Imagery of the metamorphic bedrock roof of the Sahel active fault in the Sablettes (Algiers) reclaimed area by ambient vibration HVSR

  • Mohamed Yacine Tebbouche
  • Djamel Machane
  • Souhila Chabane
  • El-Hadi Oubaiche
  • Aghiles Abdelghani Meziani
  • Dalila Ait Benamar
  • Hakim Moulouel
  • Ghani Cheikh Lounis
  • Rabah Bensalem
  • Abderrahmane Bendaoud
Part of the following topical collections:
  1. Current Advances in Geology of North Africa


The Sablettes (Algiers) coastal reclaimed fringe region, located on the hanging wall of the Sahel active fault, is subject to different types of geological hazard such as flood and tsunami, coastal uplift, earthquake, liquefaction, landslide, and site effects. In this present work, we used ambient vibration HVSR for imaging the bedrock. The thickness of the sedimentary column under the backfill layer is unknown, and the coastal reclaimed areas are prone to strong amplification of seismic waves. The determination of the depth of the metamorphic base allowed us to establish a mapping of the bedrock roof surface. The 3D representation of this surface enabled us to present models of tectonic structures in this basement (i.e., fault, fold). This analysis will make it possible to make better evaluation of the amplification after having determined the depth of the metamorphic basement exceeding 240 m, which is supposed to have velocities close to those of the seismological basement, as well as the thicknesses of the different layers surmounting it.


Bedrock imaging Ambient vibrations HVSR The Sablettes (Algiers) reclaimed area 



This work was supported by the PNR project (2011–2015) funded by the DGRSDT in collaboration between CGS and USTHB. The authors thank Remki M and Chatelain JL for their help about the English version and material data acquisitions. The authors also thank Professor Hamoudi M. and the two anonymous reviewers for their constructive suggestions which greatly improve our manuscript.


  1. Abrahamson NA, Somerville PG (1996) Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake. Bull Seismol Soc Am 86:93–99Google Scholar
  2. Al Yuncha Z, Luzon F, Posadas AJ, Martin J, Alguacil C, Almendros J, Sanchez S (2004) The use of ambient vibration seismic noise measurements for the estimation of surface soil effects: the Motril city case (southern Spain). Pure Appl Geophys 161:1549. doi: 10.1007/s00024-004-2520-7 CrossRefGoogle Scholar
  3. Ansal A, Iyisan R, Güllü H (2002) Microtremor measurements for the microzonation of Dinar. Pure Appl Geophys 158-12:2525–2541. doi: 10.1007/978-3-0348-8177-7_15 Google Scholar
  4. Aymé A (1964) Carte géologique au 1/50 000 d’Alger. Feuille n° 23, Service de la Carte Géologique de l’AlgérieGoogle Scholar
  5. Bard PY (1999) Microtremor measurements: a tool for site effect estimation? paper presented at Second International Symposium on the Effects of Surface Geology on Seismic Motion, IASPEI/IAEE Joint Working Group on ESG, Yokohama, JapanGoogle Scholar
  6. Bard PY, Cadet H, Endrun B, Hobiger M, Renalier F, Theodulidis N, Ohrnberger M, Fäh D, Sabetta F, Teves-Costa P, Duval AM, Cornou C, Guillier B, Wathelet M, Savvaidis A, Köhler A, Burjanek J, Poggi V, Gassner-Stamm G, Havenith HB, Hailemikael S, Almeida J, Rodrigues I, Veludo I, Lacave C, Thomassin S, Kristekova M (2010) From non-invasive site characterization to site amplification: recent advances in the use of ambient vibration measurements. In: Garevski M (ed) Earthquake Engineering in Europe, Geotechnical, Geological, and Earthquake Engineering, vol vol 17. Springer, Dordrecht. doi: 10.1007/978-90-481-9544-2_5 Google Scholar
