Skip to main content
Log in

T1 Mapping in Heart Failure

  • Cardiac Magnetic Resonance (E Nagel and V Puntmann, Section)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

The pathophysiology of heart failure is characterized by abnormalities not only of the cardiomyocytes, but also by expansion of the extracellular space. Evolving recognition of these changes, and their important functional consequences, has prompted a search for accurate characterization of the myocardial interstitium. Previously, this has only been possible using histologic analysis; however, T1 mapping with cardiac magnetic resonance imaging has recently provided a noninvasive method to measure expansion of the myocardial interstitium. Literature over the past 6 years suggests T1 mapping could potentially provide crucial information for diagnosis, prognostication and for optimizing therapeutic targeting. However, the ideal methodology for both image acquisition and analysis remains an unresolved issue. Consequently, variations in methodology have complicated interpretation of the data, and limit comparisons between studies. This review provides a summary of important initial validation papers, and subsequent diagnostic, mechanistic and longitudinal studies of T1 mapping in heart failure. In addition, variations in methodology are discussed; highlighting current challenges facing scientists and clinicians interested in this evolving field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics—2011 update. Circulation. 2011;123:e18–209.

    Article  PubMed  Google Scholar 

  2. Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6:606–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Cleutjens JP, Verluyten MJ, Smiths JF, et al. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol. 1995;147:325–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Beltrami CA, Finato N, Rocco M, et al. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation. 1994;89:151–63.

    Article  CAS  PubMed  Google Scholar 

  5. Mewton N, Liu CY, Croisille P, et al. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011;57:891–903. An excellent review of CMR evaluation of myocardial fibrosis.

    Article  PubMed  Google Scholar 

  6. Kim RJ, Chen EL, Lima JA, et al. Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation. 1996;94:3318–26.

    Article  CAS  PubMed  Google Scholar 

  7. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100:1992–2002.

    Article  CAS  PubMed  Google Scholar 

  8. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343:1445–53.

    Article  CAS  PubMed  Google Scholar 

  9. Schulz-Menger J, Gross M, Messroghli D, et al. Cardiovascular magnetic resonance of acute myocardial infarction at a very early stage. J Am Coll Cardiol. 2003;42:513–8.

    Article  PubMed  Google Scholar 

  10. McCrohon JA, Moon JCC, Prasad SK, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation. 2003;108:54–9.

    Article  CAS  PubMed  Google Scholar 

  11. Assomull RG, Prasad SK, Lyne J, et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol. 2006;48:1977–85.

    Article  PubMed  Google Scholar 

  12. Iles L, Pfluger H, Lefkovits L, et al. Myocardial fibrosis predicts appropriate device therapy in patients with implantable cardioverter-defibrillators for primary prevention of sudden cardiac death. J Am Coll Cardiol. 2011;57:821–8.

    Article  PubMed  Google Scholar 

  13. Wu KC, Weiss RG, Thiemann DR, et al. Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J Am Coll Cardiol. 2008;51:2414–21.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Brilla CG, Funck RC, Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000;102:1388–93.

    Article  CAS  PubMed  Google Scholar 

  15. Brooks A, Schinde V, Bateman AC, et al. Interstitial fibrosis in the dilated non-ischemic myocardium. Heart. 2003;89:1255–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Diez J, Querejeta R, Lopez B, et al. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation. 2002;105:2512–7.

    Article  CAS  PubMed  Google Scholar 

  17. Janicki JS, Brower GL. The role of myocardial fibrillar collagen in ventricular remodeling and function. J Card Fail. 2002;8(6 Suppl):S319–25.

    Article  CAS  PubMed  Google Scholar 

  18. Kitamura M, Shimizu M, Ino H, et al. Collagen remodeling and cardiac dysfunction in patients with hypertrophic cardiomyopathy: the significance of type III and VI collagens. Clin Cardiol. 2001;24:325–9.

    Article  CAS  PubMed  Google Scholar 

  19. Marijianowski MM, Teeling P, Mann J, et al. Dilated cardiomyopathy is associated with an increase in the type I/type III collagen ratio: a quantitative assessment. J Am Coll Cardiol. 1995;25:1263–72.

