Exposure and Health

, Volume 10, Issue 1, pp 61–75 | Cite as

Identifying Challenges in Assessing Risks of Exposures of Silver Nanoparticles

  • Jyoti ChawlaEmail author
  • Divya Singh
  • Baranidharan Sundaram
  • Arun Kumar
Review Paper


Silver nanoparticles (AgNPs) find applications in many consumer products due to their unique properties. It is imperative to contend with the safety issues in respect of AgNPs during manufacturing, usage, and after disposal, as manufacturers as well as consumers are likely to be exposed to these particles. This review seeks to scrutinize the current challenges in obtaining input parameters for conducting risk assessment of exposure to Ag NPs and specifically focuses on exposures of humans to Ag NPs through oral ingestion of Ag NPs via edible parts of plants, water, soil ingestion, and fish, and through dermal uptake exposure pathways. The present status of toxicological studies of silver nanoparticles and challenges in assessing risks of exposure to silver nanoparticles has been discussed in detail. The limited and contradictory existing data imply that prudence must be exercised when potential exposures to silver nanoparticle emerge from different routes.


Exposure Human health risk assessment Occurrence Silver nanoparticles Water pollution 



The authors would like to thank Manav Rachna International University, Faridabad (India) and Indian Institute of Technology, Delhi (India) for providing financial support for this study.


  1. Abdelgawad AM, Hudson SM, Rojas OJ (2014) Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr Polym 100:166–178CrossRefGoogle Scholar
  2. Alfadul SM, Elneshwy AA (2010) Use of nanotechnology in food processing, packaging and safety review. Afr J Food Agric Nutr Dev 10(6):2719–2739Google Scholar
  3. Anandan A, Kumar A (2011) Exposures to TiO2 and Ag nanoparticles: what are human health risks. Sci Soc 9(2):155–162Google Scholar
  4. Arora S, Jain J, Rajwade J, Paknikar K (2009) Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 236(3):310–318CrossRefGoogle Scholar
  5. Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, Moon MC, Il JY (2012) Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnol 10:14. doi: 10.1186/1477-3155-10-1 CrossRefGoogle Scholar
  6. AshaRani PV, Low Kah MG, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290CrossRefGoogle Scholar
  7. Bajpai SK, Bajpai M, Sharma L, Yallapu MM (2014) Silver nanoparticles loaded thermosensitive cotton fabric for antibacterial application. J Ind Text 44:58–69CrossRefGoogle Scholar
  8. Bartłomiejczyk T, Lankoff A, Kruszewski M, Szumiel I (2013) Silver nanoparticles—allies or adversaries? Ann Agric Environ Med 20(1):48–54Google Scholar
  9. Benn TM, Westerhoff P (2008a) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139CrossRefGoogle Scholar
  10. Benn TM, Westerhoff P (2008b) Nanoparticle Ag released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139. doi: 10.1021/es7032718 CrossRefGoogle Scholar
  11. Benn T et al (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39(6):1875–1882CrossRefGoogle Scholar
  12. Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E (2012) In vivo toxicity of silver nanoparticles and silver ions in Zebra fish (Danio rerio). J Toxicol 2012:1–9CrossRefGoogle Scholar
  13. Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to Ag: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409CrossRefGoogle Scholar
  14. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, ten Voorde SE, Wijnhoven SWP, Marvin HJ, Sips AJ (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62CrossRefGoogle Scholar