  7. Bensalem R, Chatelain JL, Machane D, Oubaiche EH, Hellel M, Guillier B, Djeddi M, Djadia L (2010) Ambient vibration techniques applied to explain heavy damages caused in Corso (Algeria) by the 2003 Boumerdes earthquake: understanding seismic amplification due to gentle slopes. Seismol Res Lett 81(6):928–940. doi: 10.1785/gssrl.81.6.928 CrossRefGoogle Scholar
  8. Bonilla LF, Steidl JH, Lindley GT, Tumarkin AG, Archuleta RJ (1997) Site amplification in San Fernando Valley, California: variability of site effect estimation using the S-wave, coda and H/V methods. Bull Seismol Soc Am 87:710–730Google Scholar
  9. Bonnefoy-Claudet S, Cornou C, Bard PY, Cotton F, Moczo P, Kristek J, Fah D (2006) H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophys J Int 167(2):827–837CrossRefGoogle Scholar
  10. Boudiaf A (1996) Etude sismotectonique de la région d’Alger et de la Kabylie: Utilisation des modèles numériques de terrain(MNT) et de la télédétection pour la reconnaissance des structures tectoniques actives: Contribution à l’évaluation de l’aléa sismique. Dissertation, Université de Montpellier 2. Montpellier (France)Google Scholar
  11. Bougdal R, Larriere A, Pincent B, Panet M, Bentabet A (2013) Les glissements de terrain du quartier Belouizdad, Constantine, Algérie. Bull Eng Geol Environ 72(2):189–202CrossRefGoogle Scholar
  12. Bounif A, Dorbath C, Ayadi A, Meghraoui M, Beldjoudi H, Laouami N, Frogneux M, Slimani A, Alasset PJ, Kharroubi A, Ousadou F, Chikh M, Harbi A, Larbes S, Maouche S (2004) The 21 May 2003 Zemmouri (Algeria) Earthquake Mw 6.8: relocation and aftershock sequence analysis. Geophys Res Lett 31(19)Google Scholar
  13. Cara F, Di Giulio G, Rovelli A (2003) A study on seismic noise variations at Colfiorito, central Italy: implications for the use of H/V spectral ratios. Geophys Res Lett 30(18)Google Scholar
  14. Chatelain JL, Guéguen P, Guillier B, Fréchet J, Bondoux F, Sarrault J, Sulpice P, Neuville JM (2000) CityShark: a user-friendly instrument dedicated to ambient noise (microtremor) recording for site and building response studies. Seismol Res Lett 71(6):698–703CrossRefGoogle Scholar
  15. Chatelain JL, Guillier B, Cara F, Duval AM, Atakan K, Bard PY (2008) Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings. Bull Earthq Eng 6(1):33–74. doi: 10.1007/s10518-007-9040-7 CrossRefGoogle Scholar
  16. Chatelain JL, Guillier B, Gueguen P, Fréchet J, Sarrault J (2012) Ambient vibration recording for single-station, array and building studies made simple: CityShark II. Int J Geosci 3:1168–1175CrossRefGoogle Scholar
  17. Cheikh Lounis G, Chatelain JL, Mimouni O, Machane D, Hellel M, Belhai D, Doukhi M, Sadou O (2013) Evaluation du risque d’inondation dans le bassin versant de l’Oued Kniss – centre urbain d’Alger – Algérie. Bulletin du Service Géologique National 24(1):1–13Google Scholar
  18. Delgado J, Lopez Casado C, Giner J, Estevez A, Cuenca A, Molina S (2000) Microtremors as a geophysical exploration tool: applications and limitations. Pure Appl Geophys 157-9:1445–1462CrossRefGoogle Scholar
