Advertisement

Record of calcareous algae from the Lameta Formation: a new insight for possible sea incursion during the Maastrichtian time

  • Ashok K. Srivastava
  • Neelam K. Kandwal
  • Sumedh K. Humane
  • Samaya S. Humane
  • P. Kundal
  • N. Khare
Original Paper

Abstract

The Lameta Formation exposed in central and western India is traditionally considered as deposits of fluvio-lacustrine environment except for the type area having a few reports of shallow marine setting. The present work records the fossilization of calcareous algae from a discontinued bed of limestone preserved in argillaceous unit of Lameta succession. Taxonomical study of algal biota places them mostly in chlorophyta, charophyta, and rhodophyta divisions. These algae are being reported for the first time from Lameta sediments of a newly identified inland basin of deposition, viz., Salbardi-Belkher. Considering the paleoecological significance of presently recorded algae, a marine incursion has been interpreted which might have taken place through the Narmada-Tapti Rift Zone during the Maastrichtian time.

Keywords

Calcareous algae Lameta formation Maastrichtian Marine incursion Salbardi-Belkher inland basin Central India 

Notes

Acknowledgements

Financial support in the form of Major Research Project No. F.40/295/2011 (SR) by UGC, New Delhi, awarded to one of the authors (AKS), is thankfully acknowledged.

References

  1. Agardh CA(1824) Systema Algarum, Lundae Literis Berlingianis. Lund 1–312Google Scholar
  2. Agardh JG (1887) Till Algernes Systematik, VIII.Siphoneae. Lund’s university. Arsskr 23:1–174Google Scholar
  3. Aguirre J, Riding R (2005) Dasycladalean algal biodiversity compared with global variations in temperature and sea level over the past 350 Myr. PALAIOS 20(6):581–588.  https://doi.org/10.2110/palo.2004.p04-33 CrossRefGoogle Scholar
  4. Badve RM, Kundal P (1998) Dasycladacean algae from Paleocene to Oligocene rocks of Baratang Island, Andaman, India. J Geol Soc Ind 51(4):485–492Google Scholar
  5. Bajpai S (2009)Biotic perspective of the Deccan volcanism and India Asia collision: recent advances. In: Current trends in Science, Platinum Jubilee Special Publication, Ind Acad Sci 505–516Google Scholar
  6. Barattolo F (1998) Dasycladalean green algae and microproblematica of the uppermost Cretaceous-Paleogene in the Karst area (NE Italy and Slovenia). Opera SAZU 34(4):65–127Google Scholar
  7. Bassi D, Braga JC, Iryu Y (2009) Palaeobiogeographic patterns of a persistent monophyletic lineage: Lithophyllum pustulatum species group (Corallinaceae, Corallinales, Rhodophyta). Palaeogeogra Palaeoecol Palaeoclimatol 284(3-4):237–248.  https://doi.org/10.1016/j.palaeo.2009.10.003 CrossRefGoogle Scholar
  8. Bassoulet JP, Bernier P, Conrad MA, Deloffre R, Jaffrezo M (1978) Les algues Dasycladales du Jurassique et du Cre´tace´. Geobios Mémoire,special publication 2:1–330Google Scholar
  9. Berger S, Kaever J (1992) Dasycladales: an illustrated monograph of a fascinating algal order. Thieme, Stuttgart, p 247Google Scholar
  10. Brookfield HE, Sahni A (1987) Palaeoenvironments of Lameta Beds (Late Cretaceous) at Jabalpur, Madhya Pradesh, India: soil and biotas of a semi-arid alluvial plain. Cret Res 8(1):1–14.  https://doi.org/10.1016/0195-6671(87)90008-5 CrossRefGoogle Scholar
