Skip to main content

Advertisement

Log in

An Inter-disciplinary Approach to Evaluate Human Health Risks Due to Long-Term Exposure to Contaminated Groundwater Near a Chemical Complex

  • Original Paper
  • Published:
Exposure and Health Aims and scope Submit manuscript

Abstract

Potentially toxic elements (PTEs) are known to threat human health due to exposure to contaminated groundwater. Some of these PTEs can lead to long-term carcinogenic and non-carcinogenic health risks. The Estarreja Chemical Complex (ECC), NW Portugal, has had an intense industrial activity since the early 1950s, which lead to high levels of soil and groundwater contamination. Local populations traditionally rely on groundwater for human and agricultural uses. Although rehabilitation measures have been implemented for the last 20 years, groundwater contamination levels remain high for some PTEs, whose concentrations may be several orders of magnitude higher than human consumption. Two groundwater-sampling campaigns were conducted showing the temporal evolution of groundwater quality and allowing for the calculation of non-cancer and cancer risks due to exposure to PTEs by the ECC-surrounding population, considering groundwater ingestion and dermal contact as exposure pathways. Hair and urine PTE contents were collected during of the second sampling groundwater campaign and were used as biomonitoring to validate the exposure of local population to PTEs. The results show that As is the contaminant with highest non-cancer and cancer health risks for the exposed population, presenting high values particularly in Veiros, Beduído and Pardilhó localities. The most groundwater-contaminated areas coincided with the localities in which inhabitants exhibit higher hair and urinary PTE concentrations. Hair samples show high levels of As, Hg and Ni, while urine samples show high levels for Al, As, Cd, Hg, Pb, Ni and Zn are elevated in localities close to the ECC. Urine and hair proved to be suitable to evaluate short- and long-term exposure to PTEs, and are strongly correlated groundwater PTEs concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ADRA (2019) Plano de Segurança de Abastecimento de Água. https://adra.pt/template-simples/4573/plano-de-seguran%C3%A7a-da-%C3%A1gua. Accessed 11 Jan 2019

  • Ahlskog JE (2016) New and appropriate goals for Parkinson disease physical therapy. JAMA Neurol 73(3):1–2

    Google Scholar 

  • Alavanja MC, Hoppin JA, Kamel F (2004) Health effects of chronic pesticide exposure: cancer and neurotoxicity. Annu Rev Public Health 25:155–197

    Google Scholar 

  • Alimonty A, Mattei D (2008) Biomarkers for human biomonitoring. In: Conti ME (ed) Biological monitoring: theory and applications: bioindicators and biomarkers for environmental quality and human exposure assessment. WIT Press, Boston

    Google Scholar 

  • Amaral AF, Arruda M, Cabral S, Rodrigues AS (2008) Essential and non-essential trace metals in scalp hair of men chronically exposed to volcanogenic metals in the Azores, Portugal. Environ Int 34(8):1104–1108

    CAS  Google Scholar 

  • APA (2012) Planos de Gestão das Bacias Hidrográficas dos Rios Vouga, Mondego e Lis integradas na Região Hidrográfica 4. Parte 2—Caracterização Geral e Diagnóstico. 1.4.2. Caracterização das Massas de Água Subterrânea. Report. Ex-ARH Centro. https://www.apambiente.pt/?ref=16&subref=7&sub2ref=9&sub3ref=834. Accessed 10 Sept 2018

  • Ayodele JT, Bayero AS (2009) Lead and zinc concentrations in hair and nail of some Kano inhabitants. Afr J Environ Sci Technol 3(6):164–170

    CAS  Google Scholar 

  • Barradas JM, Cardoso Fonseca E, Ferreira da Silva EA, Garcia Pereira H (1992) Identification and mapping of pollution indices using a multivariate statistical methodology, Estarreja, central Portugal. Appl Geochem 7(6):563–572

    CAS  Google Scholar 

  • Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL (2004) Urinary creatinine concentrations in the US population: implications for urinary biologic monitoring measurements. Environ Health Perspect 113(2):192–200

    Google Scholar 

  • Bass DA, Hickok D, Quig D, Urek K (2001) Trace element analysis in hair: factors determining accuracy, precision, and reliability. Altern Med Rev 6(5):472–481

