Intracoronary Optical Coherence Tomography: Experience and Indications for Clinical Use

Abstract

Optical coherence tomography (OCT) is a light based technology that provides very high spatial resolution images. OCT has been initially employed as a research tool to investigate plaque morphology and stent strut coverage. The introduction of frequency domain OCT, allowing fast image acquisition during a prolonged contrast injection via the guiding catheter, has made OCT applicable for guidance of coronary interventions. In this manuscript the various applications of OCT are reviewed, from assessment of plaque vulnerability and severity to characteristics of unstable lesions and thrombus burden to stent optimization and evaluation of late results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Yock PG, Fitzgerald PJ, Linker DT, Angelsen BA. Intravascular ultrasound guidance for catheter-based coronary interventions. J Am Coll Cardiol. 1991;17(6 Suppl B):39B–45.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Prati F, Jenkins MW, Di Giorgio A, Rollins AM. Intracoronary optical coherence tomography, basic theory and image acquisition techniques. Int J Cardiovasc Imaging. 2011;27(2):251–8. doi:10.1007/s10554-011-9798-1.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Stone GW et al. A prospective natural history study of coronay atherosclerosis. NEJM. 2011;364(3):226–35.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation. 2003;108(15):1772–8.

    PubMed  Article  Google Scholar 

  5. 5.

    Fujii K, Masutani M, Okumura T, et al. Frequency and predictor of coronary thin-cap fibroatheroma in patients with acute myocardial infarction and stable angina pectoris a 3-vessel optical coherence tomography study. J Am Coll Cardiol. 2008;52(9):787–8.

    PubMed  Article  Google Scholar 

  6. 6.

    Kato K, Yasutake M, Yonetsu T, Kim, et al. Intracoronary imaging modalities for vulnerable plaques. J Nippon Med Sch. 2011;78(6):340–51.

    PubMed  Article  Google Scholar 

  7. 7.

    Suh WM, Seto AH, Margey RJ, Cruz-Gonzalez I, Jang IK. Intravascular detection of vulnerable plaque. Circ Cardiovasc Imaging. 2011;4(2):169–78.

    PubMed  Article  Google Scholar 

  8. 8.

    Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Jang IK, Tearney GJ, MacNeill B, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111(12):1551–5.

    PubMed  Article  Google Scholar 

  10. 10.

    Ino Y, Kubo T, Tanaka A, et al. Difference of culprit lesion morphologies between ST-segment elevation myocardial infarction and non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study. JACC Cardiovasc Interv. 2011;4(1):76–82.

    PubMed  Article  Google Scholar 

  11. 11.

    Kubo T, Imanishi T, Kashiwagi M, et al. Multiple coronary lesion instability in patients with acute myocardial infarction as determined by optical coherence tomography. Am J Cardiol. 2010;105(3):318–22.

    PubMed  Article  Google Scholar 

  12. 12.

    Kato K, Yonetsu T, Kim SJ, et al. Comparison of nonculprit coronary plaque characteristics between patients with and without diabetes: a 3-vessel optical coherence tomography study. JACC Cardiovasc Interv. 2012;5(11):1150–8.

    PubMed  Article  Google Scholar 

  13. 13.

    Fukunaga M, Fujii K, Nakata T, et al. Multiple complex coronary atherosclerosis in diabetic patients with acute myocardial infarction: a three-vessel optical coherence tomography study. EuroIntervention. 2012;8(8):955–61.

    PubMed  Article  Google Scholar 

  14. 14.

    Niccoli G, Giubilato S, Di Vito L, et al. Severity of coronary atherosclerosis in patients with a first acute coronary event: a diabetes paradox. Eur Heart J. 2013;34(10):729–41.

    PubMed  Article  Google Scholar 

  15. 15.