  19. Delgado J, Alfaro P, Galindo-Zaldivar J, Jabaloy A, Lopez Garrido AC, Sanz De Galdeano C (2002) Structure of the Padul-Nigüelas basin (S Spain) from H/V ratios of ambient noise: application of the method to study peat and coarse sediments. Pure Appl Geophys 159(11-12):2733–2749CrossRefGoogle Scholar
  20. Déverchère J, Yelles K, Domzig A, Mercier de Lépinay B, Bouillin JP, Gaullier V, Bracène R, Calais E, Savoye B, Kherroubi A, Le Roy P, Pauc H, Dan G (2005) Active thrust faulting offshore Boumerdes, Algeria, and its relations to the 2003 Mw 6.9 earthquake. Geophys Res Lett 32(4). doi: 10.1029/2004GL021646
  21. Duval AM, Vidal S, Méneroud JP, Singer A, De Santis F, Ramos C, Romero G, Rodriguez R, Pernia A, Reyes N, Griman C (2001) Caracas, Venezuela, site effect determination with microtremor. Pure Appl Geophys 158-12:2513–2523CrossRefGoogle Scholar
  22. Edwards LS (1977) A modified pseudosection for resistivity and induced polarization. Geophysics 42:1020–1036CrossRefGoogle Scholar
  23. Fäh D, Rüttener E, Noack T, Kruspan P (1997) Microzonation of the city of Basel. J Seismol 1(1):87–102CrossRefGoogle Scholar
  24. Gallipoli MR, Mucciarelli M (2009) Comparison of site classification from VS30, VS10, and HVSR in Italy. Bull Seismol Soc Am 99(1):340–351. doi: 10.1785/0120080083 CrossRefGoogle Scholar
  25. GEOTER-MATTA (2015) Caractérisation des conditions de site sur le site du grand musée de l’Afrique à Alger, Algérie campagne de mesures géophysiques. Final Report, GTR/RDY/0115-1257Google Scholar
  26. Guemache MA, Machane D, Beldjoudi H, Gharbi S, Djadia L, Benahmed S, Ymmel H (2010) On a damaging earthquake-induced landslide in the Algerian Alps: the March 20, 2006 Laalam landslide (Babors chain, northeast Algeria), triggered by the Kherrata earthquake (Mw = 5.3). Nat Hazards 54(2):273–288CrossRefGoogle Scholar
  27. Guemache MA, Chatelain JL, Machane D, Benahmed S, Djadia L (2011) Failure of landslide stabilization measures: the Sidi Rached viaduct case (Constantine, Algeria). J Afr Earth Sci 59(4):349–358CrossRefGoogle Scholar
  28. Guillier B, Chatelain JL, Hellel M, Machane D, Mezouer N, Bensalem R, Oubaiche EH (2005) Smooth bumps in H/V curves over a broad area from single-station ambient noise recordings are meaningful and reveal the importance of Q in array processing: the Boumerdes (Algeria) case. Geophys Res Lett 32(24). doi: 10.1029/2005GL023726
  29. Hammor D, Bosch D, Caby R, Bruguier O (2006) A two-stage exhumation of the Variscan crust: U–Pb LA-ICP-MS and Rb–Sr ages from Greater Kabylia, Maghrebides. Terra Nova 18:299–307. doi: 10.1111/j.1365-3121.2006.00693.x CrossRefGoogle Scholar
  30. Harbi A, Maouche S, Vaccari F, Aoudia A, Oussadou F, Panza GF, Benouar D (2007) Seismicity, seismic input and site effects in the Sahel-Algiers region (north Algeria). Soil Dyn Earthq Eng 27(5):427–447CrossRefGoogle Scholar
  31. Haskell NA (1960) Crustal reflection of plane SH waves. J Geophys Res 65(12):4147–4150CrossRefGoogle Scholar
  32. Heddar A, Authemayou C, Djellit H, Yelles AK, Déverchère J, Gharbi S, Boudiaf A, Van Vliet LB (2013) Preliminary results of a paleoseismological analysis along the Sahel fault (Algeria): new evidence for historical seismic events. Quat Int 302:210–223CrossRefGoogle Scholar