  11. Bucur II, Nagm E, Wilmsen M (2010) Upper Cenomanian–Lower Turonian (Cretaceous) calcareous algae from the Eastern Desert of Egypt: taxonomy and significance. Studia Universitatis Babeş-Bolyai. Geologia 55(1):29–36.  https://doi.org/10.5038/1937-8602.55.1.4 CrossRefGoogle Scholar
  12. Carrano MT, Wilson JA, Barrett PM (2010) The history of dinosaur collecting in Central India, 1828–1947. Geol Soc Lond Spec Publ 343:161–173CrossRefGoogle Scholar
  13. Chanda SK (1963a) Cementation and diagenesis of the Lameta Beds, Lametaghat, India. J Sedi Res 33(3):728–738Google Scholar
  14. Chanda SK (1963b) Petrology and origin of Lameta sandstone, Lameta Ghat, Jabalpur, M. P. India.Proc. Natl Inst Sci Ind 29(A):578–587Google Scholar
  15. Chanda SK (1965) Further notes on the origin of Lameta Beds, Jabalpur, M. P. Sci Cul 31:633–634Google Scholar
  16. Chanda SK (1967) Petrogenesis of the calcareous constituents of the Lameta Group around Jabalpur, M. P., India. J Sedi Res 37(2):425–437Google Scholar
  17. Chanda SK, Bhattacharya A (1966) A re-evaluation of the stratigraphy of the Lameta–Jabalpur contact around Jabalpur, M. P. J Geol Soc Ind 7:91–99Google Scholar
  18. Chaurpagar SN, Humane SK, Kundal P, Humane SS (2009) Geniculate coralline algae and their palaeoenvironments in the Middle Eocene Sylhet Limestone Formation, Bengal Basin, India. Gondwana Geol Mag 24(2):137–145Google Scholar
  19. Chaurpagar SN, Humane SK, Kundal P, Humane SS (2012) Nongeniculate coralline algae and their Palaeoenvironments in the Middle Eocene Sylhet Limestone Formation, Bengal Basin, India. ONGC Bull 47(2):55–68Google Scholar
  20. D’Emic MD, Wilson JA, Chatterjee S (2009) The titanosaur (Dinosauria: Sauropoda) osteoderm record: review and first definitive specimen from India. J Verte Paleonto 29(1):165–177.  https://doi.org/10.1671/039.029.0131 CrossRefGoogle Scholar
  21. Decaisne J (1842) Mémoire sur les corallines ou polypiers calcifères. Annales des sciences naturelles.Botanique, série 2(18):96–128Google Scholar
  22. Deloffre R, Genot P (1982) Les Algues Dasycladales du Cenozoique. Buli Centres Rech Explor Prod Elf-Aquitaine mem4:247Google Scholar
  23. Dragastan ON, Herbig H-G (2007) Halimeda (green siphonous algae) from the Palaeogene of (Morocco)—taxonomy, phylogeny and paleoenvironment. Micropaleontology 53(1–2):1–72.  https://doi.org/10.2113/gsmicropal.53.1-2.1 CrossRefGoogle Scholar
  24. Dragastan ON, Soliman HA (2002) Palaeogene calcareous algae from Egypt. Micropaleontology 48(1):1–30.  https://doi.org/10.2113/48.1.1 CrossRefGoogle Scholar
  25. Endlicher SL (1843) Mantissa botanica altera. Sistens genera plantarum supplementum tertium. pp. [i-vi], 1-111Google Scholar
  26. Eliott GF (1968) Permian to Palaeocene calcareous algae (Dasycladaceae) of the Middle East. Bull Br Museum (Natural History) Geol Suppl 4:1–111Google Scholar
  27. Ellis J, Solander D (1786) The natural history of many curious uncommon zoophytes collected from various parts of the globe by John Ellis. systematically arranged and described by Daniel Solander, London, p 208CrossRefGoogle Scholar
  28. Foslie M (1909) Algologiske notiser VI. Kongelige Norske Videnskabers Selskabs Skrifter 1909(2):1–63Google Scholar
  29. Grambast L (1959) Tendances evolutives dans le phylum des charophytes.Comptes Rendus de l’ Académie des Sciences. Paris 249:557–559Google Scholar
  30. GSI (2001) District resource map—Amravati district, Maharashtra.Government of India publicationGoogle Scholar
