Bijblijven

, Volume 34, Issue 2, pp 179–186 | Cite as

Welke assays kunnen de arts in de kliniek helpen

Immunoassays voor het meten van serumconcentraties van biologics en anti-biologic antilichamen bij patiënten
Article
  • 14 Downloads

Samenvatting

Monoklonale antilichamen (mAb’s) kunnen worden gebruikt als biofarmaceutica (biologics) voor de behandeling van verschillende ziekten, uiteenlopend van oncologisch en ontstekinggerelateerde aandoeningen tot cardiovasculaire aandoeningen. Serumconcentraties biologics correleren met klinische effectiviteit, waardoor meten zinnig is in de kliniek; non-response en te lage concentraties zijn bijvoorbeeld een goede reden om na te denken over veranderen van behandeling. Er zijn echter vele meetmethoden beschikbaar met hun sterkten en zwakten ten aanzien van detectie en kwantificering. We bespreken verschillende technieken in deze overzichtsbijdrage.

Er ontstaan regelmatig antigeneesmiddel antilichamen (verder ADA (anti-drug antibodies) genoemd) tegen biologics, die soms van invloed zijn op de klinische werkzaamheid. Daarom is een nauwkeurige en betrouwbare detectie van ADA noodzakelijk. De binding van ADA hangt af van de affiniteit en aviditeit, wat het kwantificatieproces tot een uitdaging maakt. In dit overzicht wordt ingegaan op de voordelen en beperkingen van iedere methode voor het bepalen van biologic serumconcentraties en worden ADA-assays zorgvuldig met elkaar vergeleken.