  33. Hellel M, Oubaiche EH, Chatelain JL, Machane D, Bensalem R, Guillier B, Cheikh-lounis G (2012) Basement mapping with single-station and array ambient vibration data: delineating faults under Boumerdes City, Algeria. Seismol Res Lett 83(5):798–805. doi: 10.1785/0220110142 CrossRefGoogle Scholar
  34. Hellel M, Chatelain JL, Cheikh-Lounis G, Machane D, Guillier B, Haddoum H (2013) Utilisation de la méthode h/v bruit de fond pour l’estimation rapide de la géométrie d’une zone instable: cas du glissement d’une route à Lakhdaria (Algérie). Bulletin du Service Géologique National 22(1):69–80Google Scholar
  35. Ibs-Von Seht M, Wohlenberg J (1999) Microtremor measurements used to map thickness of soft sediments. Bull Seismol Soc Am 89-1:250–259Google Scholar
  36. Idriss IM, Sun JI (1992) User’s Manual for SHAKE91. Center for Geotechnical Modeling, Department of Civil Engineering, University of California, Davis, USAGoogle Scholar
  37. Islam MS, Hossain MT, Ameen SF, Hoque E, Ahamed S (2010) Earthquake induced liquefaction vulnerability of reclaimed areas of Dhaka. J Civ Eng 38(1):65–80Google Scholar
  38. JICA and CGS (2006) Microzonage Sismique d’Alger. Final Report, Volume 2, Oyo International Corp. Nippon Koei Co, LtdGoogle Scholar
  39. Jongmans D (1989) Les Phénomènes d’amplification d’ondes sismiques dus à des structures géologiques. Ann Soc Geol Belg 112:369–379Google Scholar
  40. Kudo K (1995) Practical estimates of site response. State-of-art report, Proceedings of the fifth International Conference on Seismic Zonation. Nice, FranceGoogle Scholar
  41. Lachet C, Bard PY (1994) Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s technique. J Phys Earth 42(5):377–397CrossRefGoogle Scholar
  42. Laouami N, Slimani A (2013) Earthquake induced site effect in the Algiers–Boumerdes region: relation between spectral ratios higher peaks and observed damage during the May 21st Mw 6.8 Boumerdes Earthquake (Algeria). Pure Appl Geophys 170(11):1785–1801CrossRefGoogle Scholar
  43. Layadi K, Semmane F, Yelles-Chaouche AK (2016) Site-effects investigation in the city of Chlef (formerly El Asnam), Algeria, using earthquake and ambient vibration data. Bull Seismol Soc Am 106(5). doi: 10.1785/0120150365
  44. LCTP (2015) Etude géophysique du site du Grand Musée de l’Afrique d’Alger. Rapport interneGoogle Scholar
  45. Lermo J, Chavez-Garcia FJ (1994) Site effect evaluation at Mexico City: dominant period and relative amplification from strong motion and microtremor records. Soil Dyn Earthq Eng 13(6):413–423CrossRefGoogle Scholar
  46. Loke MH (2012) Tutorial: 2-D and 3-D electrical imaging surveys. Geotomo Software Penang, MalaysiaGoogle Scholar
  47. Luzon F, Al Yuncha Z, Sanchez-Sesma FJ, Ortiz-Aleman C (2001) A numerical experiment on the horizontal to vertical spectral ratio in flat sedimentary basins. Pure Appl Geophys 158-12:2451–2461CrossRefGoogle Scholar
  48. Machane D, Bouhadad Y, Oubaiche EH, Hellel M, Amrouche F, Abbes K, Messaoudi M, Cheikh Lounis G (2004) Les effets géologiques induits par le séisme de Boumerdes (Algérie) du 21 mai 2003 (Mw = 6.8). Mémoire du Service Géologique National 12:133–146Google Scholar
  49. Machane D, Bouhadad Y, Cheikhlounis G, Chatelain JL, Oubaiche EH, Abbes K, Guillier B, Bensalem R (2008) Examples of geomorphologic and geological hazards in Algeria. Nat Hazards 45:295–308CrossRefGoogle Scholar