    Li QX, Fu QQ, Shi SW, et al. Relationship between plasma inflammatory markers and plaque fibrous cap thickness determined by intravascular optical coherence tomography. Heart. 2010;96(3):196–201.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Toutouzas K, Karanasos A, Tsiamis E, et al. New insights by optical coherence tomography into the differences and similarities of culprit ruptured plaque morphology in non-ST-elevation myocardial infarction and ST-elevation myocardial infarction. Am Heart J. 2011;161(6):1192–9.

    PubMed  Article  Google Scholar 

  17. 17.

    Tanaka A, Imanishi T, Kitabata H, et al. Lipid-rich plaque and myocardial perfusion after successful stenting in patients with non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study. Eur Heart J. 2009;30(11):1348–55.

    PubMed  Article  Google Scholar 

  18. 18.

    Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol. 2007;50(10):933–9.

    PubMed  Article  Google Scholar 

  19. 19.

    Ozaki Y, Tanaka A, Tanimoto T, et al. Thin-cap fibroatheroma as high-risk plaque for microvascular obstruction in patients with acute coronary syndrome. Circ Cardiovasc Imaging. 2011;4(6):620–7.

    PubMed  Article  Google Scholar 

  20. 20.

    Tanaka A, Imanishi T, Kitabata H, et al. Morphology of exertion-triggered plaque rupture in patients with acute coronary syndrome: an optical coherence tomography study. Circulation. 2008;118(23):2368–73.

    PubMed  Article  Google Scholar 

  21. 21.

    Magro M, Regar E, Gutiérrez-Chico JL, et al. Residual atherothrombotic material after stenting in acute myocardial infarction - An optical coherence tomographic evaluation. Int J Cardiol 2013; 167(3):656-63.

    Google Scholar 

  22. 22.

    Guo N, Maehara A, Mintz GS, et al. Incidence, mechanisms, predictors, and clinical impact of acute and late stent malapposition after primary intervention in patients with acute myocardial infarction: an intravascular ultrasound substudy of the Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) trial. Circulation. 2010;122(11):1077–84.

    PubMed  Article  Google Scholar 

  23. 23.

    •• Onuma Y, Thuesen L, van Geuns RJ, et al. Randomized study to assess the effect of thrombus aspiration on flow area in patients with ST-elevation myocardial infarction: an optical frequency domain imaging study–TROFI trial. Eur Heart J. 2013;34(14):1050–60. Interesting study on efficacy of thrombus aspiration for primary PCI.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Toutouzas K, Karanasos A, Riga M, et al. Optical coherence tomography assessment of the spatial distribution of culprit ruptured plaques and thin-cap fibroatheromas in acute coronary syndrome. EuroIntervention. 2012;8(4):477–85.

    PubMed  Article  Google Scholar 

  25. 25.

    Prati F, Di Vito L. Imaging of intraplaque haemorrhage. J Cardiovasc Med (Hagerstown). 2012;13(10):640–4.

    Google Scholar 

  26. 26.

    MacNeill BD, Jang IK, Bouma BE, et al. Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J Am Coll Cardiol. 2004;44(5):972–9.

    PubMed  Article  Google Scholar 

  27. 27.

    Tearney GJ, Yabushita H, Houser SL, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107(1):113–9.

    PubMed  Article  Google Scholar 

  28. 28.

    Mintz GS, Garcia-Garcia HM, Nicholls SJ, et al. Clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound regression/progression studies. EuroIntervention. 2011;6(9):1123–30. doi:10.4244/EIJV6I9A195. 9.

    PubMed  Article  Google Scholar 

  29. 29.

    Bezerra HG, Attizzani GF, Sirbu V, et al. Optical coherence tomography versus intravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention. JACC Cardiovasc Interv. 2013;6(3):228–36.

    PubMed  Article  Google Scholar 

  30. 30.

    Gonzalo N, Serruys PW, García-García HM, et al. Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries. Rev Esp Cardiol. 2009;62(6):615–24.

    PubMed  Article  Google Scholar 

  31. 31.

