Skip to main content
Log in

Anomalous Coronary Arteries on Computer Tomography Angiography: a Pictorial Review

  • Cardiac Computed Tomography (T Villines, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Coronary artery anomalies (CAA) are a commonly encountered entity on computer tomography angiography (CTA) with observational studies suggesting a prevalence of 1–3%. The purpose of this pictorial review is to succinctly review the recent literature in regards to their individual prevalence, assessment and management strategies when indicated.

Recent Findings

Clinically, the most important anomalies are those with either a malignant course or origin. Recent studies have suggested that anomalous coronary arteries arising from the opposite sinus (ACAOS) are best detected on CTA. In particular, those found in asymptomatic patients over the age of 35, even with high-risk features, do not necessarily mandate revascularisation. We propose a new investigative framework. Additionally, new CTA prevalence data has emerged of individual anomalies which are further discussed.

Summary

Computer tomography angiography has emerged as the gold standard for the assessment of CAAs, and as a result, they are being encountered more frequently in clinical practice. It is important that reporting physicians have a comprehensive knowledge of these anomalies, how they are best described and categorised and particularly recognition of malignant variants that may require intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M. Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med. 2010;152:167–77.

    Article  PubMed  Google Scholar 

  2. •• von Ballmoos MW, Haring B, Juillerat P, Alkadhi H. Meta-analysis: diagnostic performance of low-radiation-dose coronary computed tomography angiography. Ann Intern Med. 2011;154:413–20. Meta-analysis of 16 studies including 960 patients suggesting that low-dose coronary CTA matches the sensitivity of catheter-based angiography, and is a potential alternative

    Article  Google Scholar 

  3. Verdini D, Lee AM, Prabhakar AM, Abbara S, Ghoshhajra B. Detection of cardiac incidental findings on routine chest CT: the impact of dedicated training in cardiac imaging. J Am Coll Radiol. 2016;(30):1–5. S1546-1440(16)00140-X

  4. De Graaf FR, Schuijf JD, van Velzen JE, Kroft LJ, de Roos A, Reiber JHC, et al. Diagnostic accuract of 320-row multidetector computed tomography coronary angiography in non-invasive evaluation of significant coronary artery disease. Eur Heart J. 2010;35:1908–15.

    Article  Google Scholar 

  5. Shriki JE, Shinbone JS, Rashid MA, Hindoyan A, Withey JG, DeFrance A, Cunningham M, OliveiraGR, Warren BH, Wilcox A. Identifying, characterizing, and classifying congenital anomalies of the coronary arteries. Radiographics. 2012;32(2):453–68.

  6. Angelini P. Coronary artery anomalies: an entity in search of an identity. Circulation. 2007;115:1296–305.

    PubMed  Google Scholar 

  7. Angelini P. Normal and anomalous coronary arteries: definitions and classification. Am Heart J. 1989;117:418–34.

  8. Rao A, Pimpalwar Y, Yadu N, Yadav RK. A study of coronary artery variants and anomalies ovserved at a tertiary care armed forces hospital using 64-slice MDCT. Indian Heart J. 2017;69(1):81–6.

    Article  PubMed  Google Scholar 

  9. Tongut A, Ozyedek Z, Cerezci I, Erenturk S, Hatemi AC. Prevalence of congenital coronary artery anomalies as shown by multi-slibe computer tomography coronary angiography: a single-centre study from Turkey. J Int Med Res. 2016;44(6):1492–505.

    Article  PubMed  Google Scholar 

  10. Krupinsli M, Urbanczyk-Zawadzka M, Laskowicz B, Irzyk M, Banys R, Klimeczek P, et al. Anomalous origin of the coronary artery from the wrong coronary sinus elevated with computed tomography: “high risk” anatomy and its clinical relevance. Eur Radiol. 2014;24(10):2353–9.

    Article  Google Scholar 

  11. Grani C, Benz DC, Schmied C, Vontobel J, Possner M, Clerc OF, et al. Prevalence and characteristics of coronary artery anomalies detected by coronary computer tomography angiography in 5634 consecutive patients in a single centre in Switzerland. Swiss Med Wkly. 2016;146:w14294.

