Impacts of Anthropogenic Activities on Groundwater Quality in a Detritic Aquifer in SE Spain

Abstract

The quality of both surface waters (SW) and groundwater (GW) can be affected by anthropogenic activities and by faecal pollution sources from humans and animals. This study investigated the concentration of a group of chemical markers for tracking anthropogenic pollution in the Vega de Granada aquifer (VGA). A group of contaminants of emerging concern (CECs) such as amoxicillin, ciprofloxacin, ibuprofen, paracetamol, pantoprazole and caffeine, trace elements (TEs) and other potential marker species of anthropogenic pollution were selected. The parameter values (PV) for these contaminants in many of the samples exceeded it the guideline values. We also analysed some vegetables (VEG) grown in the area. The most alarming finding was that amoxicillin, paracetamol, ibuprofen and caffeine were detected in all the samples. Geostatistical methods were used to map the spatial distribution of the estimated PC scores for each principal component extracted (PCi). All the markers selected, including the CECs, appeared in different sectors of the aquifer. By analysing the results for the different parameters, it was possible to clearly define the areas affected by anthropic activities (urban and agricultural) and distinguish them from other areas with a water quality that is almost natural and is less influenced by human activity. This is a first attempt to map a group of CECs and TECs that can be hazardous to human health and the environment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Avila-Pérez P, Balcazar M, Zarazúa-Ortega G, Barcelo Quinta I, Díaz-Delgado C (1999) Heavy metal concentrations in water and bottom sediments of a Mexican reservoir. Sci Total Environ 234:185–196

    Article  Google Scholar 

  2. Balakrishna K, Rath A, Praveenkumarreddy Y, Guruge KS, Subedi B (2017) A review of the occurrence of pharmaceuticals and personal cue products in Indian water bodies. Ecotoxicol Environ Saf 137:113–120

    CAS  Article  Google Scholar 

  3. Boente C, Matanzas N, García-González N, Rodríguez-Valdés E, Gallego JR (2017) Trace elements of concern affecting urban agriculture in industrialized areas: a multivariate approach. Chemos 183:546–556

    CAS  Article  Google Scholar 

  4. Buerge I, Poiger T, Muller M, Buser H (2003) Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ Sci Technol 27:691–700

    Article  Google Scholar 

  5. Caliman FA, Gavrilescu M (2009) Pharmaceutical, personal care products and endocrine disrupting agents in the environment—review. Clean Soil Air Water 37:277–303

    CAS  Article  Google Scholar 

  6. Camacho LM, Gutiérrez M, Alarcón-Herrera MT, Villalba M, Deng S (2011) Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA. Chemosphere 83:211–225

    CAS  Article  Google Scholar 

  7. Chica-Olmo M, Luque-Espinar JA, Rodriguez-Galiano V, Pardo-Igúzquiza E, Chica-Rivas L (2014) Categorical indicator kriging for assessing the risk of groundwater nitrate pollution: the case of Vega de Granada aquifer (SE Spain). Sci Total Environ 470–471:229–239

    Article  Google Scholar 

  8. Chica-Olmo M, Peluso F, Luque-Espinar JA, Rodríguez-Galiano V, Pardo-Igúzquiza E (2017) A methodology for assessing public health risk associated with groundwater nitrate contamination: a case study in an agricultural setting (southern Spain). Environ Geoch Health 39:1117–1132

    CAS  Article  Google Scholar 

  9. Chilès JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, Toronto, p 720

    Google Scholar 

  10. CLC (2012) CORINE Land Cover. Copyright Copernicus Programme, European Environment Agency

  11. Confederación Hidrográfica del Guadalquivir CHG (2015) Plan Hidrológico de la demarcación hidrográfica del Guadalquivir (2015–2021). Anejo n° 3–Descripción de usos, demandas y presiones. p 373

  12. EC (1998) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. p 23

  13. Elizalde-Velázquez A, Gómez-Oliván LM, Galar-Martínez M, Islas-Flores H, Dublán-García O, San Juan-Reyes N (2016) Amoxicillin in the aquatic environment, its fate and environmental risk. In: Larramendy ML, Soloneski S (eds) Environmental health risk—hazardous factors to living species. IntechOpen, London, pp 247–267. https://doi.org/10.5772/61472