  15. Bumbudsanpharoke N, Ko S (2015) Nano-food packaging: an overview of market, migration research and safety regulations. J Food Sci 80:R910–R923CrossRefGoogle Scholar
  16. Burd A, Kwok CH, Hung SC et al (2007) A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regen 15(1):94–104CrossRefGoogle Scholar
  17. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619CrossRefGoogle Scholar
  18. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25(3):241–258CrossRefGoogle Scholar
  19. Chawla J, Kumar A (2016) Assessing exposure of fullerenes/functionalized fullerenes from water: risk, challenges, and knowledge gaps. J Water Qual Expo Health 5:215. doi: 10.1007/s12403-013-0100-8 Google Scholar
  20. Choi O, Clevenger TE, Deng B, Surampalli RY, Ross L, Hu Z (2009) Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43:1879–1886CrossRefGoogle Scholar
  21. Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu DY (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100:151–159CrossRefGoogle Scholar
  22. Chrastina A, Schnitzer JE (2010) Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging. Int J Nanomed 5:653–659Google Scholar
  23. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170. doi: 10.1038/nbt875 CrossRefGoogle Scholar
  24. Coman C, Tabaran F, Ilie I, Matea C, Iancu C, Mocan L, Mocan T (2013) Assessment of silver nano particles toxicity in human blood red cells using ELISA and immunofluorescence microscopy techniques. Mol Biol Nanomed 1:61–65Google Scholar
  25. Das P, McDonald JAK, Petrof EO, Allen-Vercoe E, Walker VK (2014) Nanosilver-mediated change in human intestinal microbiota. J Nanomed Nanotechnol 5:1–10Google Scholar
  26. De Gusseme B, Sintubin L, Baert L, Thibo E, Hennebel T, Vermeulen G, Uyttendale M, Verstraete W, Boon N (2010) Biogenic silver for disinfection of water contaminated with viruses. Appl Environ Microbiol 76:1082–1087CrossRefGoogle Scholar
  27. Doolette CL, McLaughlin MJ, Kirby JK, Navarro DA (2015) Bioavailability of Ag and Ag sulfide NPs to lettuce (Lactuca sativa): effect of agricultural amendments on plant uptake. J Hazard Mater 300:788–795CrossRefGoogle Scholar
  28. Dumont E, Johnson AC, Keller VDJ, Williams RJ (2015) Nano silver and nano zinc-oxide in surface waters – Exposure estimation for Europe at high spatial and temporal resolution. Environ Pollut 196:341–349CrossRefGoogle Scholar
  29. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24CrossRefGoogle Scholar
  30. Echegoyen Y, Nerín C (2013) Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol 62:16–22CrossRefGoogle Scholar
  31. Elechiguerra J, Burt J, Morones J, Camacho-Bragado A, Gao X, Lara H, Yacaman M (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6. doi: 10.1186/1477-3155-3-6 CrossRefGoogle Scholar
  32. Elkhawass EA (2015) Acute toxicity of different sizes of silver nanoparticles intraperitonally injected in balb/c mice using two toxicological methods. Int J Pharm Pharm Sci 7(2):94–99Google Scholar
  33. EPA, U.S (2009) Targeted national sewage sludge survey sampling and analysis technical report [WWW Document]. Environmental Protection Agency, Washington, DC United States. Accessed on 15 March, 2016
  34. Farkas J, Christian P, Gallego JA, Urrea N, Roos, Hassellöv M, Tollefsen KE, Thomas KV (2010) Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 96:44–52CrossRefGoogle Scholar
  35. Frattini A, Pellegri N, Nicastro D, de Sanctis O (2005) Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater Chem Phys 94:148–152CrossRefGoogle Scholar
  36. Gaiser BK, Hirn S, Kermanizadeh A, Kanase N, Fytianos K, Wenk A, Haberl N, Brunelli A, Kreyling WG, Stone V (2013) Effects of silver nanoparticles on the liver and heptocytes in vitro. Toxicol Sci 131:537–547CrossRefGoogle Scholar