  31. GSI (2002) District resource map—Betul district, Madhya Pradesh.Government of India publicationGoogle Scholar
  32. Haq BU, Hardenbol J, and Vail PR (1987) Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science, 235, 1156–1167Google Scholar
  33. Hauck F (1885) Die Meeresalgen Deutschland und Oesterreichs. In Dr. L. Rabenhorsts Kry, Flora von Deutschland, Oesterreich und der Schweiz.2. Auflage. 2. Band. Leipzig, 1-3:513–575Google Scholar
  34. Heydrich F (1897) Corallinaceae, insbesondere Melobesieae. Berichte der deutsche botanischen Gesellschaft 15:34–70Google Scholar
  35. Hillis-Colinvaus L(1984) Systematics of the siphonales.. In: Irvine, Deg, and John, D.M., (Eds.), Systematics of the green algae Academic Press, New York, London, 2:271–296Google Scholar
  36. Hillis-Colinvaux, L (1980) Ecology and taxonomy of Halimeda: Primary producer of coral reefs. Advances in Marine Biology, 17:1–327Google Scholar
  37. Hosseini S, Conrad MA, Clavel B, Carras N (2016) Berriasian-Aptian shallow water carbonates in the Zagros fold-thrust belt, SW Iran: intergrated Sr-isotope dating and biostratigraphy. Cret Res 57:257–288.  https://doi.org/10.1016/j.cretres.2015.09.007 CrossRefGoogle Scholar
  38. Humane SK, Kundal P (2005) Halimedacean and udoteacean algae from the Mid Tertiory Western Carbonate Platform of the Kachchh, India.Possible paleoenvironments and Evolution. J Environ Micropaleont microbio Meiobentho(published from Canada) 2:4–27Google Scholar
  39. Humane SK, Chaurpagar SN, Humane SS, Kundal P (2010) Dasycladalean algae and their depositional environment in the lower Eocene Sylhet Limestone Formation, Bengal Basin, India. J Geol Soc Ind 76(1):75–85.  https://doi.org/10.1007/s12594-010-0078-9 CrossRefGoogle Scholar
  40. Humane SK, Humane SS, Chaurpagar S, Kundal P (2016) Halimedacean and Udoteacean calcareous algae from the Early Eocene subsurface carbonates platform of the Bengal Basin, India: paloenvironmental aspects. Micropaleontology 62(4):311–322Google Scholar
  41. Jain SL, Bandyopadhyay S (1997) New titanosaurid (Dinosauria : Sauropoda) from the Late Cretaceous of Central India. J Vert Paleonto 17(1):114–136.  https://doi.org/10.1080/02724634.1997.10010958 CrossRefGoogle Scholar
  42. Johsons JH (1961) Limestone-building algae and algal limestone. Colorado School of Mines, p 297Google Scholar
  43. Keller G, Sahni A, Bajpai S (2009a) Deccan volcanism, the KT mass extinction and dinosaurs. J Biosci 34(5):709–728.  https://doi.org/10.1007/s12038-009-0059-6 CrossRefGoogle Scholar
  44. Keller G, Khosla SC, Sharma R, Khosla A, Bajpai S, Adatte T (2009b) Early Danian planktic foraminifera from K-T intertrappean beds at Jhilmili, Chindwara District, Madhya Pradesh, India. J Foram Res 39(1):40–55.  https://doi.org/10.2113/gsjfr.39.1.40 CrossRefGoogle Scholar
  45. Keller G, Adatte T, Bajpai S, Mohabey DM, Widdowson M, Khosla A, Sharma R, Khosla SC, Gertsch B, Fleitmann D, Sahni A (2009c) K-T transition in Deccan traps and intertrappean beds in central India mark major marine seaway across India. Res 282:10–23Google Scholar
  46. Khosla A (2014) Upper Cretaceous (Maastrichtian) charophyte gyrogonites from the Lameta Formation of Jabalpur, Central India: palaeobiogeographic and palaeoecological implications. Acta Geol Pol 64(3):311–323Google Scholar
  47. Kishore S, Mishra PK, Jauhri AK, Singh SK, Singh AP (2007) Paleocene coralline algal growth forms and their significance in the Cauvery Basin, South India. J Geol Soc Ind 69(6):1293–1297Google Scholar
