De gespiraliseerde achillespees

Samenvatting

De achillespees heeft een bijzondere, gespiraliseerde bouw. Hij bestaat uit drie ‘subpezen’, die van bovenaf gezien in het rechterbeen tegen de klok in en in het linkerbeen met de klok mee, stevig in elkaar worden gedraaid bij tenenstand en bij de afzet tijdens gaan, lopen en springen. Door dit mechanisme kan er extra elastische energie in de achillespees worden opgeslagen. Er blijken nauwe relaties te bestaan tussen de functie van de achillespees en de spiraalvorm ervan, in combinatie met de buiglijn van de tenen en de richting van de gewrichtsassen van het onderste en bovenste spronggewricht. Mogelijk leiden verstoringen in deze relaties zelfs tot degeneratieve veranderingen in de achillespees, met name als de oorzaak daarvan is gelegen in een bewegingsbeperking in het onderste spronggewricht. In dit artikel wordt een test besproken waarmee zo’n bewegingsbeperking kan worden opgespoord. Deze test kan tevens dienen als oefening voor het vergroten van de bewegingsmogelijkheid in het onderste spronggewricht en/of als warming-up voor bijvoorbeeld hardlopen of springen.

This is a preview of subscription content, access via your institution.

Figuur 1
Figuur 2
Figuur 3
Figuur 4
Figuur 5
Figuur 6

Literatuur

  1. 1.

    Doral M, Alam M, Bozkurt M, Turhan E, Atay O, Dönmez G, et al. Functional anatomy of the Achilles tendon. Knee Surg Sports Traumatol Arthrosc. 2010;18:638–43.

    PubMed  Google Scholar 

  2. 2.

    Wikipedia. Achilleshiel. 2020. https://nl.wikipedia.org/wiki/Achilleshiel. Geraadpleegd op 3 dec 2020.

  3. 3.

    Wikipedia. Gastrocnemius muscle. 2020. https://en.wikipedia.org/wiki/Gastrocnemius_muscle. Geraadpleegd op 3 dec 2020.

  4. 4.

    Wikipedia. Musculus soleus. 2020. https://nl.wikipedia.org/wiki/Musculus_soleus. Geraadpleegd op 3 dec 2020.

  5. 5.

    Parsons F. On the morphology of the tendo-achillis. J Anat Physiol. 1894;28(4):414–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    White J. Torsion of the achilles tendon: its surgical significance. Arch Surg. 1943;46(5):784–7.

    Google Scholar 

  7. 7.

    Dalmau-Pastor M, Fargues-Polo B, Casanova-Martínez D, Vega J, Golanó P. Anatomy of the triceps surae: a pictorial essay. Foot Ankle Clin. 2014;19(4):603–35.

    PubMed  Google Scholar 

  8. 8.

    Shim V, Handsfield G, Fernandez J, Lloyd D, Besier T. Combining in silico and in vitro experiments to characterize the role of fascicle twist in the Achilles tendon. Sci Rep. 2018;8:13856.

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Warwick R, Williams P, redactie. Gray’s anatomy. 35e druk. Edinburgh: Longman; 1973.

    Google Scholar 

  10. 10.

    Winnicki K, Ochała-Kłos A, Rutowicz B, Pękala P, Tomaszewski K. Functional anatomy, histology and biomechanics of the human achilles tendon – a comprehensive review. Ann Anat. 2020;229:151461.

    PubMed  Google Scholar 

  11. 11.

    Charles J, Suntaxi F, Anderst W. In vivo human lower limb muscle architecture dataset obtained using diffusion tensor imaging. PLoS ONE. 2019;14(10):1–18.

    Google Scholar 

  12. 12.

    Wikipedia. Physiological cross-sectional area. 2020. https://en.wikipedia.org/wiki/Physiological_cross-sectional_area. Geraadpleegd op 3 dec 2020.

  13. 13.

    Morse C, Thom J, Reeves N, Birch K, Narici M. In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. J Appl Physiol. 2005;99:1050–5.

    PubMed  Google Scholar 

  14. 14.

    Narici M, Franchi M, Maganaris C. Muscle structural assembly and functional consequences. J Exp Biol. 2016;219:276–84.

    PubMed  Google Scholar 

  15. 15.

    Albracht K, Arampatzis A, Baltzopoulos V. Assessment of muscle volume and physiological cross-sectional area of the human triceps surae muscle in vivo. J Biomech. 2008;41:2211–8.

    CAS  PubMed  Google Scholar 

  16. 16.