  50. Madera GA (1970) Fundamental period and amplification of peak acceleration in layered systems, Mass. Research Report R 70-37. MIT Press, Cambridge, p 77Google Scholar
  51. Mainsant G, Larose E, Brönnimann C, Jongmans D, Michoud C, Jaboyedoff M (2012) Ambient seismic noise monitoring of a clay landslide: toward failure prediction. J Geophys Res Earth Surf 117(F1). doi: 10.1029/2011JF002159
  52. Maouche S, Morhange C, Meghraoui M (2009) Large boulder accumulation on the Algerian coast evidence tsunami events in the western Mediterranean. Mar Geol 262(1):96–104CrossRefGoogle Scholar
  53. Maouche S, Meghraoui M, Morhange C, Belabbes S, Bouhadad Y, Haddoum H (2011) Active coastal thrusting and folding, and uplift rate of the Sahel Anticline and Zemmouri earthquake area (Tell Atlas, Algeria). Tectonophysics 509(1):69–80CrossRefGoogle Scholar
  54. Maresca R, Castellano M, De Matteis R, Saccorotti G, Vaccariello P (2003) Local site effects in the town of Benevento (Italy) from noise measurements. Pure Appl Geophys 160(9):1745–1764CrossRefGoogle Scholar
  55. Matsushima S, Hirokawa T, De Martin F, Kawase H, Sánchez Sesma FJ (2014) The effect of lateral heterogeneity on horizontal to vertical spectral ratio of microtremors inferred from observation and synthetics. Bull Seismol Soc Am 04(1):381–393. doi: 10.1785/0120120321 CrossRefGoogle Scholar
  56. Meghraoui M (1988) Géologie des zones sismiques du nord de l’Algérie. Paléosismologie, tectonique active et synthèse sismotectonique. Dissertation, Université de Paris-Sud. Faculté des Sciences d’Orsay (Essonne)Google Scholar
  57. Meghraoui M (1991) Blind reverse faulting system associated with the Mount Chenoua-Tipaza earthquake of 29 October 1989 (North-Central Algeria). Terra Nova 3:84–93CrossRefGoogle Scholar
  58. Meghraoui M, Maouche S, Chemaa B, Cakir Z, Aoudia A, Harbi A, Alasset PJ, Ayadi A, Bouhadad Y, Benhamouda F (2004) Coastal uplift and thrust faulting associated with the Mw = 6.8 Zemmouri (Algeria) earthquake of 21 May, 2003. Geophys Res Lett:31(19). doi: 10.1029/2004GL020466
  59. Meziani A, Tebbouche MY (2015) Evaluation Multi-Aléas Géologiques du Site d’Implantation du Grand Musée de l’Afrique. Master Dissertation, Université des sciences et de la technologie Houari-Boumediene, AlgiersGoogle Scholar
  60. Meziani A, Tebbouche MY, Machane D (2016) Application de la méthode H/V Bruit De Fond au niveau du site d’implantation du Grand Musée de l’Afrique d’Alger (Embouchure Oued El Harrach). 1er Colloque International sur la Géologie de la Chaîne des Maghrébides et des régions voisines, Ferhat Abbas University, AlgeriaGoogle Scholar
  61. Mimouni O, Mesbah M, Berrahal M, Merouane A (2009) Etude géologique et géotechnique de problèmes d’inondabilité dans la région d’Alger-exemple: l’oued El Harrach. Bulletin du service géologique national 20(2):109–126Google Scholar
  62. Moulouel H, Bensalem R, Machane D, Bendaoud A, Gharbi S, Oubaiche EH, Ousalem H, Skendri W (2016) High resistant sand injected marl and low resistant damaged marl to locate and characterize the Thenia fault zone in Boumerdes City (North-Central Algeria). Pure Appl Geophys. doi: 10.1007/s00024-016-1400-2