    PubMed  Google Scholar 

  12. Namgung J, Kim JA. The prevalence of coronary anomalies in a single centre in Korea: origination, course, and termination anomalies of aberrant coronary arteries detected by ECG-gated cardiac MDCT. BMC Cardiovasc Disord. 2014;14:48.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cheng Z, Wang X, Duan Y, Wu L, Wu D, Lian C, et al. Detection of coronary artery anomalies by dual-source CT coronary angiography. Clin Radiol. 2010;65(10):815–22.

  14. Fuchs TA, Stehli J, Bull S, Dougoud S, Clerc OF, Herzog BA, et al. Coronary computed tomography angiography with model-based iterative reconstruction using a radiation exposure similar to chest X-ray examination. Eur Heart J. 2014;35(17):1131–6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Halliburton SS, Abbara S, Chen MY, et al. For Society of Cardiovascular Computed Tomography. SCCT guidelines on radiation dose and dose optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr. 2011;5:198–224.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dewey M, Rief M, Martus P, Kendziora B, Feger S, Dreger H, et al. Evaluation of computer tomography in patients with atypical angina or chest pain clinically referred for invasive coronary angiography: randomised controlled trial. BMJ. 2016;355:i5441.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Raval A, Jadhav N, Prajapati J, Rawal J, Garg R, Shah K, et al. Distribution of coronary artery anomalies and their evaluation with different imaging modalities. Int J Med Res Rev. 2016;10:1807–19.

    Google Scholar 

  18. Warnes CA, Williams RG, Bashore TM, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to develop guidelines on the Management of Adults with Congenital Heart Disease): developed in collaboration with the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52:e143–263.

    Article  PubMed  Google Scholar 

  19. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al. 2013 ESC guidelines on the management of stable coronary artery disease the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34(38):2949–3003.

    Article  PubMed  Google Scholar 

  20. McLarry J, Maros F, Shapiro MD. Coronary artery anomalies: a pictorial review. Curr Cardiovasc Imaging Rep. 2015;8:23.

    Article  Google Scholar 

  21. Nasis A, Machado C, Cameron JD, Troupis JM, Meredith IT, Seneviratne SK. Anatomic characteristics and outcome of adults with coronary arteries arising from an anomalous location detected with coronary computed tomography angiography. Int J Cardiovasc Imaging. 2015;31(1):181–91.

    Article  PubMed  Google Scholar 

  22. •• Cheezum MK, Libertson RR, Shah NR, Villines TC, O’Gara PT, Landzberg MJ. Blankstein. Anomalous aortic origin of a coronary artery from the inappropriate sinus of valsalva. JACC. 2017;69:1592–608. Excellent comprehensive state of the art review discussing ACAOS

    Article  PubMed  Google Scholar 

  23. Desmet W, Vanhaecke J, Vrolix M, et al. Isolated single coronary artery: a review of 50,000 consecutive coronary angiographies. Eur Heart J. 1992;13:1637–40.

    Article  CAS  PubMed  Google Scholar 

  24. Mandal S, Sameh ST, Shephaly S, Shobhit M. Single coronary artery anomaly: classification and evaluation using multidetector computed tomography and magnetic resonance angiography. Pediatr Cardiol. 2014;35:441–9.

    Article  PubMed  Google Scholar 

  25. •• Lipton MJ, Barry WH, ORbez I, et al. Isolated single coronary artery: diagnosis, angiographic classification, and clinical significance. Radiology. 1979;130:39–47. Sentinel paper and description of classification criteria of single coronary artery

    Article  CAS  PubMed  Google Scholar 

  26. Angelini P, Fairchild VD. Coronary artery anomalies: a comprehensive approach. Philadelphia: Lippincott Williams & Wilkins; 1999.

    Google Scholar 

  27. Smith JC. Review of single coronary artery with report of 2 cases. Circulation. 1950;1(5):1168–75.

    Article  CAS  PubMed  Google Scholar 

  28. Sharabaugh AH, White RS. Single coronary artery/ analysis of the anatomic variation, clinical importance, and report of five cases. JAMA. 1974;230:243–6.

    Article  Google Scholar 

  29. Aldana-Sepulveda N, Restrepo S, Kimura-Hayama E. Single coronary artery: Spectrum of imaging and findings with multi-detector CT. J Cardiovasc Comput Tomogr. 2013;7:391–9.