    Google Scholar 

  14. Fick J, Söderstrom H, Linderg RH, Phan C, Tysklind M, Larsson DFJ (2009) Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem 28:2522–2527

    CAS  Article  Google Scholar 

  15. Förstner U, Wittmann GTW (1979) Metal pollution in the aquatic environment. Springer, Berlin. https://doi.org/10.1007/978-3-642-69385-4

    Google Scholar 

  16. Frisbie SH, Mitchell EJ, Mastera LJ, Maynard DM, Yusuf AZ, Siddiq MY, Ortega R, Dunn RK, Westerman DS, Bacquart T, Sarkar B (2009) Public health strategies for western Bangladesh that address arsenic, manganese, uranium, and other toxic elements in drinking water. Environ Health Persp 117:410–416

    CAS  Article  Google Scholar 

  17. Goldar B, Banerjee N (2004) Impact of informal regulation of pollution on water quality in rivers in India. J Environ Manag 73:117–130

    Article  Google Scholar 

  18. Gozlan I, Rotstein A, Avisar D (2013) Amoxicillin-degradation products formed under controlled environmental conditions: identification and determination in the aquatic environment. Chemos 91(7):985–992

    CAS  Article  Google Scholar 

  19. Halwani DA, Jurdi M, Abu Salem FK, Jaffa MA, Amacha N, Habib RR, Dhaini HR (2019) Cadmium health risk assessment and anthropogenic sources of pollution in Mount-Lebanon springs. Exposure Health. https://doi.org/10.1007/s12403-019-00301-3

    Article  Google Scholar 

  20. Heberer T (2002) Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol 266:175–189

    CAS  Article  Google Scholar 

  21. IGME (1972) Utilización de las aguas subterráneas para la mejora del regadío en la Vega de Granada. Proyecto piloto de utilización de aguas subterráneas para el desarrollo agrícola de la Cuenca del Guadalquivir. Madrid. p 76.

  22. Joseph P, Nandan SB, Adarsh KJ, Anu PR, Varghese R, Sreelekshmi S, Preethy CM, Jayachandran PR, Joseph KJ (2019) Heavy metal contamination in representative surface sediments of mangrove habitats of Cochin. Southern India. Environ Earth Sci 78:490. https://doi.org/10.1007/s12665-019-8499-2

    CAS  Article  Google Scholar 

  23. Keshavarzi B, Moore F, Najmeddin A, Rahmani F (2012) The role of selenium and selected trace elements in the etiology of esophageal cancer in high risk Golestan province of Iran. Sci Total Environ 433:89–97

    CAS  Article  Google Scholar 

  24. Kumar M, Ramanathan AL, Tripathi R, Farswan S, Kumar D, Bhattacharya P (2017) A study of trace element contamination using multivariate statistical techniques and health risk assessment in groundwater of Chhaprolaindustrialarea, Gautam Buddha Nagar, Uttar Pradesh, India. Chemosphere 166:135–145

    CAS  Article  Google Scholar 

  25. Kuroda K, Murakami M, Oguma K, Muramatsu Y, Takada H, Takizawa S (2012) Assessment of groundwater pollution in Tokyo using PPCPs as sewage markers. Environ Sci Technol 46:1455–1464

    CAS  Article  Google Scholar 

  26. Li P, Wu J, Qian H, Zhang Y, Yang N, Jing L, Yu P (2016) Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert. Northwest China. Expo Health 8(3):331–348. https://doi.org/10.1007/s12403-016-0193-y

    CAS  Article  Google Scholar 

  27. Li P, Tian R, Liu R (2019a) Solute geochemistry and multivariate analysis of water quality in the Guohua Phosphorite Mine, Guizhou Province. China. Expo Health 11(2):81–94. https://doi.org/10.1007/s12403-018-0277-y

    CAS  Article  Google Scholar 

  28. Li P, He X, Li Y, Xiang G (2019b) Occurrence and health implication of fluoride in groundwater of loess aquifer in the Chinese Loess Plateau: a case study of Tongchuan. Expo Health 11(2):95–107. https://doi.org/10.1007/s12403-018-0278-x