    CAS  Google Scholar 

  • Bellotti BA (2017) Research agenda for food systems. The Global Change Institute, University of Queensland Avaiable at: https://gci.uq.edu.au/filething/get/14491/Discussion-Paper-food-systems-No1-V7-4OCT2017-FINAL-LR.pdf. Accessed 3 May 2018

  • Bencko V (1995) Use of human hair as a biomarker in the assessment of exposure to pollutants in occupational and environmental settings. Toxicology 101(1–2):29–39

    CAS  Google Scholar 

  • Borrego C (1993) Water, air and soil pollution problems in Portugal. Sci Total Environ 129(1):55–70

    CAS  Google Scholar 

  • Bouchard DC, Williams MK, Surampalli RY (1992) Nitrate contamination of groundwater: sources and potential health effects. J Am Water Works Assoc 84(9):85–90

    CAS  Google Scholar 

  • Bouchard MF, Sauvé S, Barbeau B, Legrand M, Brodeur MÈ, Bouffard T, Mergler D (2011) Intellectual impairment in school-age children exposed to manganese from drinking water. Environ Health Perspect 119(1):138

    CAS  Google Scholar 

  • Brima EI, Haris PI, Jenkins RO, Polya DA, Gault AG, Harrington CF (2006) Understanding arsenic metabolism through a comparative study of arsenic levels in the urine, hair and fingernails of healthy volunteers from three unexposed ethnic groups in the United Kingdom. Toxicol Appl Pharmacol 216(1):122–130

    CAS  Google Scholar 

  • Brower R, Ordens CM, Pinto R, Condesso de Melo MT (2018) Economic valuation of groundwater protection using a groundwater quality ladder based on chemical threshold levels. Ecol Ind 88:292–304

    Google Scholar 

  • Cabral Pinto MMS, Ferreira da Silva E (2019) Heavy Metals of Santiago Island (Cape Verde) alluvial deposits: baseline value maps and human health risk assessment. Int J Environ Res Health. https://doi.org/10.3390/ijerph16010002

    Article  Google Scholar 

  • Cabral Pinto MMS, Ferreira da Silva E, Silva MMVG, Melo-Gonçalves P, Candeias C (2014) Environmental risk assessment based on high-resolution spatial maps of potential toxic elements sampled on stream sediments of Santiago, Cape Verde. Geosciences (Switzerland), vol 4, pp 297–315, MDPI. https://doi.org/10.3390/geosciences4040297

  • Cabral Pinto MMS, Marinho-Reis AP, Almeida A, Ordens CM., Silva MM, Freitas S, Ferreira da Silva EA (2017a) Human predisposition to cognitive impairment and its relation with environmental exposure to potentially toxic elements. Environ Geochem Health 1–18. https://doi.org/10.1007/s10653-017-9928-3

  • Cabral Pinto MMS, Silva MMVG, Ferreira da Silva EA, Marinho-Reis P (2017b) The Cancer and Non-Cancer Risk of Santiago Island (Cape Verde) Population due to Potential Toxic Elements Exposure from Soils. Urban Environmental and Medical Geochemistry, Geosciences (Switzerland). https://doi.org/10.3390/geosciences7030078

  • Cabral Pinto MMS, Marinho-Reis AP, Almeida A, Freitas S, Simões MR, Diniz ML, Moreira PI (2018) Fingernail trace element content in environmentally exposed individuals and its influence on their cognitive status in ageing. Exposure Health 1–14

  • Cachada A, Pereira ME, Ferreira da Silva E, Duarte AC (2012) Sources of potentially toxic elements and organic pollutants in an urban area subjected to an industrial impact. Environ Monit Assess 184:15–32

    CAS  Google Scholar 

  • Callahan MA, Sexton K (2007) If cumulative risk assessment is the answer, what is the question? Environ Health Perspect 115(5):799

    CAS  Google Scholar 

  • Castro IV, Ferreira EM, McGrath SP (1997) Effectiveness and genetic diversity of Rhizobium leguminosarum bv. trifolii isolates in Portuguese soils polluted by industrial effluents. Soil Biol Biochem 29(8):1209–1213