  37. Gallardo OAD, Moiraghi R, Macchione MA, Godoy JA, Pérez MA, Coronado EA, Macagno VA (2012) Silver oxide particles/silver nanoparticles interconversion: susceptibility of forward/backward reactions to the chemical environment at room temperature. RSC Adv 2:2923–2929CrossRefGoogle Scholar
  38. Ge LP, Li QT, Wang M, Yang JO, Li XJ, Xing MMQ (2014) Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomed 9:2399–2407Google Scholar
  39. Geranio L, Heuberger M, Nowack B (2009) The behavior of Ag nanotextiles during washing. Environ Sci Technol 43:8113–8118. doi: 10.1021/es9018332 CrossRefGoogle Scholar
  40. Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fiber Toxicol 11:11. doi: 10.1186/1743-8977-11-11 CrossRefGoogle Scholar
  41. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222CrossRefGoogle Scholar
  42. Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978CrossRefGoogle Scholar
  43. Gu L, Li Q, Quan X, Cen Y, Jiang X (2014) Comparison of nanoAg removal by flocculent and granular sludge and short- and long-term inhibition impacts. Water Res 58:62–70. doi: 10.1016/j.watres.2014.03.028 CrossRefGoogle Scholar
  44. Hadrup N, Lam HR (2014) Oral toxicity of silver ions, silver nanoparticles and colloidal silver—a review. Regul Toxicol Pharmacol 68:1–7CrossRefGoogle Scholar
  45. Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325CrossRefGoogle Scholar
  46. Hou L, Li K, Ding Y, Li Y, Chen J, Wu X, Li X (2012) Removal of Ag NPs in simulated wastewater treatment processes and its impact on COD and NH4 reduction. Chemosphere 87:248–252. doi: 10.1016/j.chemosphere.2011.12.042 CrossRefGoogle Scholar
  47. Huang L, Dai T, Xuan Y, Tegos GP, Hamblin MR (2011) Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: efficacy against burn infections. Antimicrob Agents Chemother 55:3432–3438CrossRefGoogle Scholar
  48. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In-vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In-Vitro 19:975–983CrossRefGoogle Scholar
  49. Jeong GN, Jo UB, Ryu HY et al (2010) Histochemical study of intestinal mucins after administration of silver nanoparticles in Sprague–Dawley rats. Arch Toxicol 84:63–69CrossRefGoogle Scholar
  50. Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic Ag NPs in a pilot wastewater treatment plant. Environ Sci Technol 45:3902–3908. doi: 10.1021/es1041892 CrossRefGoogle Scholar
  51. Kaegi R, Voegelin A, Ort C, Sinne B, Thalmann B, Krismer J, Hagendorfer H, Elumelu M, Mueller E (2013) Fate and transformation of Ag NPs in urban wastewater systems. Water Res 47:3866–3877. doi: 10.1016/j.watres.2012.11.060 CrossRefGoogle Scholar
  52. Katsumiti A, Gilliland D, Arostegui I, Cajaraville MP (2015) Mechanisms of toxicity of ag nanoparticles in comparison to bulk and ionic ag on mussel hemocytes and gill cells. PLoS ONE 10:6. doi: 10.1371/journal.pone.0129039 CrossRefGoogle Scholar
  53. Kent RD, Oser JG, Vikesland PJ (2014) Controlled evaluation of Ag nanoparticle sulfidation in a full-scale wastewater treatment plant. Environ Sci Technol 48:8564–8572. doi: 10.1021/es404989t CrossRefGoogle Scholar
  54. Khanna I, Kumar A (2014) Learned discussion on “Including nanoparticles mixtures in human health risk assessment”. Integr Environ Assess Manag 10(1):144–144CrossRefGoogle Scholar
  55. Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD et al (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender-related issue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20:575–583CrossRefGoogle Scholar
  56. Kim B, Park CS, Murayama M, Hochella MF (2010) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44:7509–7514CrossRefGoogle Scholar
