Skip to main content
Log in

De gespiraliseerde achillespees

  • Biomechanica en Bewegingsanalyse
  • Published:
Podosophia Aims and scope

Samenvatting

De achillespees heeft een bijzondere, gespiraliseerde bouw. Hij bestaat uit drie ‘subpezen’, die van bovenaf gezien in het rechterbeen tegen de klok in en in het linkerbeen met de klok mee, stevig in elkaar worden gedraaid bij tenenstand en bij de afzet tijdens gaan, lopen en springen. Door dit mechanisme kan er extra elastische energie in de achillespees worden opgeslagen. Er blijken nauwe relaties te bestaan tussen de functie van de achillespees en de spiraalvorm ervan, in combinatie met de buiglijn van de tenen en de richting van de gewrichtsassen van het onderste en bovenste spronggewricht. Mogelijk leiden verstoringen in deze relaties zelfs tot degeneratieve veranderingen in de achillespees, met name als de oorzaak daarvan is gelegen in een bewegingsbeperking in het onderste spronggewricht. In dit artikel wordt een test besproken waarmee zo’n bewegingsbeperking kan worden opgespoord. Deze test kan tevens dienen als oefening voor het vergroten van de bewegingsmogelijkheid in het onderste spronggewricht en/of als warming-up voor bijvoorbeeld hardlopen of springen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figuur 1
Figuur 2
Figuur 3
Figuur 4
Figuur 5
Figuur 6

Literatuur

  1. Doral M, Alam M, Bozkurt M, Turhan E, Atay O, Dönmez G, et al. Functional anatomy of the Achilles tendon. Knee Surg Sports Traumatol Arthrosc. 2010;18:638–43.

    Article  PubMed  Google Scholar 

  2. Wikipedia. Achilleshiel. 2020. https://nl.wikipedia.org/wiki/Achilleshiel. Geraadpleegd op 3 dec 2020.

  3. Wikipedia. Gastrocnemius muscle. 2020. https://en.wikipedia.org/wiki/Gastrocnemius_muscle. Geraadpleegd op 3 dec 2020.

  4. Wikipedia. Musculus soleus. 2020. https://nl.wikipedia.org/wiki/Musculus_soleus. Geraadpleegd op 3 dec 2020.

  5. Parsons F. On the morphology of the tendo-achillis. J Anat Physiol. 1894;28(4):414–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. White J. Torsion of the achilles tendon: its surgical significance. Arch Surg. 1943;46(5):784–7.

    Article  Google Scholar 

  7. Dalmau-Pastor M, Fargues-Polo B, Casanova-Martínez D, Vega J, Golanó P. Anatomy of the triceps surae: a pictorial essay. Foot Ankle Clin. 2014;19(4):603–35.

    Article  PubMed  Google Scholar 

  8. Shim V, Handsfield G, Fernandez J, Lloyd D, Besier T. Combining in silico and in vitro experiments to characterize the role of fascicle twist in the Achilles tendon. Sci Rep. 2018;8:13856.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Warwick R, Williams P, redactie. Gray’s anatomy. 35e druk. Edinburgh: Longman; 1973.

    Google Scholar 

  10. Winnicki K, Ochała-Kłos A, Rutowicz B, Pękala P, Tomaszewski K. Functional anatomy, histology and biomechanics of the human achilles tendon – a comprehensive review. Ann Anat. 2020;229:151461.

    Article  PubMed  Google Scholar 

  11. Charles J, Suntaxi F, Anderst W. In vivo human lower limb muscle architecture dataset obtained using diffusion tensor imaging. PLoS ONE. 2019;14(10):1–18.

    Article  Google Scholar 

  12. Wikipedia. Physiological cross-sectional area. 2020. https://en.wikipedia.org/wiki/Physiological_cross-sectional_area. Geraadpleegd op 3 dec 2020.

  13. Morse C, Thom J, Reeves N, Birch K, Narici M. In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. J Appl Physiol. 2005;99:1050–5.

    Article  PubMed  Google Scholar 

  14. Narici M, Franchi M, Maganaris C. Muscle structural assembly and functional consequences. J Exp Biol. 2016;219:276–84.

    Article  PubMed  Google Scholar 

  15. Albracht K, Arampatzis A, Baltzopoulos V. Assessment of muscle volume and physiological cross-sectional area of the human triceps surae muscle in vivo. J Biomech. 2008;41:2211–8.