    Article  CAS  PubMed  Google Scholar 

  20. Schaper J, Speiser B. The extracellular matrix in the failing human heart. Basic Res Cardiol. 1992;87 Suppl 1:303–9.

    PubMed  Google Scholar 

  21. Scholz TD, Fleagle SR, Burns TL, et al. Nuclear magnetic resonance relaxometry of the normal heart: relationship between collagen content and relaxation times of the four chambers. Magn Reson Imaging. 1989;7:643–8.

    Article  CAS  PubMed  Google Scholar 

  22. Grover-McKay M, Scholz TD, Burns TL, et al. Myocardial collagen concentration and nuclear magnetic resonance relaxation times in the spontaneously hypertensive rat. Invest Radiol. 1991;26:227–32.

    Article  CAS  PubMed  Google Scholar 

  23. Toni R, Boicelli CA, Baldassarri AM. Characterization of human pathological papillary muscles by 1H-NMR spectroscopic and histologic analysis. Int J Cardiol. 1986;11:231–4.

    Article  CAS  PubMed  Google Scholar 

  24. Maceira AM, Joshi J, Prasad SK, et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2005;111:186–93.

    Article  PubMed  Google Scholar 

  25. Iles L, Pfluger H, Phrommintikul A, et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol. 2008;52:1574–80.

    Article  PubMed  Google Scholar 

  26. Flett AS, Hayward MP, Ashworth MT, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation. 2010;122:138–44.

    Article  PubMed  Google Scholar 

  27. Puntmann VO, Voigt T, Chen Z, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging. 2013;6:475–84. An elegant study providing both diagnostic utility of T 1 mapping in addition to echocardiographic comparisons with CMR findings. Presents data from all currently used T1 mapping methodologies for open comparison.

    Article  PubMed  Google Scholar 

  28. Puntmann VO, D'Cruz D, Smith Z, et al. Native myocardial T1 mapping by cardiovascular magnetic resonance imaging in subclinical cardiomyopathy in patients with systemic lupus erythematosus. Circ Cardiovasc Imaging. 2013;6:295–301.

    Article  PubMed  Google Scholar 

  29. Sibley CT, Noureldin RA, Gai N, et al. T1 Mapping in cardiomyopathy at cardiac MR: comparison with endomyocardial biopsy. Radiology. 2012;265:724–32. The largest histologic validation study for T 1 mapping.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Gai N, Turkbey EB, Nazarian S, et al. T1 mapping of the gadolinium-enhanced myocardium: adjustment for factors affecting interpatient comparison. Magn Reson Med. 2011;65:1407–15.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Mascherbauer J, Marzluf BA, Tufaro C, et al. Cardiac magnetic resonance postcontrast t1 time is associated with outcome in patients with heart failure and preserved ejection fraction. Circ Cardiovasc Imaging. 2013;6:1056–65. A comprehensive evaluation of CMR, echocardiographic, histologic, invasive hemodynamic and longitudinal data in HFPEF.

    Article  PubMed  Google Scholar 

  32. Miller CA, Naish JH, Bishop P, et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging. 2013;6:373–83.

    Article  PubMed  Google Scholar 

  33. Iles LM, Taylor AJ. Letter by Iles and Taylor regarding article, “Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume”. Circ Cardiovasc Imaging. 2013;6:e25.

    Article  PubMed  Google Scholar 

  34. Miller CA, Naish JH, Bishop P, et al. Response to letter regarding article, “Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume”. Circ Cardiovasc Imaging. 2013;6:e26–7.

    Article  PubMed  Google Scholar 

  35. White SK, Sado DM, Fontana M, et al. T1 mapping for myocardial extracellular volume measurement by CMR: bolus only vs primed infusion technique. JACC Cardiovasc Imaging. 2013;6:955–62.

    Article  PubMed  Google Scholar 

  36. Bull S, White SK, Piechnik SKM, et al. Human noncontrast T1 values and correlation with histology in diffuse fibrosis. Heart. 2013;99:932–7.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Ugander M, Oki AJ, Hsu LY, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J. 2012;33:1268–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Liu CY, Liu YC, Wu C, et al. Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2013;62:1280–7.