    Nasu K, Tsuchikane E, Katoh O, et al. Accuracy of in vivo coronary plaque morphology assessment. J Am Coll Cardiol. 2006;47(12):2405–12.

    PubMed  Article  Google Scholar 

  32. 32.

    Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary arterial plaque by optical coherence tomography. Am J Cardiol. 2006;97(8):1172–5.

    PubMed  Article  Google Scholar 

  33. 33.

    Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary arterial thrombus by optical coherence tomography. Am J Cardiol. 2006;97(12):1713–7.

    PubMed  Article  Google Scholar 

  34. 34.

    Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary intima–media thickness by optical coherence tomography: comparison with intravascular ultrasound. Circ J. 2005;69(8):903–7.

    PubMed  Article  Google Scholar 

  35. 35.

    Rathore S, Terashima M, Matsuo H, et al. Association of coronary plaque composition and arterial remodeling: an optical coherence tomography study. Atherosclerosis. 2012;221(2):405–15.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106(13):1640–5.

    PubMed  Article  Google Scholar 

  37. 37.

    Kawasaki M, Bouma BE, Bressner J, et al. Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques. J Am Coll Cardiol. 2006;48(1):81–8.

    PubMed  Article  Google Scholar 

  38. 38.

    Low AF, Kawase Y, Chan YH, et al. In vivo characterisation of coronary plaques with conventional grey-scale intravascular ultrasound: correlation with optical coherence tomography. EuroIntervention. 2009;4(5):626–32.

    PubMed  Article  Google Scholar 

  39. 39.

    •• Tearney GJ, Regar E, Akasaka T, et al. International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT). Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59(12):1058–72. Recently updated consensus document.

    PubMed  Article  Google Scholar 

  40. 40.

    • Prati F, Regar E, Mintz GS, et al. Expert's OCT Review Document. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J. 2010;31(4):401–15. Interesting review document.

    PubMed  Article  Google Scholar 

  41. 41.

    Jasti V, Ivan E, Yalamanchili V, Wongpraparut N, Leesar MA. Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circulation. 2004;110(18):2831–6.

    PubMed  Article  Google Scholar 

  42. 42.

    Abizaid A, Mintz GS, Pichard AD, et al. Clinical, intravascular ultrasound, and quantitative angiographic determinants of the coronary flow reserve before and after percutaneous transluminal coronary angioplasty. Am J Cardiol. 1998;82(4):423–8.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Briguori C, Anzuini A, Airoldi F, et al. Intravascular ultrasound criteria for the assessment of the functional significance of intermediate coronary artery stenoses and comparison with fractional flow reserve. Am J Cardiol. 2001;87(2):136–41.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Koo BK, Yang HM, Doh JH, et al. Optimal intravascular ultrasound criteria and their accuracy for defining the functional significance of intermediate coronary stenoses of different locations. JACC Cardiovasc Interv. 2011;4(7):803–11.

    PubMed  Article  Google Scholar 

  45. 45.

    Ahn JM, Kang SJ, Mintz GS, et al. Validation of minimal luminal area measured by intravascular ultrasound for assessment of functionally significant coronary stenosis comparison with myocardial perfusion imaging. JACC Cardiovasc Interv. 2011;4(6):665–71.

    PubMed  Article  Google Scholar 

  46. 46.

    Ben-Dor I, Torguson R, Gaglia Jr MA, et al. Correlation between fractional flow reserve and intravascular ultrasound lumen area in intermediate coronary artery stenosis. EuroIntervention. 2011;7(2):225–33.

    PubMed  Article  Google Scholar 

  47. 47.

    • Gonzalo N, Escaned J, Alfonso F, et al. Morphometric assessment of coronary stenosis relevance with optical coherence tomography: a comparison with fractional flow reserve and intravascular ultrasound. J Am Coll Cardiol. 2012;59(12):1080–9. Initial experience on correlation between OCT and FFR.