  48. Kishore S, Mishra PK, Pandey DK, Jauhri AK, Bahadur T, Singh SK, Chauhan RS, Tripathi SK (2012) Coralline algae from the Aramda Reef Member of the Chaya Formation, Mithapur, Gujarat. J Geol Soc Ind 80:215–230CrossRefGoogle Scholar
  49. Kumar S, Tandon KK (1977) A note on bioturbation in the Lameta beds, Jabalpur area, M. P. Geophytology 7(2):135–138Google Scholar
  50. Kumar S, Tandon KK (1978) Thalassinoides in themottled nodular beds, Jabalpur area, M. P. Curr Sci 47(2):52–53Google Scholar
  51. Kumar S, Tandon KK (1979) Trace fossils and environment of deposition of the sedimentary succession of Jabalpur, M. P. J Geol Soc Ind 20:103–106Google Scholar
  52. Kundal P (2010) Biostratigraphic, paleobiogeographic and paleoenvironmental significance of calcareous algae. Gondwana Geol Mag 25(1):125–132Google Scholar
  53. Kundal P (2011) Generic distinguishing characteristics and stratigraphic ranges of fossil Corallines: an update. J Geol Soc Ind 78(6):570–584Google Scholar
  54. Kundal P, Humane SK (2007) Chattian and Burdigalian dasycladalean algae from Kachchh, Western India and their implications on environment of deposition. J Geol Soc Ind 69:788–794Google Scholar
  55. Kundal P, Sanganwar BN (1998) Stratigraphical, paleogeographical and paleoenvironmental significance of fossil calcareous algae from Nimar Sandstone Formation, Bagh Group (Cenomanian–Turonian) of Pipaldehla, Jhabua Dt., MP. Curr Sci 75(7):702–708Google Scholar
  56. Kutzing FT (1843) Phycologia Generalis oder Anatomie, Physiologie und Systemkunde der Tange. Brockhaus, Leipzig, Germany, pp 311–313Google Scholar
  57. Lamarck, JBP A de Mde (1816) Tableau encyclopedique et methodique des trios rdgnes de la nature. Vingt-troisieme partie. Mollusques et polypes divers. Paris, chez Memoire. Beuve Agasse. “Liste des objets representes dansles planches de cette livraison” plates 391–488, pp. 16Google Scholar
  58. Lamouroux JVF (1812) Sur la classification des Polypiers coralligènes non entièrement pierreux. Nouveaux Bull Sci par la Societé Philomatiques de Paris 3:181–188Google Scholar
  59. Lamouroux JVF(1816) Histoire des polypiers coralligenes flexibles, vulgairenoment nommes zoophytes.Caen, pp. 1–559Google Scholar
  60. Lindley J (1836) A natural system of botany, 2nd edn. Longman, London, pp 1–526Google Scholar
  61. Link HF (1832) Uber die Pflanzenthiere uberhaupt und die dazu gerechneten Gewachse besonders. Abhandlungen der königlichen Akademie der Wissenschaften Berlin. Phys Kl 1830:109–123Google Scholar
  62. Mankar RS, Srivastava AK (2015) Salbardi–Belkher inland basin: a new site of Lameta sedimentation at the border of districts Amravati, Maharashtra and Betul, Madhya Pradesh, Central India. Curr Sci 109(7):1337–1344Google Scholar
  63. Mately GE (1921) Stratigraphy, fossils and geological relationship of the Lameta beds of Jabalpur, M. P. J Geol Soc Ind 53:142–169Google Scholar
  64. Michelin H (1845) Iconographie zoophytologique. Description par localités et terrains des Polypiers fossiles de France et pays environnants. P. Bertrand, Paris, p 348Google Scholar
  65. Migula W (1897) Die Characeen Deutschlands. Österreichs und der Schweiz. In: X. Rabenhorst (Ed.), Kryptogamic Flora, E. Kummer, Leipzig, 5, pp. 765Google Scholar
  66. Mohabey DM (1983) Note on occurrence of dinosaurian fossil eggs from infratrappean limestone in Kheda District, Gujarat. Curr Sci 52(24):1194Google Scholar
