Skip to main content

Advertisement

Log in

DRT route design for the first/last mile problem: model and application to Athens, Greece

  • Original Paper
  • Published:
Public Transport Aims and scope Submit manuscript

Abstract

The first/last mile problem in urban transportation services refers to limited connectivity and accessibility to high capacity commuter lines. This is often encountered in low-density residential areas, where low flexibility and resources of traditional public transportation systems lead to reduced service coverage. Demand-responsive transit (DRT) offers an alternative for providing first/last mile feeder services to low density areas, because of its flexibility in adjusting to different demand patterns. This paper presents a mathematical model and a genetic algorithm for efficiently designing DRT type first/last mile routes. The model is applied for the case of a residential area in Athens, Greece and results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ambrosino G, Nelson JD, Romanazzo M (2004) Demand responsive transport services: towards the flexible mobility agency. ENEA, Italian National Agency for New Technologies, Energy and the Environment, Rome

    Google Scholar 

  • Banister D (2008) The sustainable mobility paradigm. Transp Policy 15(2):73–80

    Article  Google Scholar 

  • Brake J, Mulley C, Nelson JD, Wright S (2007) Key lessons learned from recent experience with flexible transport services. Transp Policy 14(6):458–466

    Article  Google Scholar 

  • Chandra S, Quadrifoglio L (2013) A model for estimating the optimal cycle length of demand responsive feeder transit services. Transp Res Part B Methodol 51:1–16

    Article  Google Scholar 

  • Chapman L (2007) Transport and climate change: a review. J Transp Geogr 15(5):354–367

    Article  Google Scholar 

  • Chien S, Yang Z (2000) Optimal feeder bus routes on irregular street networks. J Adv Transp 34(2):213–248

    Article  Google Scholar 

  • Ciaffi F, Cipriani E, Petrelli M (2012) Feeder bus network design problem: a new metaheuristic procedure and real size applications. Procedia Soc Behav Sci 54:798–807

    Article  Google Scholar 

  • Davison L, Enoch M, Ryley T, Quddus M, Wang C (2014) A survey of demand responsive transport in Great Britain. Transp Policy 31:47–54

    Article  Google Scholar 

  • Deng LB, Gao W, Zhou WL, Lai TZ (2013) Optimal design of feeder-bus network related to urban rail line based on transfer system. Procedia Soc Behav Sci 96:2383–2394

    Article  Google Scholar 

  • Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, Berlin

    Book  Google Scholar 

  • Ewing RH (2008) Characteristics, causes, and effects of sprawl: a literature review. In: Urban ecology: an international perspective on the interaction between humans and nature. Springer, Boston, MA, pp 519–535

    Chapter  Google Scholar 

  • Faroqi H, Sadeghi-Niaraki A (2016) GIS-based ride-sharing and DRT in Tehran city. Public Transp 8(2):243–260

    Article  Google Scholar 

  • Golden B, Raghavan S, Wasil EA (eds) (2008) The vehicle routing problem: latest advances and new challenges. Springer, Berlin

    Google Scholar 

  • Häll CH, Andersson H, Lundgren JT, Värbrand P (2009) The integrated dial-a-ride problem. Public Transp 1(1):39–54

    Article  Google Scholar 

  • Häll CH, Lundgren JT, Voß S (2015) Evaluating the performance of a dial-a-ride service using simulation. Public Transp 7(2):139–157

    Article  Google Scholar 

  • Haupt RL, Haupt SE (2004) Practical genetic algorithms. Wiley, New York

    Google Scholar 

  • Holland J (1975) Adaptation in natural and artificial systems. MIT Press, Cambridge

    Google Scholar 

  • Hu Y, Zhang Q, Wang W (2012) A model layout region optimization for feeder buses of rail transit. Procedia Soc Behav Sci 43:773–780

    Article  Google Scholar 

  • Jerby S, Ceder A (2006) Optimal routing design for shuttle bus service. Transp Res Rec 1971:14–22

    Article  Google Scholar 

  • Jih W-R, Hsu Y-J (2004) A family competition genetic algorithm for the pickup and delivery problems with time window. Bull Coll Eng 90:121–130