    PubMed  Article  Google Scholar 

  48. 48.

    de Jaegere P, Mudra H, Figulla H, et al. Intravascular ultrasound-guided optimized stent deployment. Immediate and 6 months clinical and angiographic results from the Multicenter Ultrasound Stenting in Coronaries Study (MUSIC Study). Eur Heart J. 1998;19(8):1214–23.

    PubMed  Article  Google Scholar 

  49. 49.

    Russo RJ, Silva PD, Teirstein PS, et al. A randomized controlled trial of angiography versus intravascular ultrasound-directed bare-metal coronary stent placement (the AVID Trial). Circ Cardiovasc Interv. 2009;2(2):113–23.

    PubMed  Article  Google Scholar 

  50. 50.

    Guagliumi G, Sirbu V, Musumeci G, et al. Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: findings from optical coherence tomography and intravascular ultrasound imaging. JACC Cardiovasc Interv. 2012;5(1):12–20.

    PubMed  Article  Google Scholar 

  51. 51.

    Gutiérrez-Chico JL, Wykrzykowska J, Nüesch E, et al. Vascular tissue reaction to acute malapposition in human coronary arteries: sequential assessment with optical coherence tomography. Circ Cardiovasc Interv. 2012;5(1):20–9. S1-8.

    PubMed  Article  Google Scholar 

  52. 52.

    Kimura M, Mintz GS, Carlier S, et al. Outcome after acute incomplete sirolimus-eluting stent apposition as assessed by serial intravascular ultrasound. Am J Cardiol. 2006;98(4):436–42.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Kim YS, Koo BK, Seo JB, et al. The incidence and predictors of postprocedural incomplete stent apposition after angiographically successful drug-eluting stent implantation. Catheter Cardiovasc Interv. 2009;74(1):58–63.

    PubMed  Article  Google Scholar 

  54. 54.

    Tanigawa J, Barlis P, Dimopoulos K, et al. The influence of strut thickness and cell design on immediate apposition of drug-eluting stents assessed by optical coherence tomography. Int J Cardiol. 2009;134(2):180–8.

    PubMed  Article  Google Scholar 

  55. 55.

    Tanigawa J, Barlis P, Dimopoulos K, Di Mario C. Optical coherence tomography to assess malapposition in overlapping drug-eluting stents. EuroIntervention. 2008;3(5):580–3.

    PubMed  Article  Google Scholar 

  56. 56.

    Kume T, Okura H, Kawamoto T, et al. Assessment of the coronary calcification by optical coherence tomography. EuroIntervention. 2011;6(6):768–72.

    PubMed  Article  Google Scholar 

  57. 57.

    Tanigawa J, Barlis P, Di Mario C. Heavily calcified coronary lesions preclude strut apposition despite high pressure balloon dilatation and rotational atherectomy: in-vivo demonstration with optical coherence tomography. Circ J. 2008;72(1):157–60.

    PubMed  Article  Google Scholar 

  58. 58.

    Eltchaninoff H, Koning R, Tron C, Gupta V, Cribier A. Balloon angioplasty for the treatment of coronary in-stent restenosis: immediate results and 6-month angiographic recurrent restenosis rate. J Am Coll Cardiol. 1998;32(4):980–4.

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Albiero R, Silber S, Di Mario C, et al. Cutting balloon versus conventional balloon angioplasty for the treatment of in-stent restenosis: results of the restenosis cutting balloon evaluation trial (RESCUT). J Am Coll Cardiol. 2004;43(6):943–9.

    PubMed  Article  Google Scholar 

  60. 60.

    • Secco GG, Foin N, Viceconte N, et al. Optical coherence tomography for guidance of treatment of in-stent restenosis with cutting balloons. EuroIntervention. 2011;7(7):828–34. Study of interest about employment of cutting balloon guided by OCT.

    PubMed  Article  Google Scholar 

  61. 61.