    Article  PubMed  Google Scholar 

  30. Pan C, Azhati G, Xing Y, Wang Y, Liu W. Comparison of congenital artery anomalies between Uyghur and Han: a multi-slice computed tomography study in Xinjiang, China. Chin Med J. 2015;128:15–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Graidis C, Dinitriadis D, Karasavvidis V, Dimitriadis G, Argyropoulou E, Economou F, et al. Prevalence and characteristics of coronary artery anomalies in an adult population undergoing multi-detector-row computed tomography for the evaluation of coronary artery disease. BMC Cardiovasc Disord. 2015;15:112.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Basso C, Maron BJ, Corrado D, Thiene G. Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden cardiac death in competitive athletes. J Am Coll Cardiol. 2000;35:1493–501.

    Article  CAS  PubMed  Google Scholar 

  33. Ripley DP, Saha A, Teis A, Uddin A, Bijsterveld P, Kidambi A, et al. The distribution and prognosis of anomalous coronary arteries identified by cardiovascular magnetic resonance: 15 year experience from two tertiary centres. J Cardiovasc Magn Reson. 2014;16:34.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cheezum MK, Ghoshhajra B, Bittencourt MS, Hulten EA, Bhatt A, Mousavi N, et al. Anomalous origin of the coronary artery arising from the opposite sinus: prevalence and outcomes in patients undergoing coronary CTA. Eur Heart J Cardiovasc Imaging. 2017;18:224–35.

    Article  PubMed  Google Scholar 

  35. Opolski MP, Pregowski J, Kruk M, Witkowski A, Kwiecinska S, Lubienska E, et al. Prevalence and characteristics of coronary anomalies originating from the opposite sinus of valsalve in 8522 patients referred for coronary computed tomography angiography. Am J Cardiol. 2013;9:1361–7.

    Article  Google Scholar 

  36. Ghadri JR, Kazakauskaite E, Braunschweig S, Burger IA, Frank M, Fiechter M, et al. Congenital coronary anomalies detected by coronary computed tomography compared to invasive coronary angiography. BMC Cardiovasc Disord. 2014;14:81.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Heermann P, Heindel W, Shulke C. Coronary artery anomalies: diagnosis and classification based on cardiac CT and MRI (CMR) - from ALCAPA to anomalies of termination. Rofo. 2017;1:29–38.

    Google Scholar 

  38. Shuaib W, Arepalli C, Vijayasarathi A, Gunn ML, Nicolau S, Mehta AS, Johnson JO, Khosa F. Coronary anomalies encountered in the acute setting: an imaging review Emerg Radiol. 2014;21(6):631–41.

  39. Lorenz EC, Mookadam F, Mookadam M, Moustafa S, Zehr KJ. A systematic review of anomalous coronary anatomy and an examination of the association with sudden death. Rev Cardiovasc Med. 2006;7:205–13.

    PubMed  Google Scholar 

  40. Sintek MA, Singh J, Billadello JJ. Dynamic evaluation of coronary anomalies originating from the opposite sinus of valsalva (ACAOS). Curr Treat Options Cardiovasc Med. 2015;17:47.

    Article  PubMed  Google Scholar 

  41. • Van Hare GF, Ackermann MJ, Evangelista JA, et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task Fforce 4: congenital heart disease: a scientific statement form the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015;66:2372–84. Most recent guideline recommendations for athletes with CAA

    Article  PubMed  Google Scholar 

  42. • Grani C, Benz DC, Steffen DA, Clerc OF, Schmied C, Possner M, et al. Outcome in middle-aged individuals with anomalous origin of the coronary artery from the opposite sinus: a matched cohort study. Eur Heart J. 2017;0:1–8. Albeit a small case-control study of 68 patients, showed that new incidental diagnosis of middle-aged individuals with ACAOS did not have a statistically different outcome to matched controls with no coronary artery anomalies regardless of whether there was IAC or not

    Google Scholar 

  43. Furbatto F, Esposito G, Raffaele P. Coronary angioplasty and stenting for acute coronary syndrome in patients with isolated single coronary artery: a report of two cases. J Cardiovasc Med. 2009;10(7):550–3.