  57. Kim JY, Kim KT, Lee BG, Lim BJ, Kim SD (2013) Developmental toxicity of Japanese medaka embryos by silver nanoparticles and released ions in the presence of humic acid. Ecotoxicol Environ Saf 92:57–63CrossRefGoogle Scholar
  58. Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554CrossRefGoogle Scholar
  59. Korani M, Rezayat SM, Arbabi Bidgoli S (2013) Sub-chronic dermal toxicity of silver nanoparticles in guinea pig: special emphasis to heart, bone and kidney toxicities. Iran J Pharm Res Summer 12(3):511–519Google Scholar
  60. Ksiadd zyk M, Asztemborska M, Stęborowski R, Bystrzejewska Piotrowska G (2015) Toxic effect of silver and platinum nanoparticles toward the freshwater microalga Pseudokirchneriella subcapitata Małgorzata. Bull Environ Contam Toxicol 94:554–558CrossRefGoogle Scholar
  61. Kumar A, Xagoraraki I (2010) Human health risk assessment of pharmaceuticals in water: an uncertainty analysis for meprobamate, carbamazepine, and phenytoin. Regul Toxicol Pharmacol 57:146–156CrossRefGoogle Scholar
  62. Kumar A, Kumar P, Anandan A, Fernandes TF, Ayokos GA, Biskos G (2014) Engineered nanomaterials: knowledge gaps in fate, exposure, toxicity and future directions”. J Nanomater 2014:1–16Google Scholar
  63. Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255:33–37CrossRefGoogle Scholar
  64. Lau CP, Wahab MFA, Jaafar J, Chan GF, Rashid NAA (2015) Toxic effect of high concentration of sonochemically synthesized polyvinylpyrrolidone-coated silver nanoparticles on Citrobacter sp. A1 and Enterococcus sp. C1. J Microbiol Immunol. doi: 10.1016/j.jmii.2015.08.004 Google Scholar
  65. Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1:133–143CrossRefGoogle Scholar
  66. Lee WM, Kwak JI, An YJ (2012) Effect of Ag NPs in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86(5):491–499CrossRefGoogle Scholar
  67. Levard C, Reinsch BC, Michel FM, Oumahi C, Lowry GV, Brown GE (2011) Sulfidation processes of PVP-coated Ag NPs in aqueous solution: impact on dissolution rate. Environ Sci Technol 45:5260–5266. doi: 10.1021/es2007758 CrossRefGoogle Scholar
  68. Li L, Hartmann G, Schuster M (2013) Quantification of nanoscale Ag particles removal and release from municipal wastewater treatment plants in Germany. Environ Sci Technol 47:7317–7323. doi: 10.1021/es3041658 CrossRefGoogle Scholar
  69. Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175CrossRefGoogle Scholar
  70. Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, Mortensen A, Lam HR, Larsen EH (2011) Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 8:18. doi: 10.1186/1743-8977-8-18 CrossRefGoogle Scholar
  71. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PKH, Chiu JF, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527−534CrossRefGoogle Scholar
  72. Lombi E, Donner E, Taheri S, Tavakkoli E, Jämting ÅK, McClure S, Naidu R, Miller BW, Scheckel KG, Vasilev K (2013) Transformation of four Ag/Ag chloride NPs during anaerobic treatment of wastewater and post-processing of sewage sludge. Environ Pollut 176:193–197. doi: 10.1016/j.envpol.2013.01.029 CrossRefGoogle Scholar
  73. Lorenz C, Hagendorfer H, von Goetz N, Kaegi R, Gehrig R, Ulrich A, Scheringer M, Hungerbühler K (2011) Nanosized aerosols from consumer sprays: experimental analysis and exposure modeling for four commercial products. J Nanopart Res 13:3377–3391CrossRefGoogle Scholar
  74. Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ et al (2012) Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol 46:7027–7036CrossRefGoogle Scholar