    Steigen TK, Maeng M, Wiseth R, et al. Randomized study on simple versus complex stenting of coronary artery bifurcation lesions: the Nordic bifurcation study. Circulation. 2006;114(18):1955–61.

    PubMed  Article  Google Scholar 

  62. 62.

    Behan MW, Holm NR, Curzen NP, et al. Simple or complex stenting for bifurcation coronary lesions: a patient-level pooled-analysis of the Nordic Bifurcation Study and the British Bifurcation Coronary Study. Circ Cardiovasc Interv. 2011;4(1):57–64.

    PubMed  Article  Google Scholar 

  63. 63.

    Suárez de Lezo J, Medina A, Martín P, et al. Predictors of ostial side branch damage during provisional stenting of coronary bifurcation lesions not involving the side branch origin: an ultrasonographic study. EuroIntervention. 2012;7(10):1147–54.

    PubMed  Article  Google Scholar 

  64. 64.

    Di Mario C, Iakovou I, van der Giessen WJ, et al. Optical coherence tomography for guidance in bifurcation lesion treatment. EuroIntervention. 2010;6(Suppl J):J99–106.

    PubMed  Article  Google Scholar 

  65. 65.

    Tyczynski P, Ferrante G, Moreno-Ambroj C, et al. Simple versus complex approaches to treating coronary bifurcation lesions: direct assessment of stent strut apposition by optical coherence tomography. Rev Esp Cardiol. 2010;63(8):904–14.

    PubMed  Article  Google Scholar 

  66. 66.

    Viceconte N, Tyczynski P, Ferrante G, et al. Immediate results of bifurcational stenting assessed with optical coherence tomography. Catheter Cardiovasc Interv. 2013;81(3):519–28.

    PubMed  Article  Google Scholar 

  67. 67.

    •• Alegría-Barrero E, Foin N, Chan PH, et al. Optical coherence tomography for guidance of distal cell recrossing in bifurcation stenting: choosing the right cell matters. EuroIntervention. 2012;8(2):205–13. First experience on OCT guided.

    PubMed  Article  Google Scholar 

  68. 68.

    Gonzalo N, Serruys PW, Okamura T, et al. Relation between plaque type and dissections at the edges after stent implantation: an optical coherence tomography study. Int J Cardiol. 2011;150(2):151–5.

    PubMed  Article  Google Scholar 

  69. 69.

    Imola F, Occhipinti M, Biondi-Zoccai G, et al. Association between proximal stent edge positioning on atherosclerotic plaques containing lipid pools and postprocedural myocardial infarction (from the CLI-POOL Study). Am J Cardiol. 2012.

  70. 70.

    Alfonso F, Paulo M, Gonzalo N, et al. Diagnosis of spontaneous coronary artery dissection by optical coherence tomography. J Am Coll Cardiol. 2012;59(12):1073–9.

    PubMed  Article  Google Scholar 

  71. 71.

    Prati F, Zimarino M, Stabile E, et al. Does optical coherence tomography identify arterial healing after stenting? An in vivo comparison with histology, in a rabbit carotid model. Heart. 2008;94:217–21.

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Murata A, Wallace-Bradley D, Tellez A, et al. Accuracy of optical coherence tomography in the evaluation of neointimal coverage after stent implantation. J Am Coll Cardiol Img. 2010;3:76–84.

    Article  Google Scholar 

  73. 73.

    Gonzalo N, Serruys PW, Okamura T, et al. Optical coherence tomography patterns of stent restenosis. Am Heart J. 2009;158(2):284–93.

    PubMed  Article  Google Scholar 

  74. 74.

    Finn AV, Joner M, Nakazawa G, et al. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation. 2007;115:2435–41.

    PubMed  Article  Google Scholar 

  75. 75.

    Virmani R, Guagliumi G, Farb A, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation. 2004;109(6):701–5.

    PubMed  Article  Google Scholar 

  76. 76.