    Google Scholar 

  • Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Saf 91(9):992–1007

    Article  Google Scholar 

  • Kuah GK, Perl J (1988) Optimization of feeder bus routes and bus-stop spacing. J Transp Eng 114(3):341–354

    Article  Google Scholar 

  • Kuah GK, Perl J (1989) The feeder-bus network-design problem. J Oper Res Soc 40:751–767

    Article  Google Scholar 

  • Kuan SN, Ong HL, Ng KM (2004) Applying metaheuristics to feeder bus network design problem. Asia Pac J Oper Res 21(4):543–560

    Article  Google Scholar 

  • Kuan SN, Ong HL, Ng KM (2006) Solving the feeder bus network design problem by genetic algorithms and ant colony optimization. Adv Eng Softw 37(6):351–359

    Article  Google Scholar 

  • Lane BW (2012) On the utility and challenges of high-speed rail in the United States. J Transp Geogr 22:282–284

    Article  Google Scholar 

  • Laws R, Enoch MP, Ison SG, Potter S (2009) Demand responsive transport: a review of schemes in England and Wales. J Public Transp 12(1):19–37

    Article  Google Scholar 

  • Lenstra JK, Rinnooy Kan AHG (1981) Complexity of vehicle routing and scheduling problems. Networks 11(2):221–227

    Article  Google Scholar 

  • Li X, Quadrifoglio L (2011) 2-Vehicle zone optimal design for feeder transit services. Public Transp 3(1):89–104

    Article  Google Scholar 

  • Li Y, Wang J, Chen J, Cassidy MJ (2007) Design of a demand-responsive transit system. California PATH program (No. UCB-ITS-PWP-2007-4). Institute of Transportation Studies, University of California at Berkeley, Berkeley

  • Litman T, Burwell D (2006) Issues in sustainable transportation. Int J Glob Environ Issues 6(4):331–347

    Article  Google Scholar 

  • Martins CL, Pato MV (1998) Search strategies for the feeder bus network design problem. Eur J Oper Res 106(2):425–440

    Article  Google Scholar 

  • Qiu F, Shen J, Zhang X, An C (2015) Demi-flexible operating policies to promote the performance of public transit in low-demand areas. Transp Res Part A Policy Pract 80:215–230

    Article  Google Scholar 

  • Shrivastava P, O’Mahony M (2006) A model for development of optimized feeder routes and coordinated schedules—a genetic algorithms approach. Transp Policy 13(5):413–425

    Article  Google Scholar 

  • Shrivastava P, O’Mahony M (2007) Design of feeder route network using combined genetic algorithm and specialized repair heuristic. J Public Transp 10(2):109–133

    Article  Google Scholar 

  • Steg L, Gifford R (2005) Sustainable transportation and quality of life. J Transp Geogr 13(1):59–69

    Article  Google Scholar 

  • Stiglic M, Agatz N, Savelsbergh M, Gradišar M (2016) Enhancing urban mobility: integrating ride-sharing and public transit. Comput Oper Res 90:12–21

    Article  Google Scholar 

  • Talbi EG (2009) Metaheuristics: from design to implementation, vol 74. Wiley, New York

    Book  Google Scholar 

  • Toth P, Vigo D (eds) (2014) Vehicle routing: problems, methods, and applications. MOS-SIAM Series on Optimization, 2nd edn. SIAM, Philadelphia

    Google Scholar 

  • Zhao P (2010) Sustainable urban expansion and transportation in a growing megacity: consequences of urban sprawl for mobility on the urban fringe of Beijing. Habitat Int 34(2):236–243

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Kepaptsoglou.

Appendix

Appendix

See Figs. 8, 9 and 10.

Fig. 8
figure 8

Network for MS 1

Fig. 9
figure 9

Network for MS 2

Fig. 10
figure 10

Network for MS 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charisis, A., Iliopoulou, C. & Kepaptsoglou, K. DRT route design for the first/last mile problem: model and application to Athens, Greece. Public Transp 10, 499–527 (2018). https://doi.org/10.1007/s12469-018-0188-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12469-018-0188-0

Keywords

Navigation