  67. Mohabey DM (1987) Juvenile sauropod dinosaur from Upper Cretaceous Lameta Formation of Panchmahals district, Gujarat, India. J Geol Soc Ind 30(3):210–216Google Scholar
  68. Mohabey DM (1991) Palaeontological studies of the Lameta Formation with special reference to dinosaurian eggs from Kheda and Panchmahal districts of Gujarat, India. Ph.D. Thesis, Nagpur University, Nagpur, Maharashtra, pp. 124Google Scholar
  69. Mohabey DM (1996) Depositional environment of Lameta Formation (Late Cretaceous) of Nand-Dongargaon Inland Basin, Maharashtra: the fossil and lithological evidences. Memoir J Geol Soc Ind 37:363–386Google Scholar
  70. Mohabey DM (2001) Dinosaurs eggs and dung (fecal mass) from the Late Cretaceous of Central India, dietary implications. Geol Surv Ind Spec Publ 64:605–615Google Scholar
  71. Mohabey DM, Samant B (2005) Lacustrine facies association of a Maastrichtian lake (Lameta Formation) from Deccan volcanic terrain, Central India: implications to depositional history, sediment cyclicity and climates. Gondwana Geol Mag Spec publ 8:37–52Google Scholar
  72. Mohabey DM, Udhoji SG, Verma KK (1993) Palaeontological and sedimentological observations of nonmarine Lameta Formation (Upper Cretaceous) of Maharashtra, India: their palaeoecological and palaeoenvironmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 105(1–2):83–94.  https://doi.org/10.1016/0031-0182(93)90108-U CrossRefGoogle Scholar
  73. Nagm E (2009) Integrated stratigraphy, palaeontology and facies analysis of the Cenomanian –Turonian (Upper Cretaceous) Galala and Maghra el Hadida formations of the western Wadi Araba, Eastern Desert, Egypt.Ph.D. Thesis, Würzburg University, Germany, pp. 213. (http://www.opusbayern.de/uni-wuerzburg/volltexte/2009/3988/)
  74. Okla MS (1991) Dasycladacean algae from the Jurassic and Cretaceous of central Saudi Arabia. Micropaleontology 37(2):183–190.  https://doi.org/10.2307/1485558 CrossRefGoogle Scholar
  75. Papenfuss GF (1946) Proposed names for the phyla of algae. Bull Torrey Botanical Club 73(3):217–218.  https://doi.org/10.2307/2481664 CrossRefGoogle Scholar
  76. Pascher D (1931) Über eigenartige zweischalige Dauerstadien bei zwei tetrasporalen Chrysophyceen (Chrysocapsalen). Archiv für Protistenkunde 73:73–103Google Scholar
  77. Pascoe E (1964) Manual of geology of India and Burma. Government of India Publication, New DelhiGoogle Scholar
  78. Pia J (1920) Die Siphoneae verticillatae vom Karbon bis zur Kreide. Abhandl Zool-Bot Gesell XI/2, pp. 263Google Scholar
  79. Pia J (1936) Calcareous green algae from the Upper Cretaceous of Tripoli (North Africa). J Paleontol 10(1):3–13Google Scholar
  80. Praturlon A (1964) Calcareous algae from Jurassic-Cretaceous limestone of central Apennines (Southern Latium-Abruzzi). Geologica Romana III, 171–203Google Scholar
  81. Praturlon A, Radoicic R (1974) Emendation of Acroporella (Dasycladaceae). Geol Romana 13:17–20Google Scholar
  82. Rabenhorst L (1863) Kryptogamen-Flora von Sacgseb, der Ober-Lusitz. Thuringen and Nordbohmen Abteilung l. E. Krummer, Leipzing, p 653Google Scholar
  83. Rainieri R (1922) Alghe sifonee fossili della Libia. Atti della Societa Italiana di Scienze Naturali de Museo Civico 61(1):72–86Google Scholar
  84. Rey J, Gubaynes R, Qajoun A, and Ruget G, (1993) Foraminifers indicators of the systems tracts and global unconformities. Spec Inst Association of Sedimentologists, 18: 109–123Google Scholar