    Cook S, Ladich E, Nakazawa G, et al. Correlation of intravascular ultrasound findings with histopathological analysis of thrombus aspirates in patients with very late drug-eluting stent thrombosis. Circulation. 2009;120(5):391–9.

    PubMed  Article  Google Scholar 

  77. 77.

    Chen BX, Ma FY, Luo W, Ruan, et al. Neointimal coverage of bare-metal and sirolimus-eluting stents evaluated with optical coherence tomography. Heart. 2008;94(5):566–70.

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Takano M, Yamamoto M, Inami S, et al. Long-term follow-up evaluation after sirolimus-eluting stent implantation by optical coherence tomography: do uncovered struts persist? J Am Coll Cardiol. 2008;51(9):968–9.

    PubMed  Article  Google Scholar 

  79. 79.

    Ishigami K, Uemura S, Morikawa Y, et al. Long-term follow-up of neointimal coverage of sirolimus-eluting stents–evaluation with optical coherence tomography. Circ J. 2009;73(12):2300–7.

    PubMed  Article  Google Scholar 

  80. 80.

    Räber L, Baumgartner S, Garcia HM, et al. Long-term vascular healing in response to sirolimus- and paclitaxel-eluting stents: an optical coherence tomography study. JACC Cardiovasc Interv. 2012;5(9):946–57.

    PubMed  Article  Google Scholar 

  81. 81.

    Kim JS, Kim JS, Kim TH, et al. Comparison of neointimal coverage of sirolimus-eluting stents and paclitaxel-eluting stents using optical coherence tomography at 9 months after implantation. Circ J. 2010;74(2):320–6.

    PubMed  Article  Google Scholar 

  82. 82.

    Kim U, Lee SH, Hong GR, et al. Two-year clinical outcomes of patients with long segments drug-eluting stents: comparison of sirolimus-eluting stent with paclitaxel-eluting stent. J Korean Med Sci. 2011;26(10):1299–304.

    PubMed  Article  Google Scholar 

  83. 83.

    Murakami D, Takano M, Yamamoto M, et al. Advanced neointimal growth is not associated with a low risk of in-stent thrombus. Optical coherence tomographic findings after first-generation drug-eluting stent implantation. Circ J. 2009;73(9):1627–34.

    PubMed  Article  Google Scholar 

  84. 84.

    Li S, Gai L, Yang T, et al. Evaluation of long-term follow-up with neointimal coverage and stent apposition after sirolimus-eluting stent implantation by optical coherence tomography. Catheter Cardiovasc Interv. 2013;81(5):768–75.

    PubMed  Article  Google Scholar 

  85. 85.

    Takano M, Murakami D, Yamamoto M, et al. Six-month follow-up evaluation for everolimus-eluting stents by intracoronary optical coherence tomography: comparison with paclitaxel-eluting stents. Int J Cardiol. 2011.

  86. 86.

    Gutiérrez-Chico JL, van Geuns RJ, Regar E, et al. Tissue coverage of a hydrophilic polymer-coated zotarolimus-eluting stent vs. a fluoropolymer-coated everolimus-eluting stent at 13-month follow-up: an optical coherence tomography substudy from the RESOLUTE All Comers trial. Eur Heart J. 2011;32(19):2454–63.

    PubMed  Article  Google Scholar 

  87. 87.

    Gutiérrez-Chico JL, Jüni P, García-García HM, et al. Long-term tissue coverage of a biodegradable polylactide polymer-coated biolimus-eluting stent: comparative sequential assessment with optical coherence tomography until complete resorption of the polymer. Am Heart J. 2011;162(5):922–31.

    PubMed  Article  Google Scholar 

  88. 88.

    Papayannis AC, Cipher D, Banerjee S, Brilakis ES. Optical coherence tomography evaluation of drug-eluting stents: a systematic review. Catheter Cardiovasc Interv. 2013;81(3):481–7.

    PubMed  Article  Google Scholar 

  89. 89.