  63. Mulargia F, Castellaro S (2016) HVSR deep mapping tested down to Mulargia F, Castellaro S (2016) HVSR deep mapping tested down to ∼1.8 km in Po Plane Valley, Italy. Phys Earth Planet Inter 261:17–23. doi: 10.1016/j.pepi.2016.08.002 CrossRefGoogle Scholar
  64. Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railw Tech Res Inst Q Rep 30(1):25–30Google Scholar
  65. Nakamura Y (2000) Clear identification of fundamental idea of Nakamura’s technique and its application. In Proceedings of the 12th world conference on earthquake engineering, vol. 2656. New Zealand, AucklandGoogle Scholar
  66. Nogoshi M, Igarashi T (1970) On the amplitude characteristics of microtremor (Part 1). J Seismol Soc Jpn 23:281–303Google Scholar
  67. Nogoshi M, Igarashi T (1971) On the amplitude characteristics of microtremor (Part 2). J Seismol Soc Jpn 24:26–40Google Scholar
  68. Oliveto A, Mucciarelli M, Caputo R (2004) HVSR prospecting in multi-layered environments: an example from the Tyrnavos Basin (Greece). J Seismol 8(3):395–406CrossRefGoogle Scholar
  69. Oubaiche EH, Chatelain JL, Bouguern A, Bensalem R, Machane D, Hellel M, Khaldaoui F, Guillier B (2012) Experimental relationship between ambient vibration H/V peak amplitude and shear-wave velocity contrast. Seismol Res Lett 83:6CrossRefGoogle Scholar
  70. Parolai S, Bormann P, Milkereit C (2002) New relationships between Vs, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the Cologna area (Germany). Bull Seismol Soc Am 92(6):521–2527CrossRefGoogle Scholar
  71. Philip H, Meghraoui M (1983) Structural analysis and interpretation of the surface deformations of the El Asnam Earthquake of October 10, 1980. Tectonics 2(1):17–49. doi: 10.1029/TC002i001p00017 CrossRefGoogle Scholar
  72. Pilz M, Parolai S, Leyton F, Campos J, Schau J (2009) A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban areas of Santiago de Chile. Geophys J Int 178(2):713–728CrossRefGoogle Scholar
  73. Rincona O, Shakoorb A, Ocampoc M (2016) Investigating the reliability of H/V spectral ratio and image entropy for quantifying the degree of disintegration of weak rocks. Eng Geol 207:115–128CrossRefGoogle Scholar
  74. Rodriguez VHS, Midorikawa S (2003) Comparison of spectral ratio techniques for estimation of site effects using microtremor data and earthquake motions recorded at the surface and in boreholes. Earthq Eng Struct Dyn 32(11):1691–1714CrossRefGoogle Scholar
  75. Saadallah A (1981) le massif cristallophyllien d’el djazair (Algérie), évolution d’un charriage à vergence nord dans les internides des maghrébides. Dissertation, Université des sciences et de la technologie Houari-BoumedieneGoogle Scholar
  76. Saadallah A, Caby R (1996) Alpine extensional detachment tectonics in the Grande Kabylie metamorphic core complex of the Maghrebides (northern Algeria). Tectonophysics 267(1):257–273CrossRefGoogle Scholar
  77. Saita J, Bautista MLP, Nakamura Y (2004) On relationship between the estimated strong motion characteristics of surface layer and the earthquake damage—case study at Intramuros, Metro Manila. In proceeding of the Metro Manila13th World Conference on Earthquake Engineering. Vancouver, BC, CanadaGoogle Scholar
  78. SESAME project (2005) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: measurements, processing and interpretation. European Commission—Research General Directorate Project No. EVG1-CT-2000-00026 SESAME, report D23.12, 62 pp.