  85. Round FE (1963) The taxonomy of the Chlorophyta. Br Phycol Bull 2:224–235CrossRefGoogle Scholar
  86. Saha O, Shukla UK, Rani R (2010) Trace fossils from the Late Cretaceous Lameta Formation, Jabalpur area, Madhya Pradesh: paleoenvironmental implications. J Geol Soc Ind 76(6):607–620.  https://doi.org/10.1007/s12594-010-0121-x CrossRefGoogle Scholar
  87. Sahni A (1983) Upper Cretaceous Palaeobiogeography of Peninsular India and the Cretaceous-Paleocene transition: The vertebrate evidence; (ed) Maheshwari H K, In: Cretaceous of India (Lucknow: Indian Assoc. Palynostratigraphers) pp. 128–140Google Scholar
  88. Schaffner JH (1922) The classification of plants XII. Ohio Jour Sci 22:129–139Google Scholar
  89. Setchell WA (1943) Mastophora and the Mastophoreae: genus and subfamily of Corallinaceae. Proc Natl Acad Sci U S A 29(5):127–135.  https://doi.org/10.1073/pnas.29.5.127 CrossRefGoogle Scholar
  90. Shahare PD (2015) Study of algal facies from the Intertrappean sequence of Duddukuru-Pangadi area, Rajahmundry, Andhra Pradesh.Ph.D. Thesis, RTM Nagpur University, Nagpur, Maharashtra, pp.101Google Scholar
  91. Shukla UK, Srivastava R (2008) Lizard eggs from Upper Cretaceous Lameta Formation of Jabalpur, Central India, with interpretation of depositional environments of the nest-bearing horizon. Cret Res 29(4):674–686.  https://doi.org/10.1016/j.cretres.2008.02.003 CrossRefGoogle Scholar
  92. Silva P, Johansen H (1986) A reappraisal of the order Corallinales (Rhodophyceae). Euro J Phychol 21:245–254Google Scholar
  93. Singh IB (1981) Palaeoenvironment and palaeogeography of Lameta Group sediments (Late Cretaceous) in Jabalpur area, India. J Palaeontol Soc Ind 26:38–46Google Scholar
  94. Singh IB, Srivastava HK (1981) Lithostratigraphy of Bagh Beds and its correlations with Lameta beds. J Palaeontol Soc Ind 26:77–85Google Scholar
  95. Singh V, Tandon SK (2004) Facies associations and sedimentary petrological characteristics of Lameta sequences of the Dongargaon area, Central India. J Geol Soc Ind 63:39–50Google Scholar
  96. Smith GM (1938) Botany. Algae and Fungi. Charophyceae, McGraw Hill,New York, 1–127Google Scholar
  97. Srivastava AK, Kandwal NK (2016) Lithological setting and granulometry of the Lameta sediments from new locality exposed at Pandhari Village, district Betul, Madhya Pradesh. J Indi Assoc Sedimento 33(1&2):1–11Google Scholar
  98. Srivastava AK, Mankar RS (2009) Grain size analysis and depositional environment of Lameta sediments exposed at Salbardi and Belkher, Amravati districts, Maharashtra and Betul district, Madhya Pradesh. J Indi Assoc Sedimento 28(1):73–83Google Scholar
  99. Srivastava AK, Mankar RS (2010) Sedimentological studies and trace fossils of the Lameta successions of Bairam, Belkher and Salbardi area, district Amravati, Maharashtra and Betul, Madhya Pradesh. Gondwana Geol Mag Spec Publ 12:209–224Google Scholar
  100. Srivastava AK, Mankar RS (2012a) Field observations, petrography and diagenesis of Lameta sediments exposed at the northern boundary of district Amravati, Maharashtra. Gondwana Geol Mag Spec Publ 27(1):31–42Google Scholar
  101. Srivastava AK, Mankar RS (2012b) Trace fossils and their palaeoenvironmental significance in the Lameta Formation of Salbardi and Belkher area, district Amravati, Maharashtra, India. Arab J Geosci 5(5):1003–1009.  https://doi.org/10.1007/s12517-010-0267-2 CrossRefGoogle Scholar