    •• Gutiérrez-Chico JL, Regar E, Nüesch E, et al. Delayed coverage in malapposed and side-branch struts with respect to well-apposed struts in drug-eluting stents: in vivo assessment with optical coherence tomography. Circulation. 2011;124(5):612–23. Interesting paper on stent struts malapposition.

    PubMed  Article  Google Scholar 

  90. 90.

    Kim BK, Hong MK, Shin DH, et al. Relationship between stent malapposition and incomplete neointimal coverage after drug-eluting stent implantation. J Interv Cardiol. 2012;25(3):270–7.

    PubMed  Article  Google Scholar 

  91. 91.

    Nakatani S, Nishino M, Taniike M, Makino N, et al. Initial findings of impact of strut width on stent coverage and apposition of sirolimus-eluting stents assessed by optical coherence tomography. Catheter Cardiovasc Interv. 2013;81(5):776–81.

    PubMed  Article  Google Scholar 

  92. 92.

    Nakano M, Vorpahl M, Otsuka F, et al. Ex vivo assessment of vascular response to coronary stents by optical frequency domain imaging. JACC Cardiovasc Imaging. 2012;5:71–82.

    PubMed  Article  Google Scholar 

  93. 93.

    Templin C, Meyer M, Muller MF, et al. Coronary optical frequency domain imaging (OFDI) for in vivo evaluation of stent healing: comparison with light and electron microscopy. Eur Heart J. 2010;31:1792–801.

    PubMed  Article  Google Scholar 

  94. 94.

    Habara M, Terashima M, Nasu K, et al. Morphological differences of tissue characteristics between early, late, and very late restenosis lesions after first generation drug-eluting stent implantation: an optical coherence tomography study. Eur Heart J Cardiovasc Imaging. 2013;14(3):276–84.

    PubMed  Article  Google Scholar 

  95. 95.

    Habara M, Terashima M, Nasu K, et al. Difference of tissue characteristics between early and very late restenosis lesions after bare-metal stent implantation: an optical coherence tomography study. Circ Cardiovasc Interv. 2011;4(3):232–8.

    PubMed  Article  Google Scholar 

  96. 96.

    •• Nakazawa G, Otsuka F, Nakano M, et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol. 2011;57(11):1314–22. Interesting paper on neoatherosclerosis involving BMS and DES.

    PubMed  Article  CAS  Google Scholar 

  97. 97.

    Viceconte N, Chan PH, Barrero EA, Ghilencea L, Lindsay A, Foin N, et al. Frequency domain optical coherence tomography for guidance of coronary stenting. Int J Cardiol. 2011.

  98. 98.

    •• Prati F, Di Vito L, Biondi-Zoccai G, et al. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l'Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention. 2012;8(7):823–9. Recent paper on OCT guided decision making for coronary intervention.

    PubMed  Article  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Matteo Ghione, Dr. Kadriye Kýlýçkesmez, Dr. Carlo Zivelonghi, Dr. Rodrigo Estevez Loureiro, Dr. Nicolas Foin, Dr. Alessio Mattesini, Dr. Gioel Gabrio Secco, Dr. Gianni Dall’Ara, Dr. Juan Carlos Rama-Merchan, Dr. Ranil de Silva, Dr. Carlo Di Mario all declare no potential conflicts of interest relevant to this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlo Di Mario.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

3D reconstruction show an optimal result after a culotte technique (MP4 10202 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghione, M., Kýlýçkesmez, K., Zivelonghi, C. et al. Intracoronary Optical Coherence Tomography: Experience and Indications for Clinical Use. Curr Cardiovasc Imaging Rep 6, 399–410 (2013). https://doi.org/10.1007/s12410-013-9219-z

Download citation

Keywords

  • Intravascular imaging
  • Optical coherence tomography
  • Stent
  • Atherosclerotic plaque
  • Neointima
  • Intimal hyperplasia