    Article  PubMed  Google Scholar 

  39. Ling LH, Kistler PM, Ellims AH, et al. Diffuse ventricular fibrosis in atrial fibrillation: noninvasive evaluation and relationships with aging and systolic dysfunction. J Am Coll Cardiol. 2012;60:2402–8.

    Article  PubMed  Google Scholar 

  40. Piechnik SK, Ferreira VM, Lewandowski AJ, et al. Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson. 2013;15:13.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Donekal S, Venkatesh BA, Liu YC, et al. Interstitial fibrosis, left ventricular remodeling and myocardial mechanical behavior in a population-based multi-ethnic cohort: MESA Study. Circ Cardiovasc Imaging. 2014. doi:10.1161/circimaging.113.001073.

    PubMed  Google Scholar 

  42. Sado DM, Flett AS, Banypersad SM, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart. 2012;98:1436–41.

    Article  PubMed  Google Scholar 

  43. Ellims AH, Iles LM, Ling LH, et al. Diffuse myocardial fibrosis in hypertrophic cardiomyopathy can be identified by cardiovascular magnetic resonance, and is associated with left ventricular diastolic dysfunction. J Cardiovasc Magn Reson. 2012;14:76.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Dass S, Suttie JJ, Piechnik SK, et al. Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging. 2012;5:726–33.

    Article  PubMed  Google Scholar 

  45. Jellis C, Wright J, Kennedy D, et al. Association of imaging markers of myocardial fibrosis with metabolic and functional disturbances in early diabetic cardiomyopathy. Circ Cardiovasc Imaging. 2011;4:693–702.

    Article  PubMed  Google Scholar 

  46. Kellman P, Wilson JR, Xue H, et al. Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson. 2012;14:64.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Chan W, Duffy SJ, White DA, et al. Acute left ventricular remodeling following myocardial infarction: coupling of regional healing with remote extracellular matrix expansion. JACC Cardiovasc sImaging. 2012;5:884–93.

    Article  Google Scholar 

  48. Karamitsos TD, Piechnik SK, Banypersad SM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging. 2013;6:488–97.

    Article  PubMed  Google Scholar 

  49. Fontana M, Banypersad SM, Treibel TA, et al. Native t1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging. 2014;7:157–65.

    Article  PubMed  Google Scholar 

  50. Thompson RB, Chow K, Khan A, et al. T(1) mapping with cardiovascular MRI is highly sensitive for Fabry disease independent of hypertrophy and sex. Circ Cardiovasc Imaging. 2013;6:637–45.

    Article  PubMed  Google Scholar 

  51. Ling LH, Kalman JM, Ellims AH, et al. Diffuse ventricular fibrosis is a late outcome of tachycardia-mediated cardiomyopathy after successful ablation. Circ Arrhyth Electrophysiol. 2013;6:697–704.

    Article  Google Scholar 

  52. Neilan TG, Mongeon FP, Shah RV, et al. Myocardial extracellular volume expansion and the risk of recurrent atrial fibrillation after pulmonary vein isolation. JACC Cardiovasc Imaging. 2014;7:1–11.

    Article  PubMed  Google Scholar 

  53. Ferreira VM, Piechnik SK, Dall'Armellina E, et al. T(1) mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging. 2013;6:1048–58.

    Article  PubMed  Google Scholar 

  54. Feng Y, He T, Carpenter JP, Jabbour A, et al. In vivo comparison of myocardial T1 with T2 and T2* in thalassaemia major. J Magn Reson Imaging. 2013;3:588–93.

    Article  Google Scholar 

  55. Kozak MF, Redington A, Yoo SJ, et al. Diffuse myocardial fibrosis following tetralogy of Fallot repair: a T1 mapping cardiac magnetic resonance study. Pediatr Radiol. 2014. doi:10.1007/s00247-013-2840-9.

    PubMed  Google Scholar 

  56. Broberg CS, Chugh SS, Conklin C, et al. Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease. Circ Cardiovasc Imaging. 2010;3:727–34.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Wong TC, Piehler KM, Kang IA, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J. 2014;35:657–64. The largest longitudinal study using T 1 mapping to date, describing differences between diabetic and nondiabetic individuals.