    CAS  Google Scholar 

  • Centeno JA, Mullick FG, Martinez L, Page NP, Gibb H, Longfellow D, Ladich ER (2002) Pathology related to chronic arsenic exposure. Environ Health Perspect 110(Suppl 5):883

    CAS  Google Scholar 

  • Charlet L, Polya DA (2006) Arsenic in shallow, reducing groundwaters in southern Asia: an environmental health disaster. Elements 2(2):91–96

    Google Scholar 

  • Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B (2015) Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 9:124

    Google Scholar 

  • Coelho P, Costa S, Costa C, Silva S, Walter A, Ranville J et al (2012) Metal(loid)s levels in biological matrices from human populations exposed to mining contamination. J Toxicol Environ Health A 75(13–15):893–908. https://doi.org/10.1080/15287394.2012.690705

    Article  CAS  Google Scholar 

  • Coelho P, Costa S, Costa C, Silva S, Walter A, Ranville J, Zoffoli R (2014) Biomonitoring of several toxic metal (loid) s in different biological matrices from environmentally and occupationally exposed populations from Panasqueira mine area, Portugal. Environ Geochem Health 36(2):255–269

    CAS  Google Scholar 

  • Condesso de Melo MT, Marques da Silva MA (2008) The Aveiro Quaternary and Cretaceous aquifers. In: Edmunds WM, Shand P (eds) The natural baseline quality of groundwater. Blackwell Publishers, Oxford

    Google Scholar 

  • Costa C, Jesus-Rydin C (2001) Site investigation on heavy metals contaminated ground in Estarreja—Portugal. Eng Geol 60(1–4):39–47

    Google Scholar 

  • Dissanayake CB, Chandrajith R (2009) Phosphate mineral fertilizers, trace metals and human health. J Natl Sci Found Sri Lanka 37(3):153–165

    CAS  Google Scholar 

  • Dorne JL, Kass GE, Bordajandi LR, Amzal B, Bertelsen U, Castoldi AF et al (2011) Human risk assessment of heavy metals: principles and applications. Metal Ions Life Sci 8:27–60

    CAS  Google Scholar 

  • Eastman RR, Jursa TP, Benedetti C, Lucchini RG, Smith DR (2013) Hair as a biomarker of environmental manganese exposure. Environ Sci Technol 47(3):1629–1637

    CAS  Google Scholar 

  • Eggers MJ, Doyle JT, Lefthand MJ, Young SL, Moore-Nall AL, Kindness L, Ford TE, Dietrich E, Parker AE, Hoover JH, Camper AK (2018) Community engaged cumulative risk assessment of exposure to in Putzrath well water contaminants, Crow Reservation, Montana. Int J Environ Res Public Health 15(1):76. https://doi.org/10.3390/ijerph15010076

    Article  CAS  Google Scholar 

  • Elsner RJ, Spangler JG (2005) Neurotoxicity of inhaled manganese: public health danger in the shower? Med Hypotheses 65(3):607–616

    CAS  Google Scholar 

  • EPA (2009) http://esdat.net/Environmental%20Standards/US/Federal/US%20Federal%20MLCs.pdf. Accessed 10 May 2017

  • ERASE (2000) Estratégia de redução dos impactes ambientais associados aos resíduos industriais depositados no Complexo Químico de Estarreja. Estudo de impacte ambiental, memória geral. Aveiro, Portugal

  • Ericson I, Martı-Cid R, Nadal M, Van Bavel B, Lindström G, Domingo JL (2008) Human exposure to perfluorinated chemicals through the diet: Intake of perfluorinated compounds in foods from the Catalan (Spain) market. J Agric Food Chem 56(5):1787–1794

    CAS  Google Scholar 

  • Exley C (2012) The coordination chemistry of aluminium in neurodegenerative disease. Coord Chem Rev 256(19):2142–2146

    CAS  Google Scholar 

  • Flynn MR, Susi P (2009) Neurological risks associated with manganese exposure from welding operations–a literature review. Int J Hyg Environ Health 212(5):459–469

    CAS  Google Scholar 

  • Frampton MW (2001) Systemic and cardiovascular effects of airway injury and inflammation: ultrafine particle exposure in humans. Environ Health Perspect 109(Suppl 4):529