    CAS  Article  Google Scholar 

  29. Liang J, Feng C, Zeng G, Gao X, Zhong M, Li X, Li X, He X, Fang Y (2017) Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Envir Pollution 225:681–690

    CAS  Article  Google Scholar 

  30. Liao F, Wang G, Shi Z, Huang X, Xu F, Xu Q, Guo L (2018) Distributions, sources, and species of heavy metals/trace elements in Shallow groundwater around the Poyang Lake, East China. Expo Health 10:211–227

    CAS  Article  Google Scholar 

  31. Luque-Espinar JA, Chica-Olmo M, Pardo-Igúzquiza E, García-Soldado MJ (2008) Influence of climatological cycles on hydraulic heads across a Spanish aquifer. J Hydrol 354:33–52

    Article  Google Scholar 

  32. Luque-Espinar JA, Navas N, Chica-Olmo M, Cantero-Malagón S, Chica-Rivas L (2015) Seasonal occurrence and distribution of a group of ECs in the water resources of Granada citymetropolitan areas (SE Spain): pollution of raw drinking water. J Hydrol 531:612–625

    CAS  Article  Google Scholar 

  33. Magesh NS, Chandrasekar N, Elango L (2017) Trace element concentrations in the groundwater of the Tamiraparani river basin, South India: insights from human health risk and multivariate statistical techniques. Chemosphere 185:468–479

    CAS  Article  Google Scholar 

  34. Malchi T, Maor Y, Tadmor G, Shenker M, Chefetz B (2014) Irrigation of root vegetables with treated wastewater: evaluating uptake of pharmaceuticals and the associated human health risks. Environ Sci Technol 48(16):9325–9333

    CAS  Article  Google Scholar 

  35. Mansour F, Mahmoud AH, Walid S et al (2016) Environmental risk analysis and prioritization of pharmaceuticals in a developing world context. Sci Total Environ 557:31–43

    Article  Google Scholar 

  36. McKinley JM, Ofterdinger U, Young M, Barsby A, Gavin A (2013) Investigating local relationships between trace elements in soils and cancer data. Spatial Stat 5:25–41

    Article  Google Scholar 

  37. Mitchell E, Frisbie S, Sarkar B (2011) Exposure to multiple metals from groundwater-a global crisis: geology, climate change, health effects, testing, and mitigation. Metallomics 3(9):874–908

    CAS  Article  Google Scholar 

  38. Nakada N, Kirk K, Shinohara H, Harada A, Kuroda K, Takizawa S, Takada H (2008) Evaluation of pharmaceuticals and personal care products as water-soluble molecular markers of sewage. Environ Sci Technol 42:6347–6353

    CAS  Article  Google Scholar 

  39. Pardo-Igúzquiza E, Chica-Olmo M, Luque-Espinar JA, Rodríguez-Galiano V (2015) Compositional cokriging for mapping the probability risk of groundwater contamination by nitrates. Sci Total Environ 532:162–175

    Article  Google Scholar 

  40. Patil VT, Patil PR (2010) Physicochemical analysis of selected groundwater samples of Amalner town in Jalga on District, Maharashtra, India. J Chem 7:111–116

    CAS  Google Scholar 

  41. Rodriguez-Galiano VF, Luque-Espinar JA, Chica-Olmo M, Mendes MP (2018) Feature selection approaches for predictive modelling of ground water nitrate pollution: an evaluation of filters, embedded and wrapper methods. Sci Total Environ 624:661–672

    CAS  Article  Google Scholar 

  42. Santos LHMLM, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175:45–95

    CAS  Article  Google Scholar 

  43. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077

    CAS  Article  Google Scholar 

  44. Seiler RL, Zaugg SD, Thomas JM, Howcroft DL (1999) Caffeine and pharmaceuticals as indicators of waste water contamination in wells. Ground Water 37:405–410

    CAS  Article  Google Scholar 

  45. Standley LJ, Rudel RA, Swartz CH, Attfield KR, Christian J, Erickson M, Brody JG (2008) Wastewater-contaminated groundwater as a source of endogenous hormones and pharmaceuticals to surface water ecosystems. Environ Toxicol Chem 27:2457–2468