  58. Ugander M, Bagi PS, Oki AJ, et al. Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging. 2012;5:596–603.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Lam CS, Roger VL, Rodeheffer RJ, et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009;53:1119–26.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Ellims AH, Shaw JA, Stub D, et al. Diffuse myocardial fibrosis evaluated by postcontrast t mapping correlates with left ventricular stiffness. J Am Coll Cardiol. 2014. doi:10.1016/j.jacc.2013.10.084. A carefully-performed study linking passive left ventricular stiffness with T 1 mapping.

    PubMed  Google Scholar 

  61. Wong TC, Piehler K, Meier CG, et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation. 2012;126:1206–16.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Stuckey DJ, McSweeney SJ, Thin MZ, et al. T1 mapping detects pharmacological retardation of diffuse cardiac fibrosis in mouse pressure-overload hypertrophy. Circ Cardiovasc Imaging. 2014. doi:10.1161/circimaging.113.000993.

    PubMed  Google Scholar 

  63. Beinart R, Khurram IM, Liu S, et al. Cardiac magnetic resonance T1 mapping of left atrial myocardium. Heart Rhythm. 2013;10:1325–31.

    Article  PubMed  Google Scholar 

  64. Messroghli DR, Radjenovic A, Kozerke S, et al. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004;52:141–6.

    Article  PubMed  Google Scholar 

  65. Look DC, Locker DR. Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum. 1970;41:250–1.

    Article  CAS  Google Scholar 

  66. Bain AD. The choice of parameters in an NMR experiment. Application to the inversion-recovery T1 method. J Magn Reson. 1990;89:153–60.

    CAS  Google Scholar 

  67. Zhang Y, Yeung HN, O'Donnell M, et al. Determination of sample time for T1 measurement. J Magn Reson Imaging. 1998;8:675–81.

    Article  CAS  PubMed  Google Scholar 

  68. Ogg RJ, Kingsley PB. Optimized precision of inversion-recovery T1 measurements for constrained scan time. Magn Reson Med. 2004;51:625–30.

    Article  PubMed  Google Scholar 

  69. Kaptein R, Dijkstra K, Tarr C. A single-scan Fourier transform method for measuring spin-lattice relaxation times. J Magn Reson. 1976;24:295–300.

    CAS  Google Scholar 

  70. Deichmann R, Haase A. Quantification of T1 values by SNAPSHOT-FLASH NMR imaging. J Magn Reson. 1992;96:608–12.

    CAS  Google Scholar 

  71. Stainsby JA, Slavin GS. Myocardial T1 mapping using SMART1Map: initial in vivo experience. J Cardiovasc Magn Reson. 2013;15 Suppl 1:13.

    Article  Google Scholar 

  72. Piechnik SK, Ferreira VM, Dall'Armellina E, et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 2010;12:69.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Chow K, Flewitt JA, Green JD, et al. Saturation recovery single-shot acquisition (SASHA) for myocardial T mapping. Magn Reson Med. 2013. doi:10.1002/mrm.24878.

    Google Scholar 

  74. Slavin GS, Stainsby JA. True T1 mapping with SMART1Map (saturation method using adaptive recovery times for cardiac T1 mapping): a comparison with MOLLI. J Cardiovasc Magn Reson. 2013;15 Suppl 1:3.

    Google Scholar 

  75. Stainsby JA, Slavin GS. Comparing the accuracy and precision of SMART1Map, SASHA and MOLLI. J Cardiovasc Magn Reson. 2014;16 Suppl 1:11.

    Article  Google Scholar 

  76. Moon JC, Messroghli DR, Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Leah M. Iles, Glenn S. Slavin, and Andrew J. Taylor declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah M. Iles.

Additional information

This article is part of the Topical Collection on Cardiac Magnetic Resonance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iles, L.M., Slavin, G.S. & Taylor, A.J. T1 Mapping in Heart Failure. Curr Cardiovasc Imaging Rep 7, 9282 (2014). https://doi.org/10.1007/s12410-014-9282-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-014-9282-0

Keywords

Navigation