    CAS  Google Scholar 

  • Gault AG, Rowland HA, Charnock JM, Wogelius RA, Gomez-Morilla I, Vong S, Polya DA (2008) Arsenic in hair and nails of individuals exposed to arsenic-rich groundwaters in Kandal province, Cambodia. Sci Total Environ 393(1):168–176

    CAS  Google Scholar 

  • Golash N, Gogate PR (2012) Degradation of dichlorvos containing wastewaters using sonochemical reactors. Ultrason Sonochem 19(5):1051–1060

    CAS  Google Scholar 

  • Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Kortsha GG et al (1999) Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology 20:239–248

    CAS  Google Scholar 

  • Goullé JP, Mahieu L, Castermant J, Neveu N, Bonneau L, Lainé G, Lacroix C (2005) Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair: reference values. Forensic Sci Int 153(1):39–44

    Google Scholar 

  • Gupta VB, Anitha S, Hegde ML, Zecca L, Garruto RM, Ravid R et al (2005) Aluminium in Alzheimer’s disease: are we still at a crossroad? Cell Mol Life Sci 62(2):143–158

    CAS  Google Scholar 

  • Hall A, Costa Duarte A, Caldeira MTM, Lucas MF (1987) Sources and sinks of mercury in the coastal lagoon of Aveiro, Portugal. Sci Total Environ 64:75–87

    CAS  Google Scholar 

  • Hammond RA, Dubé L (2012) A systems science perspective and transdisciplinary models for food and nutrition security. Proc Natl Acad Sci 109(31):12356–12363

    CAS  Google Scholar 

  • Hopenhayn-Rich C, Biggs ML, Smith AH (1998) Lung and kidney cancer mortality associated with arsenic in drinking water in Cordoba, Argentina. Int J Epidemiol 27(4):561–569

    CAS  Google Scholar 

  • Iarmarcovai G, Sari-Minodier I, Chaspoul F, Botta C, De Meo M, Orsiere T, Botta A (2005) Risk assessment of welders using analysis of eight metals by ICP-MS in blood and urine and DNA damage evaluation by the comet and micronucleus assays; influence of XRCC1 and XRCC3 polymorphisms. Mutagenesis 20(6):425–432

    CAS  Google Scholar 

  • Inácio MM, Pereira V, Pinto MS (1998) Mercury contamination in sandy soils surrounding an industrial emission source (Estarreja, Portugal). Geoderma 85(4):325–339

    Google Scholar 

  • Inácio M, Neves O, Pereira V, Silva EF (2014) Levels of selected potential harmful elements (PHEs) in soils and vegetables used in diet of the population living in the surroundings of the Estarreja Chemical Complex (Portugal). Appl Geochem 44:38–44

    Google Scholar 

  • INAG (2011) Sistema Nacional de Informação de Recursos Hídricos – Instituto da Agua. http://snirh.inag.pt/. Accessed 10 May 2015

  • INE (2015) Statistics Portugal. XV Ressenciamento Geral da População, CENSUS 2001. http://censos.ine.pt/xportal/xmain?xpid=CENSO Sandx pgid=censos_quadros_populacao

  • Ize-Iyamu OK, Bernard AE (2007) The effects of petroleum exploration and production operations on the heavy metals contents of soil and groundwater in the Niger Delta. Int J Phys Sci 2(10):271–275

    Google Scholar 

  • Johnson FO, Atchison WD (2009) The role of environmental mercury, lead and pesticide exposure in development of amyotrophic lateral sclerosis. Neurotoxicology 30(5):761–765

    CAS  Google Scholar 

  • Karagas MR, Tosteson TD, Blum J, Morris JS, Baron JA, Klaue B (1998) Design of an epidemiologic study of drinking water arsenic exposure and skin and bladder cancer risk in a US population. Environ Health Perspect 106(Suppl 4):1047

    Google Scholar 

  • Kavcar P, Sofuoglu A, Sofuoglu SC (2009) A health risk assessment for exposure to trace metals via drinking water ingestion pathway. Int J Hyg Environ Health 212(2):216–227