    Article  CAS  PubMed  Google Scholar 

  16. Fukunaga T, Roy R, Shellock G, et al. Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. J Orthop Res. 1992;10:926–34.

    Article  Google Scholar 

  17. Gerritsen B, Berger M, Elshoud G, Schutte H. Anatomie in vivo. Houten: Bohn Stafleu van Loghum; 2019.

    Book  Google Scholar 

  18. Ker R, Alexander R, Bennett M. Why are mammalian tendons so thick? J Zool. 1988;216:309–24.

    Article  Google Scholar 

  19. Maganaris C, Paul J. In vivo human tendon mechanical properties. J Physiol. 1999;521(1):307–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reeves N, Narici M, Maganaris C. Effect of resistance training on skeletal muscle-specific force in elderly humans. J Appl Physiol. 2004;96:885–92.

    Article  CAS  PubMed  Google Scholar 

  21. Rospars J, Meyer-Vernet N. Force per cross-sectional area from molecules to muscles: a general property of biological motors. R Soc Open Sci. 2016;3:160313.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alexander R. Tendon elasticity and muscle function. Comp Biochem Physiol. 2002;133:1001–11.

    Article  Google Scholar 

  23. Józsa L, Kannus P. Human tendons: anatomy, physiology and pathology. Champaign: Human Kinetics; 1997.

    Google Scholar 

  24. Kongsgaard M, Aagaard P, Kjaer M, Magnusson S. Structural achilles tendon properties in athletes subjected to different exercise modes and in Achilles tendon rupture patients. J Appl Physiol. 2005;99:1965–71.

    Article  CAS  PubMed  Google Scholar 

  25. Schechtman H, Bader D. Fatigue damage of human tendons. J Biomech. 2002;35:347–53.

    Article  CAS  PubMed  Google Scholar 

  26. Wren T, Yerby S, Beaupre G, Carter D. Mechanical properties of the human Achilles tendon. Clin Biomech. 2001;16:245–51.

    Article  CAS  Google Scholar 

  27. Magnusson S, Aagaard P, Rosager S, Dyhre-Poulsen P, Kjaer M. Load-displacement properties of the human triceps surae aponeurosis in vivo. J Physiol. 2001;531(1):277–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosager S, Aagaard P, Dyhre-Poulsen P, Neergaard K, Kjaer M, Magnusson SP. Load-displacement properties of the human triceps surae aponeurosis and tendon in runners and non-runners. Scand J Med Sci Sports. 2002;12:90–8.

    Article  CAS  PubMed  Google Scholar 

  29. Geremia J, Baroni B, Bobbert M, Bini R, Lanferdini F, Vaz M. Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans. Eur J Appl Physiol. 2018;118:1725–36.

    Article  CAS  PubMed  Google Scholar 

  30. Kongsgaard M, Nielsen C, Hegnsvad S, Aagaard P, Magnusson S. Mechanical properties of the human achilles tendon, in vivo. Clin Biomech. 2011;26:772–7.

    Article  CAS  Google Scholar 

  31. Almonroeder T, Willson J, Kernozek T. The effect of foot strike pattern on achilles tendon load during running. Ann Biomed Eng. 2013;41(8):1758–66.

    Article  PubMed  Google Scholar 

  32. Gheidi N, Kernozek T, Willson J, Revak A, Diers K. Achilles tendon loading during weight bearing exercises. Phys Ther Sport. 2018;32:260–8.

    Article  PubMed  Google Scholar 

  33. Revak A, Diers K, Kernozek T, Gheidi N, Olbrantz C. Achilles tendon loading during heel-raising and -lowering exercises. J Athl Train. 2017;52(2):89–96.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Calleja M, Connell D. The achilles tendon. Semin Musculoskelet Radiol. 2010;14(3):307–22.

    Article  PubMed  Google Scholar 

  35. Gils C van, Steed R, Page J. Torsion of the human achilles tendon. J Foot Ankle Surg. 1996;35(1):41–8.

    Article  PubMed  Google Scholar 

  36. Lichtwark G, Bougoulias K, Wilson A. Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J Biomech. 2007;40:157–64.

    Article  CAS  PubMed  Google Scholar 

  37. Pękala P, Henry B, Ochała A, et al. The twisted structure of the Achilles tendon unraveled: a detailed quantitative and qualitative anatomical investigation. Scand J Med Sci Sports. 2017;27:1705–15.