    Article  Google Scholar 

  44. Clark RA, Marler AT, Lin CK, McDonough RJ, Prentice RL, Malik JA, et al. A review of anomalous origination of coronary artery from an opposite sinue of Valsalva (ACAOS) impact on major adverse cardiovascular events based on coronary computerized tomography angiography: a 6-year single centre review. Ther Adv Cardiovasc Dis. 2014;8:237–41.

    Article  PubMed  Google Scholar 

  45. Adebo D, Jacobson Z, Harris MA. Anomalous origin of the right coronary artery from the posterior, non-coronary sinus of Valsalva diagnosed by cardiac magnetic resonance imaging. Cardiol Young. 2015;25:1006–8.

    Article  PubMed  Google Scholar 

  46. Eren B, Turkmen N, Senel B. Ectopic high origin of a coronary artery from the aorta – a possible cause of sudden cardiac death. Acta Med Austriaca. 2009;52(4):171–2.

    Google Scholar 

  47. Williams IA, Gersony WNm Hellengrand WE. Anomalous right coronary artery arising from the pulmonary artery: a report of 7 cases and a review of the literature. Am Heart J. 2006;152:1004 e1009–17 e1009.

    Article  Google Scholar 

  48. Gibernau JMA, Recalde AA, Marques RB. ARCAPA syndrome in adulthood. Rev Esp Cardiol. 2017;20:S1885–5857.

    Google Scholar 

  49. Gupta R, Marwah A, Shrivastava S. Anomalous origin of the right coronary artery from the pulmonary artery. Ann Pediatr Cardiol. 2012;5:95–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Al-Dairy A, Rezaei Y, Pouraliakbar H, Mahdavi M, Bayati P, Gholampour-Dehaki M. Surgical repair for anomalous origin of the right coronary artery from the pulmonary artery. Korean Circ J. 2017;47(1):144–7.

    Article  PubMed  Google Scholar 

  51. Pena E, Nguyen ET, Merchant N, Dennie C. ALCAPA syndrome: not just a pediatric disease. Radiographics. 2009;29(2):553–65.

    Article  PubMed  Google Scholar 

  52. Yew KL, Kang Z, Anum A. Late presentation of ALCAPA syndrome in an elderly Asian lady. Med J Malaysia. 2016;71(4):217–9.

    CAS  PubMed  Google Scholar 

  53. Lange R, Vogt M, Horer J, Cleuziou J, Menzel A, Holper K, et al. Long-term results of repair of anomalous origin of the left coronary artery from the pulmonary artery. Ann Thorac Surg. 2007;83(4):1463–71.

    Article  PubMed  Google Scholar 

  54. Spindola-Franco H, Grose R, Solomon N. Dual left anterior descending coronary artery: angiographic description of important variants and surgical implications. Am Heart J. 1983;105:445–55.

    Article  CAS  PubMed  Google Scholar 

  55. •• Bozlar U, Ugurel MS, Sari S, Akgun V, Ors F, Tasar M. Prevalence of dual left anterior descending artery variations in CT angiography. Diagn Interv Radiol. 2015;21:34–41. Comprehensive review and original data of dual LAD variations describing 9 types

    Article  PubMed  Google Scholar 

  56. Agarwal PP, Kazerooni EA. Dual left anterior descending coronary artery: CT findings. AJR. 2008;191(6):1698–701.

    Article  PubMed  Google Scholar 

  57. Vohra A, Narula H. Dual left anterior descending artery with anomalous origin of long LAD from pulmonary artery – rare coronary anomaly detected on computed tomography coronary angiography. Indian J Radiol Imagin. 2016;26(2):201–5.

    Article  Google Scholar 

  58. Alegria JR, Herrmann J, Holmes JDR, et al. Myocardial bridging. Eur Heart J. 2005;26:1159–68.

    Article  PubMed  Google Scholar 

  59. Liu G, Qu Y, Chen X, Liao M, Hu H, Cao Y, et al. Measurements of myocardial bridges on computed tomography predict presence of clinical symptoms and outcomes of adverse heart events: a retrospective study in a large population from China. Acta Radiol. 2017;58(9):1068–1076; 284185116682380

  60. Ma E, Ma G, Yu H, Wu W, Li K. Assessment of myocardial bridge and mural coronary artery using gated 256-slice CT angiography: a retrospective study. Sci World J. 2013:1–6; 947876

  61. Nakaura T, Nagayoshi Y, Awai K, Utsunomiya D, Kawano H, Ogawa H, et al. Myocardial bridging is associated with coronary atherosclerosis in the segment proximal to the site of bridging. J Cardiol. 2014;63(2):134–9.