    CAS  Google Scholar 

  • Kazi TG, Afridi HI, Kazi N, Jamali MK, ArainMB Jalbani N et al (2008) Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res 122(1):1–18

    CAS  Google Scholar 

  • Kim JY, Mukherjee S, Ngo LC, Christiani DC (2004) Urinary 8-hydroxy-2′-deoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to fine particulates. Environ Health Perspect 112(6):666

    CAS  Google Scholar 

  • Komatina MM (2004) Medical geology—effects of geological environments on human health. Developments in Earth and Environmental Sciences, vol. 2. Elsevier, Amsterdam

  • Kuiper N, Rowell C, Nriagu J, Shomar B (2014) What do the trace metal contents of urine and toenail samples from Qatar’s farm workers bioindicate? Environ Res 131:86–94

    CAS  Google Scholar 

  • Leitão TBE (1996) Metodologia para a reabilitação de aquíferos poluídos. Ph.D. thesis. Faculdade de Ciências da Universidade de Lisboa

  • Lillebø AI, Ameixa OMCC, Sousa LP, Sousa AI, Soares JA, Dolbeth M, Alves FL (2015) The physio-geographical background and ecology of Ria de Aveiro. Coastal lagoons in Europe, 21

  • Liu QR, Walther D, Drgon T, Polesskaya O, Lesnick TG, Strain KJ, Uhl GR (2005) Human brain derived neurotrophic factor (BDNF) genes, splicing patterns, and assessments of associations with substance abuse and Parkinson’s Disease. Am J Med Genet B 134(1):93–103

    Google Scholar 

  • Ljunggren KG, Lidums V, Sjögren B (1991) Blood and urine concentrations of aluminium among workers exposed to aluminium flake powders. Occup Environ Med 48(2):106–109

    CAS  Google Scholar 

  • Mayo Clinic Laboratories. https://www.mayocliniclabs.com/ Accessed 28 Sept 2018

  • McElroy JA, Shafer MM, Trentham-Dietz A, Hampton JM, Newcomb PA (2006) Cadmium exposure and breast cancer risk. J Natl Cancer Inst 98(12):869–873

    CAS  Google Scholar 

  • Mohmand J, Eqani SA, Fasola M, Alamdar A, Mustafa I, Ali N, Shen H (2015) Human exposure to toxic metals via contaminated dust: bio-accumulation trends and their potential risk estimation. Chemosphere 132:142–151

    CAS  Google Scholar 

  • Mortada WI, Sobh MA, El-Defrawy MM, Farahat SE (2002) Reference intervals of cadmium, lead, and mercury in blood, urine, hair, and nails among residents in Mansoura city, Nile delta, Egypt. Environ Res 90(2):104–110

    CAS  Google Scholar 

  • Morton J, Mason HJ, Ritchie KA, White M (2004) Comparison of hair, nails and urine for biological monitoring of low level inorganic mercury exposure in dental workers. Biomarkers 9(1):47–55

    CAS  Google Scholar 

  • Needleman HL, Schell A, Bellinger D, Leviton A, Allred EN (1990) The long-term effects of exposure to low doses of lead in childhood: an 11-year follow-up report. N Engl J Med 322(2):83–88

    CAS  Google Scholar 

  • Neves C (2015) Estudo da contaminação das águas subterrâneas e respectivos processos de atenuação natural na zona industrial de Estarreja. PhD thesis, University of Lisbon

  • Nriagu G (2007) Zinc toxicity in humans, pp 1–7. Elsevier, New Yrok. https://pdfs.semanticscholar.org/a9e2/8321ae506e646f32ce59d87b7589851aa7e4.pdf. Accessed 26 Aug 2018

  • Ordens CM (2007) Estudo da contaminação do aquífero superior na região de Estarreja. Unpublished M.Sc. thesis. Coimbra University. http://www.lneg.pt/download/3268/carlos_ordens.pdf. Accessed 11 Mar 2015

  • Ordens CM, Condesso de Melo MT, Grangeia C, Marques da Silva MA (2007) Groundwater–surface water interactions near a Chemical Complex (Estarreja, Portugal)—implications on groundwater quality. In Proceedings 35th congress of international association of hydrogeologists, Lisbon, Portugal, 17–21 Sept