  75. Lu L, Sun R, Chen R, Hui C, Ho C, Luk J, Lau G, Che C (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Therapy 13:253–262Google Scholar
  76. Ma Y, Metch JW, Vejerano EP, Miller IJ, Leon EC, Marr LC, Vikesland PJ, Pruden A (2014) Microbial community response of nitrifying sequencing batch reactors to Ag, zero-valent iron, titanium dioxide and cerium dioxide nanomaterials. Water Res 68C:87–97. doi: 10.1016/j.watres.2014.09.008 Google Scholar
  77. Maneewattanapinyo P, Banlunara W, Thammacharoen C, Ekgasit S, Kaewamatawong T (2011) An evaluation of acute toxicity of colloidal silver nanoparticles. J Vet Med Sci 73:1417–1423CrossRefGoogle Scholar
  78. Marambio-Jones C, Hoek EMVA (2010) Review of the antibacterial effects of silver nanomaterials and potential implications for human health and environment. J Nanopart Res 12(5):1531–1551CrossRefGoogle Scholar
  79. Musee N (2011) Simulated environmental risk estimation of engineered nanomaterials: A case of cosmetics in Johannesburg City. Hum Exp Toxicol 30(9):1181–1195CrossRefGoogle Scholar
  80. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22CrossRefGoogle Scholar
  81. Panda KK, Achary MM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro 25:1097–1105. doi: 10.1016/j.tiv.2011.03.008 CrossRefGoogle Scholar
  82. Park HJ, Kim HY, Cha S, Ahn CH, Roh J, Park S, Kim S, Choi K, Yi J, Kim Y, Yoon J (2013) Removal characteristics of engineered NPs by activated sludge. Chemosphere 92:524–528. doi: 10.1016/j.chemosphere.2013.03.020 CrossRefGoogle Scholar
  83. Patra JK, Gouda S (2013) Application of nanotechnology in textile engineering: an overview. J Eng Technol Res 5:104–111CrossRefGoogle Scholar
  84. Ramos K, Gomez GMM, Camara C, Ramos L (2016) Silver speciation and characterization of nanoparticles released from plastic food containers by single particle ICPMS. Talanta 151:83–90CrossRefGoogle Scholar
  85. Reidy B, Haase A, Luch A, Dawson K, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6:2295–2350. doi: 10.3390/ma6062295 CrossRefGoogle Scholar
  86. Salari JH, Kalbassi MR, Yu IJ, Lee JH, Johari SA (2013) Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): influence of concentration and salinity. Aquat Toxicol 15:398–406CrossRefGoogle Scholar
  87. Samberg ME, Oldenburg SJ, Monteiro-Riviere NA (2010) Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect 118:407–413CrossRefGoogle Scholar
  88. Sardari RRR, Zarchi SR, Talebi A, Nasri S, Imani S, Khoradmehr A et al (2012) Toxicological effects of silver nanoparticles in rats. Afr J Microbiol Res 6:5587–5593Google Scholar
  89. Shahare B, Yashpal M, Singh G (2013) Toxic effects of repeated oral exposure of silver nanoparticles on small intestine mucosa of mice. Toxicol Mech Methods 23(3):161–167CrossRefGoogle Scholar
  90. Simon P, Chaudhry Q, Bakos D (2008) Migration of engineered nanoparticles from polymer packaging to food—a physicochemical view. J Food Nutr Res 47:105–113Google Scholar
  91. Singh D, Kumar A (2014) Human exposures of engineered nanoparticles from plants irrigated with contaminated water: mixture toxicity issues and challenges ahead. Adv Sci Lett 20:1204–1207CrossRefGoogle Scholar
  92. Singh D, Kumar A (2015) Effects of nano silver oxide and silver ions on growth of Vigna radiate. Bull Environ Contam Toxicol 95(3):379–384CrossRefGoogle Scholar
  93. Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67CrossRefGoogle Scholar
  94. Stebounova LV, Adamcakova-Dodd A, Kim JS, Park H, O’Shaughnessy PT, Grassian VH, Thorne PS (2011) Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Particle Fibre Technol 8:1–12CrossRefGoogle Scholar
  95. Sun L, Singh A, Vig K, Pillai S, Singh S (2008) Silver nanoparticles inhibit replication of respiratory syncytial virus. J Biomed Nanotechnol 4:149–158Google Scholar