  102. Srivastava AK, Mankar RS (2013) A dinosaurian ulna from a new locality of Lameta succession, Salbardi area, districts Amravati, Maharashtra and Betul, Madhya Pradesh. Curr Sci 105(7):900–901Google Scholar
  103. Srivastava AK, Mankar RS (2015a) Megaloolithus dinosaur nest from the Lameta Formation of Salbardi area, districts Amravati, Maharashtra and Betul, Madhya Pradesh. J Geol Soc Ind 85(4):457–462.  https://doi.org/10.1007/s12594-015-0237-0 CrossRefGoogle Scholar
  104. Srivastava AK, Mankar RS (2015b) Lithofacies architecture and depositional environment of Late Cretaceous Lameta Formation, central India. Arab J Geosci 8(1):207–226.  https://doi.org/10.1007/s12517-013-1192-y CrossRefGoogle Scholar
  105. Srivastava AK, Banubakode PD, Kale VM, Patil GV (1995) Record of the plant fossils from Upper Gondwana succession (Lower Cretaceous) of Bairam-Belkher area, district Betul, Madhya Pradesh and district Amravati, Maharashtra. Curr Sci 69(5):397–400Google Scholar
  106. Srivastava AK, Banubakode PD, Kale VM, Patil GV (1999) Lower Cretaceous plant fossils from Upper Gondwana succession of Bairam–Belkher area, district Betul, Madhya Pradesh and district Amravati, Maharashtra and its significance in stratigraphy. Palaeobotanist 48:39–38Google Scholar
  107. Tandon SK, Andrews JE (2001) Lithofacies associations and stable isotopes of palustrine and calcrete carbonates: examples from an India Maastrichtian regolith. Sedimentology 48(2):339–355.  https://doi.org/10.1046/j.1365-3091.2001.00367.x CrossRefGoogle Scholar
  108. Tandon SK, Verma VK, Jhingran V, Sood A, Kumar S, Kohli RP, Mittal S(1990) The Lameta Beds of Jabalpur, Central India: deposits of fluvial and pedogenically modified semi-arid pre-palustrine flat systems. In: Sahni A, Jolly A (Eds.), Cretaceous event stratigraphy and the correlation of the Indian non-marine strata. Contribution, Symposium-cum Workshop, ICGP-216 & 245, Chandigarh, 75-77.Google Scholar
  109. Tandon SK, Andrews JE, Dennis PF (1995) Palaeoenvironment of dinosaur bearing Lameta beds (Maastrichtian), Narmada valley, Central India. Palaeogeogr Palaeoclimatol Palaeoecol 117:153–184CrossRefGoogle Scholar
  110. Tandon SK, Andrews JE, Sood A, Mittal S (1998) Shrinkage and sediments supply of multiple calcrete profile development: a case study from the Maastrichtian of Central India. Sedi Geol 119(1-2):25–45.  https://doi.org/10.1016/S0037-0738(98)00054-2 CrossRefGoogle Scholar
  111. Verheij E (1993) The genus Sporolithon (Sporolithaceae fam. nov., Corallinales, Rhodophyta) from Spermonde Archipelago, Indonesia. Phycologia 32(3):184–196.  https://doi.org/10.2216/i0031-8884-32-3-184.1 CrossRefGoogle Scholar
  112. Wettstein RR (1901) Ganduch der Systematischen Botanik. Deuticke, Leipzing 1:201Google Scholar
  113. Wray JL (1977) Calcareous algae. Developments in palaeontology and stratigraphy. Elsevier, Amsterdam, New York, 4:1–185Google Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Ashok K. Srivastava
    • 1
  • Neelam K. Kandwal
    • 1
  • Sumedh K. Humane
    • 2
  • Samaya S. Humane
    • 2
  • P. Kundal
    • 2
  • N. Khare
    • 3
  1. 1.Department of GeologySant Gadge Baba Amravati UniversityAmravatiIndia
  2. 2.Department of GeologyRashtrasant Tukadoji Maharaj Nagpur UniversityNagpurIndia
  3. 3.Ministry of Earth SciencesNew DelhiIndia

Personalised recommendations