  • Panaullah GM, Alam T, Hossain MB, Loeppert RH, Lauren JG, Meisner CA, Duxbury JM (2009) Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant and Soil 317(1–2):31

    CAS  Google Scholar 

  • Park JD, Choi SJ, Choi BS, Lee CR, Kim H, Kim YD, Chung JH (2016) Arsenic levels in the groundwater of Korea and the urinary excretion among contaminated area. J Expo Sci Environ Epidemiol 26(5):458

    CAS  Google Scholar 

  • Patinha C, Reis AP, Dias AC, Abduljelil AA, Noack Y, Robert S, Ferreira Cave M, da Silva EF (2015) The mobility and human oral bioaccessibility of Zn and Pb in urban dusts of Estarreja (N Portugal). Environ Geochem Health 37(1):115–131

    CAS  Google Scholar 

  • Pereira ME, Duarte AC, Millward GE, Vale C, Abreu SN (1998) Tidal export of particulate mercury from the most contaminated area of Aveiro’s Lagoon, Portugal. Sci Total Environ 213:157–163

    CAS  Google Scholar 

  • Pereira ME, Lillebø AI, Pato P, Válega M, Coelho JP, Lopes C et al (2009) Mercury pollution in Ria de Aveiro(Portugal): a review of the system assessment. Environ Monit Assess 155:39–49

    CAS  Google Scholar 

  • Petersen R, Thomsen JF, Jørgensen NK, Mikkelsen S (2000) Half life of chromium in serum and urine in a former plasma cutter of stainless steel. Occup Environ Med 57(2):140–142

    CAS  Google Scholar 

  • Pham LH, Nguyen HT, Van Tran C, Nguyen HM, Nguyen TH, Tu MB (2017) Arsenic and other trace elements in groundwater and human urine in Ha Nam province, the Northern Vietnam: contamination characteristics and risk assessment. Environ Geochem Health 39(3):517–529

    CAS  Google Scholar 

  • Phan K, Sthiannopkao S, Kim KW, Wong MH, Sao V, Hashim JH, Aljunid SM (2010) Health risk assessment of inorganic arsenic intake of Cambodia residents through groundwater drinking pathway. Water Res 44(19):5777–5788

    CAS  Google Scholar 

  • Portuguese Decree 236 (1998) Portuguese legislation on water quality. Diário da República IA, pp 3676–3722. https://dre.pt/application/conteudo/430457. Accessed 15 Oct 2017

  • Portuguese Decree Law 152 (2017) Portuguese legislation on water quality. Diário da República IA, pp 5747–5765. https://dre.pt/application/conteudo/114315242. Accessed 10 May 2017

  • Putzrath RM (2000) Reducing uncertainty of risk estimates for mixtures of chemicals within regulatory constraints. Regul Toxicol Pharmacol 31:44–52

    CAS  Google Scholar 

  • Rahman MF, Wang J, Patterson TA, Saini UT, Robinson BL, Newport GD, Ali SF (2009) Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett 187(1):15–21

    CAS  Google Scholar 

  • Rapant S, Cvečková V, Fajčíková K, Dietzová Z, Stehlíková B (2017) Chemical composition of groundwater/drinking water and oncological disease mortality in Slovak Republic. Environ Geochem Health 39(1):191–208

    CAS  Google Scholar 

  • Re V (2015) Incorporating the social dimension into hydrogeochemical investigations for rural development: the Bir Al-Nas approach for socio-hydrogeology. Hydrogeol J 23:1293–1304

    Google Scholar 

  • Re V, Sacchi E, Kammoun S, Tringali C, Trabelsi R, Zouari K, Daniele S (2017) Integrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources. The case of Grombalia Basin (Tunisia). Sci Total Environ 593:664–676

    Google Scholar 

  • Reis AP, Costa S, Santos I, Patinha C, Noack Y, Wragg J et al (2015) Investigating relationships between biomarkers of exposure and environmental copper and manganese levels in house dusts from a Portuguese industrial city. Environ Geochem Health 37(4):725–744

    CAS  Google Scholar 

  • Rodushkin I, Axelsson MD (2000) Application of double focusing sector field ICP-MS for multielemental characterization of human hair and nails. Part II. A study of the inhabitants of Northern Sweden. Sci Total Environ 262(1–2):21–36