Literatuur

  1. 1.
    Darrouxain F, Bian S, Desvignes C, et al. Immunoassays for measuring serum concentrations of monoclonal antibodies and anti-biopharmaceutical antibodies in patients. Ther Drug Monit. 2017;39:316–21.CrossRefGoogle Scholar
  2. 2.
    L’Ami MJ, Krieckaert CL, Nurmohamed MT, et al. Successful reduction of overexposure in patients with rheumatoid arthritis with high serum adalimumab concentrations: an open-label, non-inferiority, randomised clinical trial. Ann Rheum Dis. 2017;  https://doi.org/10.1136/annrheumdis-2017-211781.Google Scholar
  3. 3.
    Qu M, An B, Shen S, et al. Qualitative and quantitative characterization of protein biotherapeutics with liquid chromatography mass spectrometry. Mass Spectrom Rev. 2017;36(6):734–54.CrossRefPubMedGoogle Scholar
  4. 4.
    Committee for Medicinal Products for Human Use. EMEA guideline on the clinical investigation of the pharmacokinetics of therapeutic proteins. 2005. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003031.pdf. Geraadpleegd op: 7 jun 2017.Google Scholar
  5. 5.
    Caldano M, Raoul W, Rispens T, et al. Drug efficacy monitoring in pharmacotherapy of multiple sclerosis with biological agents. Ther Drug Monit. 2017;39:350–5.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Di Gaetano N, Cittera E, Nota R, et al. Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol. 2003;171:1581–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Finco D, Grimaldi C, Fort M, et al. Cytokine release assays: current practices and future directions. Cytokine. 2014;66:143–55.CrossRefPubMedGoogle Scholar
  8. 8.
    DeSilva B, Smith W, Weiner R, et al. Recommendations for the bioanalytical method validation of ligand-binding assays to support pharmacokinetic assessments of macromolecules. Pharm Res. 2003;20:1885–900.CrossRefPubMedGoogle Scholar
  9. 9.
    Committee for Medicinal Products for Human Use. EMEA guideline on bioanalytical method validation. 2011. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf. Geraadpleegd op: 7 jun 2017.Google Scholar
  10. 10.
    Kelley M, DeSilva B. Key elements of bioanalytical method validation for macromolecules. AAPS J. 2007;9:E156–E63.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    U.S. Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evalu ation and Research (CBER). FDA analytical procedures and methods validation for drugs and biologics. 2015. https://www.fda.gov/downloads/drugs/guidances/ucm386366.pdf. Geraadpleegd op: 7 jun 2017.Google Scholar
  12. 12.
    Ternant D, Ceze N, Lecomte T, et al. An enzyme-linked immunosorbent assay to study bevacizumab pharmacokinetics. Ther Drug Monit. 2010;32:647–52.CrossRefPubMedGoogle Scholar
  13. 13.
    Ternant D, Mulleman D, Degenne D, et al. An enzyme-linked immunosorbent assay for therapeutic drug monitoring of infliximab. Ther Drug Monit. 2006;28:169–74.CrossRefPubMedGoogle Scholar
  14. 14.
    Weisman MH, Moreland LW, Furst DE, et al. Efficacy, pharmacokinetic, and safety assessment of adalimumab, a fully human anti-tumor necrosis factor-alpha monoclonal antibody, in adults with rheumatoid arthritis receiving concomitant methotrexate: a pilot study. Clin Ther. 2003;25:1700–21.CrossRefPubMedGoogle Scholar
  15. 15.
    Desvignes C, Edupuganti SR, Darrouzain F, et al. Development and validation of an enzyme-linked immunosorbent assay to measure adalimumab concentration. Bioanalysis. 2015;7:1253–60.CrossRefPubMedGoogle Scholar
  16. 16.
    Bian S, Stappen TV, Baert F, et al. Generation and characterization of a unique panel of anti-adalimumab specific antibodies and their application in therapeutic drug monitoring assays. J Pharm Biomed Anal. 2016;125:62–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Blasco H, Lalmanach G, Godat E, et al. Evaluation of a peptide ELISA for the detection of rituximab in serum. J Immunol Methods. 2007;325:127–39.CrossRefPubMedGoogle Scholar
  18. 18.
    Maple L, Lathrop R, Bozich S, et al. Development and validation of ELISA for herceptin detection in human serum. J Immunol Methods. 2004;295:169–82.CrossRefPubMedGoogle Scholar
  19. 19.
    Riechmann L, Clark M, Waldmann H, et al. Reshaping human antibodies for therapy. Nature. 1988;332:323–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Ceze N, Ternant D, Piller F, et al. An enzyme-linked immunosorbent assay for therapeutic drug monitoring of cetuximab. Ther Drug Monit. 2009;31:597–601.CrossRefPubMedGoogle Scholar
  21. 21.
    Tokuda Y, Watanabe T, Omuro Y, et al. Dose escalation and pharmacokinetic study of a humanized anti-HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. Br J Cancer. 1999;81:1419–25.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Mould DR, Davis CB, Minthorn EA, et al. A population pharmacokineticpharmacodynamic analysis of single doses of clenoliximab in patients with rheumatoid arthritis. Clin Pharmacol Ther. 1999;66:246–57.CrossRefPubMedGoogle Scholar
  23. 23.
