Morales E, Giráldez I (2003) Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Appl Geochem 18(3):409–421.  https://doi.org/10.1016/S0883-2927(02)00092-6 CrossRefGoogle Scholar
  19. Guo W, Liu X, Liu Z, Li G (2010) Pollution and potential ecological risk evaluation of heavy metals in the sediments around Dongjiang Harbor, Tianjin. Procedia Environ Sci 2:729–736.  https://doi.org/10.1016/j.proenv.2010.10.084 CrossRefGoogle Scholar
  20. Hakanson L (1980) An ecological risk index aquatic pollution control. A sedimentological approach. Water Res 14(8):975–1001.  https://doi.org/10.1016/0043-1354(80)90143-8 CrossRefGoogle Scholar
  21. Hilton J, Davison W, Ochsenbein U (1985) A mathematical model for analysis of sediment core data: implications for enrichment factor calculations and trace metal transport mechanisms. Chem Geol 48:281–291CrossRefGoogle Scholar
  22. Krupadam RJ, Smita P, Wate SR (2006) Geochemical fraction of heavy metals in sediments of Tapi estuary. Geochemistry 40(5):513–522.  https://doi.org/10.2343/geochemj.40.513 Google Scholar
  23. Leleyter L, Baraud F (2006) Selectivity and efficiency of the acido-soluble extraction in sequential extraction procedure. Int J Soil Sci 1(2):168–170 ISSN1816-4978CrossRefGoogle Scholar
  24. Lions J (2004) Etude hydrogéochimique de la mobilité de polluants inorganique dans des sédiments de curage mis en dépôt : expérimentations, études in situ et modélisation, Thèse de doctorat. Ecole Nationale Supérieure des Mines de Paris. France 248p.Google Scholar
  25. Liyuan C, Li H, Zihihui Y et al (2016) Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: distribution, contamination, and ecological risk assessment. Environ Sci Pollut Res 24(1):874–885.  https://doi.org/10.1007/s11356-016-7872-x Google Scholar
  26. Luoma SN, Rainbow PS (2008) Metal contamination in aquatique environments: science de lateral management. Chapter 7. In: Trace metal bioaccumulation. Uptake process. Cambridge Univerdity Press, Cambridge, pp 129–141Google Scholar
  27. MacDonald, DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39, 20–31  https://doi.org/10.1007/s002440010075., 1
  28. Majumder RK, Faisal BMR, Zaman MN, Uddin MJ, Sultana N (2015) Assessment of heavy metals pollution in bottom sediment of the Burganga River, Dahaka, Bangladesh by multivariate statistical analysis. Int Res J Environment Sci 4(5):80–84Google Scholar
  29. Manoj K, Padhy PK (2014) Distribution, enrichment and ecological risk assessment of six elements of a tropical river, Chottanagpur Plateau: a spatial and temporal appraisal. J Environ Prot 5(14):1419–1434.  https://doi.org/10.4236/jep.2014.514136 CrossRefGoogle Scholar
  30. Michard A (1976) Eléments de géologie marocaine. Notes Mém Serv Géol Maroc 252, 420 pGoogle Scholar
  31. Müller G (1969) Index of geoaccumulation in sediments of the Rhine river. Géol J 2(3):108–118Google Scholar
  32. N’tarmouchent A (1991) Le magmatisme hercynien de la région de M’rirt (Est du Massif Central Marocain). Cartographie, pétrographie géochimique et contexte géodynamique. Thèse de 3e cycle, Fac. Sci. Fès. 169pGoogle Scholar
  33. Piqué A (1994) Le Massif central et la Meseta orientale; leur place dans la chaîne hercynienne maocaine. Bull Inst Sci Rabat 18:201–205Google Scholar
  34. Rinklebe J, Shaheen SM (2014) Assessing the mobilization of cadmium, lead, and nickel using a seven-step sequential extraction technique in contaminated floodplain soil profiles along the Central Elbe river, Germany. Water Air Soil Pollut 225:2039.  https://doi.org/10.1007/s11270-014-2039-1 CrossRefGoogle Scholar
  35. Rubio B, Nombela MA, Vilas F (2000) Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Mar Pollut Bull 40(11):968–980.  https://doi.org/10.1016/S0025-326X(00)00039-4 CrossRefGoogle Scholar
  36. Rudnick R L, Gao S (2003) Composition of the continental crust. Treatise on Geochemistry ISBN (set): 0–08–043751–6 Volume 3; (ISBN: 0-08-044338-9); pp 1–64.  https://doi.org/10.1016/B0-08-043751-6/03016-4
  37. Singh M, Müller G, Singh IB (2002) Heavy metals in freshly deposited stream sediments of rivers associated with urbanization of the Ganga Plain, India. Water Air Soil Pollut 141(1/4):35–54.  https://doi.org/10.1023/A:1021339917643 CrossRefGoogle Scholar
  38. Singh KP, Mohan D, Singh VK, Malik A (2005) Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. J Hydrol 312(1):14–27.  https://doi.org/10.1016/j.jhydrol.2005.01.021 CrossRefGoogle Scholar
  39. Suresh G, Sutharsan P, Ramasamy V, Venkatachalapathy R (2012) Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments India. Ecotoxicol Environ Saf 84:117–124.  https://doi.org/10.1016/j.ecoenv.2012.06.027 CrossRefGoogle Scholar
  40. Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39(6):611–627.  https://doi.org/10.1007/s002540050473 CrossRefGoogle Scholar
  41. Swartz RC (1999) Consensus sediment quality guidelines for PAH mixtures. Environ Toxicol Chem 18(4):780–787.  https://doi.org/10.1002/etc.5620180426 CrossRefGoogle Scholar
  42. Tavakoly Sany SB, Salleh A, Sulaiman AH, Sasekumar A, Tehrani G, Rezayi M (2012) Distribution characteristics and ecological risk of heavy metals in surface sediments of west port, Malaysia. EPE 28(4):139–155Google Scholar
  43. Taylor KG, Boult S (2007) The role of grain dissolution and diagenetic mineral precipitation in the cycling of metals and phosphorus: a study of a contaminated urban freshwater sediment. Appl Geochem 22(7):1344–1358.  https://doi.org/10.1016/j.apgeochem.2007.01.008 CrossRefGoogle Scholar
  44. Tessier E, Garnier C, Mullot JU, Lenoble V, Arnaud M, Raynaud M, Mounier S (2011) Study of the spatial and historical distribution of sediment inorganic contamination in the Toulon bay (France). Mar Pollut Bull 62(10):2075–2086.  https://doi.org/10.1016/j.marpolbul.2011.07.022 CrossRefGoogle Scholar
  45. Ujević I, Odžak N, Barić A (2000) Trace metal accumulation in different grain size fractions of the sediments from a semi-enclosed bay heavily contaminated by urban and industrial wastewaters. Water Res 34(11):3055–3061CrossRefGoogle Scholar
  46. Yoshinori I, Shouta MMN, Kaampwe M et al (2010) Heavy metal contamination of soil and sediment in Zambia. Afr J Environ Sci Technol 4(11):729–739Google Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Chaïma Ahmedat
    • 1
  • Sanaa Dabi
    • 1
  • Mohamed Zahraoui
    • 1
  • Iz-Eddine El Amrani El Hassani
    • 1
  1. 1.Laboratory of Geodiversity, Biodiversity and Natural Patrimony (GEOBIO), GEOPAC Center, Department of Earth Sciences, Scientific InstituteUniversity Mohammed V of RabatRabat-AgdalMorocco

Personalised recommendations