    CAS  Google Scholar 

  • Rodushkin I, Axelsson MD (2003) Application of double focusing sector field ICP-MS for multielemental characterization of human hair and nails. Part III. Direct analysis by laser ablation. Sci Total Environ 305(1–3):23–39

    CAS  Google Scholar 

  • Ryker SJ, Small MJ (2008) Combining occurrence and toxicity information to identify priorities for drinking water mixture research. Risk Anal Int J 28(3):653–666

    Google Scholar 

  • Sällsten G, Barregård L, Schütz A (1994) Clearance half life of mercury in urine after the cessation of long term occupational exposure: influence of a chelating agent (DMPS) on excretion of mercury in urine. Occup Environ Med 51(5):337–342

    Google Scholar 

  • Santamaria AB, Cushing CA, Antonini JM, Finley BL, Mowat FS (2007) State-of-the-science review: does manganese exposure during welding pose a neurological risk? J Toxicol Environ Health B 10(6):417–465

    CAS  Google Scholar 

  • Schneider LS, Tariot PN, Dagerman KS, Davis SM, Hsiao JK, Ismail MS, Sultzer DL (2006) Effectiveness of atypical antipsychotic drugs in patients with Alzheimer’s disease. N Engl J Med 355(15):1525–1538

    CAS  Google Scholar 

  • Schneider P, Löser R, Biali G (2013) Water management at the former copper mining site Medet (Bulgaria). Environ Eng Manag J 12(4):835–841

    Google Scholar 

  • Slotnick MJ, Nriagu JO (2006) Validity of human nails as a biomarker of arsenic and selenium exposure: a review. Environ Res 102(1):125–139

    CAS  Google Scholar 

  • Sthiannopkao S, Kim KW, Cho KH, Wantala K, Sotham S, Sokuntheara C, Kim JH (2010) Arsenic levels in human hair, Kandal Province, Cambodia: the influences of groundwater arsenic, consumption period, age and gender. Appl Geochem 25(1):81–90

    CAS  Google Scholar 

  • Sun JB, Czerkinsky C, Holmgren J (2010) Mucosally induced immunological tolerance, regulatory T cells and the adjuvant effect by cholera toxin B subunit. Scand J Immunol 71(1):1–11

    CAS  Google Scholar 

  • Tartaglione AM, Venerosi A, Calamandrei G (2016) Early-life toxic insults and onset of sporadic neurodegenerative diseases—an overview of experimental studies. In Neurotoxin modeling of brain disorders—life-long outcomes in behavioral teratology, pp 231–264. Springer, New York

  • Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18(3):149–175

    CAS  Google Scholar 

  • USDE US (2013) Department of Energy. The risk assessment information system (RAIS). U.S. Department of Energy’s Oak ridge operations office: Oak Ridge, TN, USA, 2013. https://rais.ornl.gov/. Accessed 4 Sept 2017

  • USEPA (1989) United States Environmental Protection Agency. Risk assessment guidance for superfund, volume i: human health evaluation manual; EPA 540-1-89-002; U.S. Environmental Protection Agency: Washington, DC, USA

  • USEPA (1992) United States Environmental Protection Agency. Guidelines for exposure assessment, risk assessment forum; [EPA/600/Z-92/001]; United States Environmental Protection Agency: Washington, DC, USA, 1992

  • USEPA (2001) United States Environmental Protection Agency. Risk assessment guidance for superfund: volume III–part A, process for conducting probabilistic risk assessment; EPA 540-R-02-002. 2001. https://www.epa.gov/sites/production/files/2015-09/documents/rags3adt_complete.pdf. Accessed 4 Sept 2017

  • USEPA (2009) United States Environmental Protection Agency. National primary drinking water regulations. http://esdat.net/Environmental%20Standards/US/Federal/US%20Federal%20MLCs.pdf. Accessed 4 Sept 2017

  • USEPA (2010) (United States Environmental Protection Agency. Toxicological review of inorganic arsenic. Washington, DC: U.S. Environmental Protection Agency. https://www.epa.gov/sites/production/files/2016-03/documents/10004a.pdf. Accessed 15 Jan 2019