    Fukunaga T, Roy R, Shellock G, et al. Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. J Orthop Res. 1992;10:926–34.

    Google Scholar 

  17. 17.

    Gerritsen B, Berger M, Elshoud G, Schutte H. Anatomie in vivo. Houten: Bohn Stafleu van Loghum; 2019.

    Google Scholar 

  18. 18.

    Ker R, Alexander R, Bennett M. Why are mammalian tendons so thick? J Zool. 1988;216:309–24.

    Google Scholar 

  19. 19.

    Maganaris C, Paul J. In vivo human tendon mechanical properties. J Physiol. 1999;521(1):307–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Reeves N, Narici M, Maganaris C. Effect of resistance training on skeletal muscle-specific force in elderly humans. J Appl Physiol. 2004;96:885–92.

    CAS  PubMed  Google Scholar 

  21. 21.

    Rospars J, Meyer-Vernet N. Force per cross-sectional area from molecules to muscles: a general property of biological motors. R Soc Open Sci. 2016;3:160313.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Alexander R. Tendon elasticity and muscle function. Comp Biochem Physiol. 2002;133:1001–11.

    Google Scholar 

  23. 23.

    Józsa L, Kannus P. Human tendons: anatomy, physiology and pathology. Champaign: Human Kinetics; 1997.

    Google Scholar 

  24. 24.

    Kongsgaard M, Aagaard P, Kjaer M, Magnusson S. Structural achilles tendon properties in athletes subjected to different exercise modes and in Achilles tendon rupture patients. J Appl Physiol. 2005;99:1965–71.

    CAS  PubMed  Google Scholar 

  25. 25.

    Schechtman H, Bader D. Fatigue damage of human tendons. J Biomech. 2002;35:347–53.

    CAS  PubMed  Google Scholar 

  26. 26.

    Wren T, Yerby S, Beaupre G, Carter D. Mechanical properties of the human Achilles tendon. Clin Biomech. 2001;16:245–51.

    CAS  Google Scholar 

  27. 27.

    Magnusson S, Aagaard P, Rosager S, Dyhre-Poulsen P, Kjaer M. Load-displacement properties of the human triceps surae aponeurosis in vivo. J Physiol. 2001;531(1):277–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Rosager S, Aagaard P, Dyhre-Poulsen P, Neergaard K, Kjaer M, Magnusson SP. Load-displacement properties of the human triceps surae aponeurosis and tendon in runners and non-runners. Scand J Med Sci Sports. 2002;12:90–8.

    CAS  PubMed  Google Scholar 

  29. 29.

    Geremia J, Baroni B, Bobbert M, Bini R, Lanferdini F, Vaz M. Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans. Eur J Appl Physiol. 2018;118:1725–36.

    CAS  PubMed  Google Scholar 

  30. 30.

    Kongsgaard M, Nielsen C, Hegnsvad S, Aagaard P, Magnusson S. Mechanical properties of the human achilles tendon, in vivo. Clin Biomech. 2011;26:772–7.

    CAS  Google Scholar 

  31. 31.

    Almonroeder T, Willson J, Kernozek T. The effect of foot strike pattern on achilles tendon load during running. Ann Biomed Eng. 2013;41(8):1758–66.

    PubMed  Google Scholar 

  32. 32.

    Gheidi N, Kernozek T, Willson J, Revak A, Diers K. Achilles tendon loading during weight bearing exercises. Phys Ther Sport. 2018;32:260–8.

    PubMed  Google Scholar 

  33. 33.

    Revak A, Diers K, Kernozek T, Gheidi N, Olbrantz C. Achilles tendon loading during heel-raising and -lowering exercises. J Athl Train. 2017;52(2):89–96.

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Calleja M, Connell D. The achilles tendon. Semin Musculoskelet Radiol. 2010;14(3):307–22.

    PubMed  Google Scholar 

  35. 35.

    Gils C van, Steed R, Page J. Torsion of the human achilles tendon. J Foot Ankle Surg. 1996;35(1):41–8.

    PubMed  Google Scholar 

  36. 36.

    Lichtwark G, Bougoulias K, Wilson A. Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J Biomech. 2007;40:157–64.

    CAS  PubMed  Google Scholar 

  37. 37.

    Pękala P, Henry B, Ochała A, et al. The twisted structure of the Achilles tendon unraveled: a detailed quantitative and qualitative anatomical investigation. Scand J Med Sci Sports. 2017;27:1705–15.

    PubMed  Google Scholar 

  38. 38.