    Article  PubMed  Google Scholar 

  38. Arnold E, Delp S. Fibre operating lengths of human lower limb muscles during walking. Philos Trans R Soc Lond B Biol Sci. 2011;366:1530–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Koryak Y. Architectural and functional specifics of the human triceps surae muscle in vivo and its adaptation to microgravity. J Appl Physiol. 2019;126:880–93.

    Article  CAS  PubMed  Google Scholar 

  40. Winters J, Woo S. Multiple muscle systems. Biomechanics and movement organization. New York: Springer; 1990.

    Book  Google Scholar 

  41. Ishikawa M, Pakaslahti J, Komi P. Medial gastrocnemius muscle behavior during human running and walking. Gait Posture. 2007;25:380–4.

    Article  CAS  PubMed  Google Scholar 

  42. Pang B, Ying M. Sonographic measurement of achilles tendons in asymptomatic subjects. Variation with age, body height, and dominance of ankle. J Ultrasound Med. 2006;25:1291–6.

    Article  PubMed  Google Scholar 

  43. Edama M, Kubo M, Onishi H, et al. The twisted structure of the human Achilles tendon. Scand J Med Sci Sports. 2015;25:497–503.

    Article  Google Scholar 

  44. Edama M, Kubo M, Onishi H, et al. Structure of the achilles tendon at the insertion on the calcaneal tuberosity. J Anat. 2016;229:610–4.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Handsfield G, Inouye J, Slane L, Thelen D, Wilson Miller G, Blemker S. A 3D model of the Achilles tendon to determine the mechanisms underlying nonuniform tendon displacements. J Biomech. 2017;51:17–25.

    Article  PubMed  Google Scholar 

  46. Szaro P, Witkowski G, Smigielski R, Krajewski P, Ciszek B. Fascicles of the adult human achillestendon – an anatomical study. Ann Anat. 2009;191:586–93.

    Article  PubMed  Google Scholar 

  47. Alexander R. Exploring biomechanics: animals in motion. New York: Scientific American Library; 1992.

    Google Scholar 

  48. Roberts T, Konow N. How tendons buffer energy dissipation by muscle. Exerc Sport Sci Rev. 2013;41(4):1–8.

    Article  Google Scholar 

  49. Farris D, Lichtwark G, Brown N, Cresswell A. The role of human ankle plantar flexor muscle – tendon interaction and architecture in maximal vertical jumping examined in vivo. J Exp Biol. 2016;219:528–34.

    PubMed  Google Scholar 

  50. Ishikawa M, Komi P, Grey M, Lepola V, Bruggemann G. Muscle-tendon interaction and elastic energy usage in human walking. J Appl Physiol. 2005;99:603–8.

    Article  PubMed  Google Scholar 

  51. Kirkendall D, Garrett W. Function and biomechanics of tendons. Scand J Med Sci Sports. 1997;7:62–6.

    Article  CAS  PubMed  Google Scholar 

  52. Lipfert S, Günther M, Renjewski D, Seyfarth A. Impulsive ankle push-off powers leg swing in human walking. J Exp Biol. 2014;217:1218–28.

    Article  PubMed  Google Scholar 

  53. Roberts T. The integrated function of muscles and tendons during locomotion. Comp Biochem Physiol. 2002;133:1087–99.

    Article  Google Scholar 

  54. Roberts T, Azizi E. Flexible mechanisms: the diverse roles of biological springs in vertebrate movement. J Exp Biol. 2011;214:353–61.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Vogel S. Cat’s paws and catapults. London: W.W. Norton; 1998.

    Google Scholar 

  56. Dean M, Azizi E, Summers A. Uniform strain in broad muscles: active and passive effects of the twisted tendon of the spotted ratfish hydrolagus colliei. J Exp Biol. 2007;210:3395–406.

    Article  PubMed  Google Scholar 

  57. Riezebos C. Tapebandage bij het inversietrauma. Podosophia. 2019;27:127–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Riezebos.

Additional information

In deze rubriek worden algemene principes uit de biomechanica en bewegingsanalyse opgefrist en podotherapeutische toepassingen op toegankelijke wijze uiteengezet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riezebos, C. De gespiraliseerde achillespees. Podosophia 29, 27–33 (2021). https://doi.org/10.1007/s12481-020-00292-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12481-020-00292-0

Trefwoorden

Navigation