    Article  PubMed  Google Scholar 

  62. •• Corban MT, Hung OY, Eshtehardi P, Rasoul-Arzrumly E, McDaniel M, Mekonnen G, et al. Myocardial bridging: contemporary understanding of pathophysiology with implications for diagnostic and therapeutic strategies. JACC. 2014;63(22):2346–55. A comprehensive review of the pathophysiology, diagnostic modalities and therapeutic options for myocardial bridging

    Article  PubMed  PubMed Central  Google Scholar 

  63. Masoomi R, Shah Z, Surineni K, Rosamond T. The prevalence and anatomical patterns of intracavitary coronary arteries: detection by coronary computed tomographic angiography. JACC. 2016;65(10S):A1128.

    Google Scholar 

  64. Lim JJ, Jung JI, Lee BY, et al. Prevalence and types of coronary artery fistulas detected with CT angiography. Am J Roentgenol. 2014;203(3):W237–43.

    Article  Google Scholar 

  65. Dashottar S, Singh RK, Malani SK, Sarin A, Arora HS. Role of 256-slice MDCT in the evaluation of coronary artery fistula: a case series with review of the literature. Med J Armed Forces India. 2016;72(4):393–9.

    Article  PubMed  Google Scholar 

  66. Loukas M, Germain AS, Gabriel A, John A, Rubbs RS, Spicer D. Coronary artery fistula: a review. Cardiovasc Pathol. 2015;24(3):141–8.

    Article  PubMed  Google Scholar 

  67. Zhang W, Hu R, Zhang L, Zhu H, Zhang H. Outcomes of surgical repair of pediatric coronary artery fistulas. J Thorac Cardiovasc Surg. 2016;152(4):1123–30.

    Article  PubMed  Google Scholar 

  68. Abreu G, Nabais S, Enes V, Marques J, Costa J, Correia A. Coronary arcade: a rare anomaly of coronary circulation. Rev Port Cardiol. 2014;33(4):241.e1–5.

    Google Scholar 

  69. Gur M, Yilmaz R, Demirbag R. Unidirectional communication between the circumflex and right coronary arteries: a very rare coronary anomaly and cause for ischaemia. Int J Cardiovasc Imaging. 2006;22:339–42.

    Article  PubMed  Google Scholar 

  70. Montaudon M, Latrabe V, Iriart X, et al. Congenital coronary arteries anomalies: review of the literature and multidetector computer tomorgraphy (MDCT) appearance. Surg Radiol Anat. 2007;29:343–55.

    Article  CAS  PubMed  Google Scholar 

  71. Morrad B, Yazici HU, Aydar Y, Ovali V, Nadir A. Role of gender in types and frequency of coronary artery aneurysm and ectasia. Medicine (Baltimore). 2016;95(31):e4395.

    Article  Google Scholar 

  72. Forte E, Aiello M, Inglese M, Infante T, Soricelli A, Tedeschi C, et al. Coronary artery aneurysms detected on computed tomography coronary angiography. Eur Heart J Cardiovasc Imaging. 2016;

  73. Swaye PS, Fisher LD, Litwin P, et al. Aneurysmal coronary artery disease. Circulation. 1983;67:134–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Nasis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiac Computed Tomography

Electronic supplementary material

ESM 1

(DOCX 11 kb)

ESM 2

(DOCX 11 kb)

ESM 3

(DOCX 11 kb)

ESM 4

(DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogic, J., Nerlekar, N. & Nasis, A. Anomalous Coronary Arteries on Computer Tomography Angiography: a Pictorial Review. Curr Cardiovasc Imaging Rep 10, 35 (2017). https://doi.org/10.1007/s12410-017-9430-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-017-9430-4

Keywords

Navigation