  79. Shabestari KT, Yamazaki F (2003) Near-fault spatial variation in strong ground motion due to rupture directivity and hanging wall effects from the Chi-Chi, Taiwan earthquake. Earthq Eng Struct Dyn 32(14):2197–2219. doi: 10.1002/eqe.323 CrossRefGoogle Scholar
  80. Sibson RH, Xie G (1998) Dip range for intracontinental reverse fault ruptures: truth not stranger than friction? Bull Seismol Soc Am 88(4):1014–1022Google Scholar
  81. Teves-Costa P, Matias L, Bard PY (1996) Seismic behaviour estimation of thin alluvium layers using microtremor recordings. Soil Dyn Earthq Eng 15(3):201–209CrossRefGoogle Scholar
  82. Theodulidis NP, Bard PY (1995) Horizontal to vertical spectral ratio and geological conditions: an analysis of strong motion data from Greece and Taiwan (SMART-1). Soil Dyn Earthq Eng 14(3):177–197CrossRefGoogle Scholar
  83. Tsuda K, Steidl J, Archuleta R, Assimaki D (2006) Site-response estimation for the 2003 Miyagi-Oki earthquake sequence considering nonlinear site response. Bull Seismol Soc Am 96(4A):1474–1482. doi: 10.1785/0120050160 CrossRefGoogle Scholar
  84. Tsuda K, Koketsu K, Hisada Y, Hayakawa T (2010) Inversion analysis of site responses in the Kanto basin using data from a dense strong motion seismograph array. Bull Seismol Soc Am 100(3):1276–1287. doi: 10.1785/0120090153 CrossRefGoogle Scholar
  85. Uebayashi H (2003) Extrapolation of irregular subsurface structures using the horizontal-to-vertical spectral ratio of long-period microtremors. Bull Seismol Soc Am 93(2):570–582CrossRefGoogle Scholar
  86. Vella A, Galea P, D’Amico S (2013) Site frequency response characterization of the Maltese islands based on ambient noise H/V ratios. Eng Geol 163:89–100CrossRefGoogle Scholar
  87. Wathelet M, Jongmans D, Ohrnberger M, Bonnefoy-Claudet S (2008) Array performances for ambient vibrations on a shallow structure and consequences over Vs inversion. J Seismol 12:1–19CrossRefGoogle Scholar
  88. Yamanaka H, Takemura M, Ishida H, Niwa M (1994) Characteristics of long-period microtremors and their applicability in exploration of deep sedimentary layers. Bull Seismol Soc Am 84(6):1831–1841Google Scholar
  89. Yelles K, Lammali K, Mahsas A, Calais E, Briole P (2004) Coseismic deformation of the May 21st, 2003, Mw = 6.8 Boumerdes earthquake, Algeria, from GPS measurements. Geophys Res Lett 31(13). doi: 10.1029/2004GL019884
  90. Yelles-Chaouche A, Boudiaf A, Djellit H, Bracene R (2006) La tectonique active de la région nord-algérienne. C R Geosci 338(1):126–139CrossRefGoogle Scholar
  91. Yielding G, Ouyed M, King GCP, Hatzfeld D (1989) Active tectonics of the Algerian Atlas Mountains—evidence from aftershocks of the 1980 El Asnam earthquake. Geophys J Int 99(3):761–788CrossRefGoogle Scholar
  92. Yoshida N, Sawada N, Nakamura S (2007) Engineering seismic base layer for defining design earthquake motion. 4th International Conference on Earthquake Geotechnical Engineering June 25-28, No 1381 Thessaloniki-GreeceGoogle Scholar
  93. Yu YX, Gao MT (2001) Effects of the hanging wall and footwall on peak acceleration during the Jiji (Chi-Chi), Taiwan Province, earthquake. Acta Seismol Sin 14(6):654–659CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2017

Authors and Affiliations

  • Mohamed Yacine Tebbouche
    • 1
    • 2
  • Djamel Machane
    • 2
  • Souhila Chabane
    • 1
  • El-Hadi Oubaiche
    • 2
  • Aghiles Abdelghani Meziani
    • 2
  • Dalila Ait Benamar
    • 2
  • Hakim Moulouel
    • 2
  • Ghani Cheikh Lounis
    • 1
  • Rabah Bensalem
    • 2
  • Abderrahmane Bendaoud
    • 1
  1. 1.FSTGAT-USTHBAlgiersAlgeria
  2. 2.CGSAlgiersAlgeria

Personalised recommendations