    Arnold E, Delp S. Fibre operating lengths of human lower limb muscles during walking. Philos Trans R Soc Lond B Biol Sci. 2011;366:1530–9.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Koryak Y. Architectural and functional specifics of the human triceps surae muscle in vivo and its adaptation to microgravity. J Appl Physiol. 2019;126:880–93.

    CAS  PubMed  Google Scholar 

  40. 40.

    Winters J, Woo S. Multiple muscle systems. Biomechanics and movement organization. New York: Springer; 1990.

    Google Scholar 

  41. 41.

    Ishikawa M, Pakaslahti J, Komi P. Medial gastrocnemius muscle behavior during human running and walking. Gait Posture. 2007;25:380–4.

    CAS  PubMed  Google Scholar 

  42. 42.

    Pang B, Ying M. Sonographic measurement of achilles tendons in asymptomatic subjects. Variation with age, body height, and dominance of ankle. J Ultrasound Med. 2006;25:1291–6.

    PubMed  Google Scholar 

  43. 43.

    Edama M, Kubo M, Onishi H, et al. The twisted structure of the human Achilles tendon. Scand J Med Sci Sports. 2015;25:497–503.

    Google Scholar 

  44. 44.

    Edama M, Kubo M, Onishi H, et al. Structure of the achilles tendon at the insertion on the calcaneal tuberosity. J Anat. 2016;229:610–4.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Handsfield G, Inouye J, Slane L, Thelen D, Wilson Miller G, Blemker S. A 3D model of the Achilles tendon to determine the mechanisms underlying nonuniform tendon displacements. J Biomech. 2017;51:17–25.

    PubMed  Google Scholar 

  46. 46.

    Szaro P, Witkowski G, Smigielski R, Krajewski P, Ciszek B. Fascicles of the adult human achillestendon – an anatomical study. Ann Anat. 2009;191:586–93.

    PubMed  Google Scholar 

  47. 47.

    Alexander R. Exploring biomechanics: animals in motion. New York: Scientific American Library; 1992.

    Google Scholar 

  48. 48.

    Roberts T, Konow N. How tendons buffer energy dissipation by muscle. Exerc Sport Sci Rev. 2013;41(4):1–8.

    Google Scholar 

  49. 49.

    Farris D, Lichtwark G, Brown N, Cresswell A. The role of human ankle plantar flexor muscle – tendon interaction and architecture in maximal vertical jumping examined in vivo. J Exp Biol. 2016;219:528–34.

    PubMed  Google Scholar 

  50. 50.

    Ishikawa M, Komi P, Grey M, Lepola V, Bruggemann G. Muscle-tendon interaction and elastic energy usage in human walking. J Appl Physiol. 2005;99:603–8.

    PubMed  Google Scholar 

  51. 51.

    Kirkendall D, Garrett W. Function and biomechanics of tendons. Scand J Med Sci Sports. 1997;7:62–6.

    CAS  PubMed  Google Scholar 

  52. 52.

    Lipfert S, Günther M, Renjewski D, Seyfarth A. Impulsive ankle push-off powers leg swing in human walking. J Exp Biol. 2014;217:1218–28.

    PubMed  Google Scholar 

  53. 53.

    Roberts T. The integrated function of muscles and tendons during locomotion. Comp Biochem Physiol. 2002;133:1087–99.

    Google Scholar 

  54. 54.

    Roberts T, Azizi E. Flexible mechanisms: the diverse roles of biological springs in vertebrate movement. J Exp Biol. 2011;214:353–61.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Vogel S. Cat’s paws and catapults. London: W.W. Norton; 1998.

    Google Scholar 

  56. 56.

    Dean M, Azizi E, Summers A. Uniform strain in broad muscles: active and passive effects of the twisted tendon of the spotted ratfish hydrolagus colliei. J Exp Biol. 2007;210:3395–406.

    PubMed  Google Scholar 

  57. 57.

    Riezebos C. Tapebandage bij het inversietrauma. Podosophia. 2019;27:127–32.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chris Riezebos.

Additional information

In deze rubriek worden algemene principes uit de biomechanica en bewegingsanalyse opgefrist en podotherapeutische toepassingen op toegankelijke wijze uiteengezet.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Riezebos, C. De gespiraliseerde achillespees. Podosophia 29, 27–33 (2021). https://doi.org/10.1007/s12481-020-00292-0

Download citation

Trefwoorden

  • achillespees
  • spiraal
  • elastische energie
  • opslag
  • teruggave