    Knop S, Hebart H, Gscheidle H, et al. OKT3 muromonab as second-line and subsequent treatment in recipients of stem cell allografts with steroidresistant acute graft-versus-host disease. Bone Marrow Transplant. 2005;36:831–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Jilani I, Keating M, Giles FJ, et al. Alemtuzumab: validation of a sensitive and simple enzyme-linked immunosorbent assay. Leuk Res. 2004;28:1255–62.CrossRefPubMedGoogle Scholar
  25. 25.
    Kovarik J, Breidenbach T, Gerbeau C, et al. Disposition and immunodynamics of basiliximab in liver allograft recipients. Clin Pharmacol Ther. 1998;64:66–72.CrossRefPubMedGoogle Scholar
  26. 26.
    Rispens T, Leeuwen A, Vennegoor A, et al. Measurement of serum levels of natalizumab, an immunoglobulin G4 therapeutic monoclonal antibody. Anal Biochem. 2011;411:271–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Damen CW, Groot ER de, Heij M, et al. Development and validation of an enzyme-linked immunosorbent assay for the quantification of trastuzumab in human serum and plasma. Anal Biochem. 2009;391:114–20.CrossRefPubMedGoogle Scholar
  28. 28.
    Beum PV, Kennedy AD, Taylor RP. Three new assays for rituximab based on its immunological activity or antigenic properties: analyses of sera and plasmas of RTX-treated patients with chronic lymphocytic leukemia and other B cell lymphomas. J Immunol Methods. 2004;289:97–109.CrossRefPubMedGoogle Scholar
  29. 29.
    Manshouri T, Do KA, Wang X, et al. Circulating CD20 is detectable in the plasma of patients with chronic lymphocytic leukemia and is of prognostic significance. Blood. 2003;101:2507–13.CrossRefPubMedGoogle Scholar
  30. 30.
    Berinstein NL, Grillo-Lopez AJ, White CA, et al. Association of serum Rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol. 1998;9:995–1001.CrossRefPubMedGoogle Scholar
  31. 31.
    Cragg MS, Bayne MB, Tutt AL, et al. A new anti-idiotype antibody capable of binding rituximab on the surface of lymphoma cells. Blood. 2004;104:2540–2.CrossRefPubMedGoogle Scholar
  32. 32.
    Hong K, Presta LG, Lu Y, et al. Simple quantitative live cell and antiidiotypic antibody based ELISA for humanized antibody directed to cell surface protein CD20. J Immunol Methods. 2004;294:189–97.CrossRefPubMedGoogle Scholar
  33. 33.
    Fischer SK, Yang J, Anand B, et al. The assay design used for measurement of therapeutic antibody concentrations can affect pharmacokinetic parameters: case studies. MAbs. 2012;4:623–31.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Inman RD, Davis JC Jr, Heijde D, et al. Efficacy and safety of golimumab in patients with ankylosing spondylitis: results of a randomized, double-blind, placebo-controlled, phase III trial. Arthritis Rheum. 2008;58:3402–12.CrossRefPubMedGoogle Scholar
  35. 35.
    Jakobovits A, Amado RG, Yang X, et al. From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat Biotechnol. 2007;25:1134–43.CrossRefPubMedGoogle Scholar
  36. 36.
    West RL, Zelinkova Z, Wolbink GJ, et al. Immunogenicity negatively influences the outcome of adalimumab treatment in Crohn’s disease. Aliment Pharmacol Ther. 2008;28:1122–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Harding FA, Stickler MM, Razo J, et al. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs. 2010;2:256–65.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Committee for Medicinal Products for Human Use. EMEA guideline on immunogenicity assessment of monoclonal antibodies intended for in vivo clinical use. 2012. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/06/WC500128688.pdf. Geraadpleegd op: 7 jun 2017.Google Scholar
  39. 39.
    Bloem K, Leeuwen A van, Verbeek G, et al. Systematic comparison of drugtolerant assays for anti-drug antibodies in a cohort of adalimumab-treated rheumatoid arthritis patients. J Immunol Methods. 2015;418:29–38.CrossRefPubMedGoogle Scholar
  40. 40.
    Bourdage JS, Cook CA, Farrington DL, et al. An Affinity Capture Elution (ACE) assay for detection of anti-drug antibody to monoclonal antibody therapeutics in the presence of high levels of drug. J Immunol Methods. 2007;327:10–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Schouwenburg PA van, Bartelds GM, Hart MH, et al. A novel method for the detection of antibodies to adalimumab in the presence of drug reveals ‘hidden’ immunogenicity in rheumatoid arthritis patients. J Immunol Methods. 2010;362:82–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Zoghbi J, Xu Y, Grabert R, et al. A breakthrough novel method to resolve the drug and target interference problem in immunogenicity assays. J Immunol Methods. 2015;426:62–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Hart MH, Vrieze H de, Wouters D, et al. Differential effect of drug interference in immunogenicity assays. J Immunol Methods. 2011;372:196–203.CrossRefPubMedGoogle Scholar

Copyright information

© Bohn Stafleu van Loghum is een imprint van Springer Media B.V., onderdeel van Springer Nature 2018

Authors and Affiliations

  1. 1.RotterdamNederland
  2. 2.AmsterdamNederland

Personalised recommendations