    CAS  Article  Google Scholar 

  46. Szabo Z, dePaul VT, Fischer JM, Kraemer TF, Jacobsen E (2012) Occurrence and geochemistry of radium in water from principal drinking-water aquifer systems of the United States. Appl Geochem 27:729–752

    CAS  Article  Google Scholar 

  47. Ternes T (2007) The occurrence of micopollutants (sic!) in the aquatic environment: a new challenge for water management. Water Sci Technol 55(12):327–332

    CAS  Article  Google Scholar 

  48. Thuyet DQ, Saito H, Saito T, Moritani S, Kohgo Y, Komatsu T (2016) Multivariate analysis of trace elements in shallow groundwater in Fuchu in western Tokyo Metropolis. Jpn Environ Earth Sci 75:559

    Article  Google Scholar 

  49. UNESCO (2002) Groundwater contamination inventory. A methodological guide. IHP-VI, series on groundwater, No. 2, p 161

  50. USGS (2011) National water-quality assessment program. Trace elements and radon in groundwater across the United States, 1992–2003. U.S. Department of the Interior, U.S. Geological Survey. Scientific Investigations Report 2011–5059. http://pubs.usgs.gov/sir/2011/5059/pdf/sir2011-5059_reportcovers_508.pdf. March 22, 2016

  51. Van Nuijs ALN, Tarcomnicu I, Simons W, Bervoets L, Blust R, Jorens PG, Neels H, Covaci A (2010) Optimization and validation of a hydrophilic interaction liquid chromatography-tandem mass spectrometry method for the determination of 13 top-prescribed pharmaceuticals in influent wastewater. Anal Bioanal Chem 398(5):2211–2222

    Article  Google Scholar 

  52. WHO (2002) Water and health in Europe. In: Bartram J, Thyssen N, Gowers K, Lack T (eds) A joint report from the European Environment Agengy and the WHO Regional Office for Europe. WHO Regional Publications, European Seris, No. 93, p 240

  53. WHO (2017) Guidelines for drinking-water quality. Fourth edition incorporating the first addendum. p 631

  54. Wu S, Zhang L, Chen J (2012) Paracetamol in the environment and its degradation by microorganisms. Appl Microbiol Biotechnol 96:875–884

    CAS  Article  Google Scholar 

  55. Wu J, Li P, Qian H, Duan Z, Zhang X (2014) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: Case study in Laoheba phosphorite mine in Sichuan. China. Arab J Geosci 7(10):3973–3982. https://doi.org/10.1007/s12517-013-1057-4

    CAS  Article  Google Scholar 

  56. Wu J, Wang L, Wang S, Tian R, Xue C, Feng W, Li Y (2017) Spatiotemporal variation of groundwater quality in an arid area experiencing long-term paper wastewater irrigation, northwest China. Environ Earth Sci 76(13):460. https://doi.org/10.1007/s12665-017-6787-2

    Article  Google Scholar 

  57. Wu J, Li P, Wang D, Ren X, Wei M (2019) Statistical and multivariate statistical techniques to trace the sources and affecting factors of groundwater pollution in a rapidly growing city on the Chinese Loess Plateau. Hum Ecol Risk Assess. https://doi.org/10.1080/10807039.2019.1594156

    Article  Google Scholar 

  58. Zentner E, Gerstl Z, Weisbrod N, Lev O, Pankratov I, Russo D, Gasser G, Voloshenko-Rosin A, Ronen D (2015) Deep penetration of pharmaceuticals and personal care products through the vadose zone of effluent-irrigated land. Vadose Zone J. https://doi.org/10.2136/vzj2014.09.0115

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by Research Group RNM-122 of the Junta de Andalucía (Spain) and by the Geological Survey of Spain (IGME) via the SOILWATER project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juan Antonio Luque-Espinar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 78 kb)

Supplementary file2 (DOC 33 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luque-Espinar, J.A., Chica-Olmo, M. Impacts of Anthropogenic Activities on Groundwater Quality in a Detritic Aquifer in SE Spain. Expo Health 12, 681–698 (2020). https://doi.org/10.1007/s12403-019-00327-7

Download citation

Keywords

  • Anthropic activities
  • Cecs
  • Geostatistics
  • Water resources
  • Sewage
  • Toxicity risk