  • USEPA (2011) United States Environmental Protection Agency. exposure factors handbook 2011 edition (Final). https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252. Accessed Apr 2016

  • Van der Weijden C, Pacheco FAL (2006) Hydrogeochemistry in the Vouga River basin (central Portuhal): pollution and chemical weathering. Appl Geochem 21:580–613

    Google Scholar 

  • Villanueva CM, Cantor KP, Grimalt JO, Malats N, Silverman D, Tardon A, Marcos R (2006) Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in pools. Am J Epidemiol 165(2):148–156

    Google Scholar 

  • WHO (2011) World Health Organisation—guidelines for drinkingwater quality (4th ed). http://who.int/en/. Accessed 28 Apr 2016

  • WHO (2015) Human biomonitoring: facts and figures. http://www.euro.who.int/__data/assets/pdf_file/0020/276311/Human–biomonitoring-facts-figures-en.pdf. Accessed 1 Sept 2017

  • WHO (2017) World Health Statistics 2017: monitoring health for the SDGs. http://www.who.int/gho/publications/worldhealth_statistics/2017/en/

  • Wongsasuluk P, Chotpantarat S, Siriwong W, Robson M (2014) Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ Geochem Health 36(1):169–182

    CAS  Google Scholar 

  • Wright JW, Davies KF, Lau JA, McCall AC, McKay JK (2006) Experimental verification of ecological niche modeling in a heterogeneous environment. Ecology 87(10):2433–2439

    Google Scholar 

  • Wu B, Chen T (2010) Changes in hair arsenic concentration in a population exposed to heavy pollution: Follow-up investigation in Chenzhou City, Hunan Province, Southern China. Elsevier, New York

    Google Scholar 

  • Wu S, Powers S, Zhu W, Hannun YA (2016) Substantial contribution of extrinsic risk factors to cancer development. Nature 529(7584):43

    CAS  Google Scholar 

  • Xie T, Liu X, Sun T (2011) The effects of groundwater table and flood irrigation strategies on soil water and salt dynamics and reed water use in the Yellow River Delta, China. Ecol Model 222(2):241–252

    CAS  Google Scholar 

  • Yan D, Zhang Y, Liu L, Yan H (2016) Pesticide exposure and risk of Alzheimer’s disease: a systematic review and meta-analysis. Sci Rep. https://doi.org/10.1038/srep32222

    Article  Google Scholar 

  • Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, Tomassetti P (2011) Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 364(6):514–523

    CAS  Google Scholar 

  • Zatta P, Lucchini R, Van Rensburg SJ, Taylor A (2003) The role of metals in neurodegenerative processes: aluminum, manganese, and zinc. Brain Res Bull 62:15–28

    CAS  Google Scholar 

Download references

Acknowledgements

This research was partly funded by SOIL PRECAIRE—an EU co-funded project by FEDER (Interreg V Sudoe Program). Funding for this research was provided by the Labex DRIIHM, Réseau des Observatoires Hommes-Millieux–Centre National de la Recherche Scientifique (ROHM–CNRS) and OHMI-Estarreja, and by the Foundation for Science and the Technology—SFRH/BPD/71030/2010 and the Projects (SFRH/BPD/71030/2010, UID/MAR/04292/2013, and UI/D/GEO/04035/2013). The authors thank also the participants for taking part in this research and the local private institutions of social solidarity for the collaboration (Santa Casa Misericórdia de Estarreja, Associação Humanitária de Salreu, Centro Paroquial Social São Tomé de Canelas, Centro Paroquial Social Avanca, Fundação Cónego Filipe Figueiredo Beduído and Centro Paroquial de Pardilhó). The authors would further like to thank three anonymous reviewers for their comments that greatly helped improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina M. S. Cabral Pinto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Supplementary material 2 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabral Pinto, M.M.S., Ordens, C.M., Condesso de Melo, M.T. et al. An Inter-disciplinary Approach to Evaluate Human Health Risks Due to Long-Term Exposure to Contaminated Groundwater Near a Chemical Complex. Expo Health 12, 199–214 (2020). https://doi.org/10.1007/s12403-019-00305-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12403-019-00305-z

Keywords

Navigation