  96. Sundaram J, Park B, Kwon Y, Lawrence KC (2013) Surface enhanced Raman scattering (SERS) with biopolymer encapsulated silver nanosubstrates for rapid detection of food borne pathogens. Int J Food Microbiol 167:67–73CrossRefGoogle Scholar
  97. Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Chang HK, Lee JH, Cho MH, Kelman BJ, Yu IJ (2009) Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 108:452–461CrossRefGoogle Scholar
  98. Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014) Effect of Ag NPs on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309CrossRefGoogle Scholar
  99. Trop M, Novak M, Rodl S, Hellbom B, Kroell W, Goessler W (2006) Silver-coated dressing Acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J Trauma 60:648–652CrossRefGoogle Scholar
  100. USEPA (1997) Exposure factors handbook, vol I, General factors. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  101. Van der Zande M, Vandebriel RJ, van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, Gremmer ER, Mast J, Peters RJB, Hollman PCH, Hendriksen PJM, Marvin HJP, Peijnenburg AACM, Bouwmeester H (2012) Distribution, elimination and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6(8):7427–7442CrossRefGoogle Scholar
  102. Vlachou E, Chipp E, Shale E, Wilson YT, Papini R, Moiemen NS (2007) The safety of nanocrystalline silver dressings on burns: a study of systemic silver absorption. Burns 33:979–985CrossRefGoogle Scholar
  103. Walser T, Demou E, Lang DJ, Hellweg S (2011) Prospective environmental life cycle assessment of nanosilver T-shirts. Environ Sci Technol 45:4570–4578CrossRefGoogle Scholar
  104. Wang J, Huang CP, Pirestani D (2003) Interactions of Ag with wastewater constituents. Water Res 37:4444–4452. doi: 10.1016/S0043-1354(03)00407-X CrossRefGoogle Scholar
  105. Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gösens I, Van de Meent D, Dekkers S, De Jong WH, Van Zijverden M, Sips AJAM, Geertsma RE (2009a) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2):109–138CrossRefGoogle Scholar
  106. Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens W, Oomen AG, Heugens EHV, Roszek B, Bisschops J, Gosens I, van de Meent D et al (2009b) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138CrossRefGoogle Scholar
  107. Wu Y, Zhoua Q, Li H, Liua W, Wanga T, Jianga G (2010) Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partiallife test. Aquat Toxicol 100:160–167CrossRefGoogle Scholar
  108. Yin N, Liu Q, Liu J, He B, Cui L, Li Z, Yun Z, Qu G, Liu S, Zhou Q, Jiang G (2013) Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. Small 9:1831–1841Google Scholar
  109. Yu WJ, Son JS, Lee J, Kim SH, Lee IC, Baek HS, Shin IS, Moon C, Kim SH, Kim JC (2014) Effects of silver nanoparticles on pregnant dams and embryo-fetal development in rats. Nanotoxicology 8:85–91CrossRefGoogle Scholar
  110. Yuan ZH, Yang X, Hu A, Yu CP (2015a) Long-term impacts of Ag NPs in an anaerobic–anoxic–oxic membrane bioreactor system. Chem Eng J 276:83–90. doi: 10.1016/j.cej.2015.04.059 CrossRefGoogle Scholar
  111. Yuan ZH, Yang X, Hu A, Zheng YM, Yu CP (2015b) Assessment of the fate of Ag NPs in the A(2)O-MBR system. Sci Total Environ 544:901–907. doi: 10.1016/j.scitotenv.2015.11.158 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Jyoti Chawla
    • 1
    Email author
  • Divya Singh
    • 2
  • Baranidharan Sundaram
    • 2
  • Arun Kumar
    • 2
  1. 1.Department of ChemistryManav Rachna International UniversityFaridabadIndia
  2. 2.Department of Civil EngineeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations