Advertisement

Exposure and Health

, Volume 8, Issue 3, pp 389–400 | Cite as

Enrichment and Sources of Nitrogen in Groundwater in the Turpan-Hami Area, Northwestern China

  • Wanjun Jiang
  • Guangcai WangEmail author
  • Yizhi Sheng
  • Dan Zhao
  • Chenglong Liu
  • Yonghai Guo
Original Paper

Abstract

High contents of nitrogen in groundwater were found in the Turpan-Hami area, Xinjiang, China, whereas the enrichment characteristics and sources of nitrogen were poorly understood. In this study, totally 19 groups of groundwater samples were collected in the Turpan-Hami area for chemistry and isotope analysis. Combining with the hydrochemical, hydrogen, oxygen, and nitrogen stable isotopes data, the distribution and sources of nitrogen of groundwater in the Turpan-Hami area were analyzed. The results showed that the groundwater mainly originated from the atmospheric precipitation, and the evaporation was the dominant mode for groundwater discharge in Turpan-Hami area. The concentration of nitrate (NO 3 - –N) in groundwater varies from 23.29 to 1819.49 mg/L. Obvious enrichment trend of nitrogen was observed along the groundwater flow direction. The increase of nitrate, nitrite, and ammonia concentrations were consistent with that of TDS in the area. The concentrations of nitrogen species were dominated by the strong evaporation rather than human activity except for one sample. The δ15N-NO 3 - in groundwater ranges from −0.6 to +31 ‰, and mostly in a range of +4.1 to +19.3 ‰. The δ18O–NO3 ranges from +16.3 to +37.4 ‰. The result indicated that nitrate in groundwater was mainly derived from atmospheric precipitation, and the conversion of nitrate, nitrite, and ammonia in groundwater was not active in the area.

Keywords

Hydrochemical characteristics Stable nitrogen and oxygen isotopes Nitrate, nitrite, and ammonia Atmospheric precipitation Turpan-Hami area 

References

  1. Andersson KK, Hooper AB (1983) O2 and H2O are each the source of one O in NO2 produced from NH3 by Nitrosomonas: 15N-NMR evidence. FEBS Lett 164:236–240. doi: 10.1016/0014-5793(83)80292-0 CrossRefGoogle Scholar
  2. Aravena R, Robertson WD (1998) Use of multiple isotope tracers to evaluate denitrifi-cation in ground water: study of nitrate from a large-flux septic system plume. Ground Water 36:975–982. doi: 10.1111/j.1745-6584.1998.tb02104.x CrossRefGoogle Scholar
  3. Barnes CJ, Jacobson Q, Smith GD (1992) Origin of high-nitrate groundwater in the Australian arid zone. J Hydrol 137:181–197. doi: 10.1016/0022-1694(92)90055-Z CrossRefGoogle Scholar
  4. Böttcher J, Strebel O, Voerkeliust S (1990) Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J Hydrol 114:413–424. doi: 10.1016/0022-1694(90)90068-9 CrossRefGoogle Scholar
  5. Canter LW (1997) Nitrates in groundwater. CRC Press, BocaRatonGoogle Scholar
  6. Chen JY, Tang CY, Yu JJ (2006) Use of 18O, 2H and 15N to identify nitrate contamination of groundwater in a wastewater irrigated field near the city of Shijiazhuang, China. Journal of Hydrology 326(1/4):367–378. doi: 10.1016/j.jhydrol.2005.11.007 CrossRefGoogle Scholar
  7. Choi WJ, Lee SM, Ro HM (2003) Evaluation of contamination sources of ground water NO3 using nitrogen isotope data: a review. Geosci J 7:81–87. doi: 10.1007/BF02910268 CrossRefGoogle Scholar
  8. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Fla Lewis Publishers, Boca RatonGoogle Scholar
  9. Dang YX, Pan KY, Liu ZQ (2010) The basic characteristics and metallogenic mechanism of nitrate mine in Xinjiang. Xinjiang Non ferrous Metal 5:1–5 (in Chinese) Google Scholar
  10. Deng L, Cao YQ, Wang WK (2007) An overview of the study on Nitrogen and Oxygen isotopes of Nitrate in groundwater. Adv Earth Sci 22:716–719Google Scholar
  11. Durka W, Schuize ED, Gebauer Q, Voerkelius S (1994) Effects of forest decline and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372:765–767. doi: 10.1038/372765a0 CrossRefGoogle Scholar
  12. Faillat JP, Rambaud A (1991) Deforestation and leaching of nitrogen as nitrates in underground water in intertropical zones: the example of Cote d’lvoire. Environ Geol Water Sci 17:133–140. doi: 10.1007/BF01701569 CrossRefGoogle Scholar
  13. Friedman I, Machta L, Soller R (1962) Water vapour exchange between a water droplet and its environment. J Geophys Res 67:2761–2766. doi: 10.1029/JZ067i007p02761 CrossRefGoogle Scholar
  14. Galloway JN, Aber JD, Erisman JW (2003) The nitrogen cascade. Bioscience 53(4):341–356CrossRefGoogle Scholar
  15. Gates JB, BÖHLKE JK (2008) Ecohydrological factors affecting nitrate Concentrations in a phreatic desert aquifer in northwestern China. Environ. Environ Sci Technol. 42(10):3531–3537. doi: 10.1021/es702478d CrossRefGoogle Scholar
  16. Gates JB, Edmunds WM, Ma J, Scanlon BR (2008) Estimating groundwater recharge in a cold desert environment in northern China using chloride. Hydrogeol J 16:893–910. doi: 10.1007/s10040-007-0264-z CrossRefGoogle Scholar
  17. Ge WS, Michalski G, Cai KQ, Wang F, Liu YR (2014) The characteristics and genesis of the massive nitrate deposits in the Turpan-Hami basin of Xinjiang, China. Acta Geologica Sin (Eng Edn) 88(supp. 1):218–219. doi: 10.1111/1755-6724.12269_9 CrossRefGoogle Scholar
  18. Geoffrey T, Dimitri V, Zheng CM (2004) AqQA: quality assurance and presentation graphics for ground water analyses. Ground Water 42(3):326–328. doi: 10.1111/j.1745-6584.2004.tb02680.x CrossRefGoogle Scholar
  19. Guo YH, Li NN, Zhou ZC et al (2014) Groundwater chemical characteristics in Yamansu and Tianhu section for high level radioactive waste disposal repository. J Nucl Radiochem 36:78–84 (in Chinese) Google Scholar
  20. Guo YH, Li NN, Zhou ZC et al (2016) Characteristics and implications of groundwater isotopes in Yamansu and Tianhu preselected section for China’s high level radioactive waste disposal repository. Acta Geol Sinica 90(2):376–382 (in Chinese) Google Scholar
  21. Hasanah L, Iryanti M, Ardhi ND (2013) Development of software for making contour plot using matlab to be used for teaching purpose. Appl Phys Res. doi: 10.5539/apr.v5n1p78 Google Scholar
  22. Heaton THE (1990) 15N/14N ratios of NOx from vehicle engines and coal-fi red power stations. Tellus 42(3):304–307. doi: 10.1034/j.1600-0889.1990.t01-1-00009.x Google Scholar
  23. Hejabi AT, Basavarajappa HT, Karbassi AR, Monavari SM (2011) Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India. Environ Monit Assess 182:1–13. doi: 10.1007/s10661-010-1854-0 CrossRefGoogle Scholar
  24. Hollocher TC (1984) Source of the oxygen atoms of nitrate in the oxidation of nitrite by nitrobacter agilis and evidence against a P-O-N anhydride mechanism in oxidative phosphorylation. Archive Biochem Biophys 233:721–727. doi: 10.1016/0003-9861(84)90499-5 CrossRefGoogle Scholar
  25. Huang TD (2005) Formation of wuyongblake salt lake in Xinjiang and characteristic of potassium nitrate deposit. Xinjiang Geol 23(1):36–40 (in Chinese) Google Scholar
  26. Kendall C (1998) Tracing Nitrogen Sources and Cycling in Catchments. In: Kendall C, McDonnell JJ (eds) Isotope Tracers in Catchment Hydrology. Elsevier, Amsterdam, pp 519–576. doi: 10.1016/B978-0-444-81546-0.50023-9 CrossRefGoogle Scholar
  27. Kendall C, Aravena R (2000) Nitrate isotopes in groundwater systems. Environl Tracers Subsurf Hydrol. doi: 10.1007/978-1-4615-4557-6_9 Google Scholar
  28. Kendall C, McDonnell JJ (1998) Isotope tracers in catchment hydrology. Elsevier, Philadelphia, pp 519–569CrossRefGoogle Scholar
  29. Kendall C, Silva SR, Stober QJ (1998) Mapping spatial variability un marsh redox conditions in the Florida ever glade using biomass stable isotopic compositions. EOS 79:s88Google Scholar
  30. Knobeloch L, Salna B, Hogan A (2000) Blue babies and nitrate-contaminated well water. Environ Health Perspet 108(7):675–678. doi: 10.2307/3434890 CrossRefGoogle Scholar
  31. Lee KS, Bong YS, Lee D, Kim K, Kim K (2008) Tracing the sources of nitrate in the Han River watershed in Korea, using δ 15N–NO3 and δ 18O–NO3 values. Sci Total Environ 2:117–124. doi: 10.1016/j.scitotenv.2008.01.058 CrossRefGoogle Scholar
  32. Li JB (2014) Reviews on study methods of groundwater recharge in arid and semi-arid region. Dissertation, Institute of Geology, China Earthquake Administration, BeijingGoogle Scholar
  33. Li YH, Qin Y, Liu F (2010) Discovery of mass independent oxygen isotopic compositions in super-scale nitrate mineral deposits from Turpan-Hami Basin, Xinjiang, China and its significance. Geochmica Et Cosmochimica Acta 84(6):1514–1519. doi: 10.1111/j.1755-6724.2010.00210.x Google Scholar
  34. Li P, Qian H, Wu J (2014) Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, northwest China. Environ Geochem Health 36(4):693–712. doi: 10.1007/s10653-013-9590-3) CrossRefGoogle Scholar
  35. Li P, Qian H, Howard KWF, Wu J (2015) Building a new and sustainable ‘‘Silk Road economic belt’’. Environ Earth Sci 74:7267–7270. doi: 10.1007/s12665-015-4739-2 CrossRefGoogle Scholar
  36. Li P, Wu J, Qian H, Zhang Y, Yang N, Jing L, Yu P (2016) Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert. Expo Health, Northwest China. doi: 10.1007/s12403-016-0193-y Google Scholar
  37. Ma J, Edmunds WM (2006) Groundwater and lake evolution in the Badain Jaran desert ecosystem, Inner Mongolia. Hydrogeol J 14(7):1231–1243. doi: 10.1007/s10040-006-0045-0 CrossRefGoogle Scholar
  38. Ma J, Edmunds WM, He J, Jia B (2009) A 2000 year geochemical record of palaeoclimate and hydrology derived from dune sand moisture. Palaeogeogr Palaeoclimatol Palaeoecol 276:38–46. doi: 10.1016/j.palaeo.2009.02.028 CrossRefGoogle Scholar
  39. Mahvi AH, Nouri J, Babaei AA, Nabizadeh R (2005) Agricultural activities impact on groundwater nitrate pollution. Int J Environ Sci Technol 2(1):41–47. doi: 10.1007/BF03325856 CrossRefGoogle Scholar
  40. Mariotti A, Germon JC, Hubert P (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitriflcation and nitrification processes. Plant Soil 62(3):413–430. doi: 10.1007/BF02374138 CrossRefGoogle Scholar
  41. Marret DJ, Khattak RA, Elseewi AA, Page AL (1990) Elevated nitrate levels in soil of eastern of Mojave desert. J Environ Qual 19:658–663. doi: 10.2134/jeq1990.00472425001900040005x CrossRefGoogle Scholar
  42. Mattern S, Sebilo M, Vanclooster M (2011) Identification of the nitrate contamination sources of the Brusselian sands groundwater body (Belgium) using a dual-isotope approach. Isot Environ Health Stud 3:279–315. doi: 10.1080/10256016.2011.604127 Google Scholar
  43. McKeon CA, Jordan FL, Glenn EP (2005) Rapid nitrate loss from a contaminated desert soil. J Arid Environ 61:119–136. doi: 10.1016/j.jaridenv.2004.08.006 CrossRefGoogle Scholar
  44. Pan WY (2014) NO3 circulation in vadose zone and its response to paleao-hydrology and environment e of Badain Jaran. Dissertation, Lanzhou UniversityGoogle Scholar
  45. Qin Y, Li YH, Liu F, Hou KJ, Wan DF (2008) Mass Independent Oxygen Isotope Fractionation in Nitrate Deposits of the Turpan-Hami Area, Xinjiang. Acta Geoscientica Sinica 6:729–734Google Scholar
  46. Qin Y, Li YH, Bao HM, Liu F et al (2012a) Massive atmospheric nitrate accumulation in a continental interior desert, northwestern China. Geology 40(7):623–626. doi: 10.1130/G32953.1 CrossRefGoogle Scholar
  47. Qin Y, Li YH, Liu F et al (2012b) N and O isotopes and the ore-forming mechanism of nitrate deposits in the Turpan-Hami Basin, Xinjiang, China. Sci China Earth Sci 55:213–220. doi: 10.1007/s11430-011-4358-z CrossRefGoogle Scholar
  48. Qiu HX, Liu GQ, Jiao CY (1997) The circulation of nitrogen and groundwater pollution in Xindian area: case study. J Ocean Univ Qingdao 27(4):533–538 (in Chinese) Google Scholar
  49. Schaeffer SM, Billings SA, Evans RD (2003) Responses of soil nitrogen dynamics in a Mojave Desert ecosystem to manipulations in soil carbon and nitrogen availability. Oecologia 134:547–553. doi: 10.1007/s00442-002-1130-2 CrossRefGoogle Scholar
  50. Seifert E (2014) OriginPro 9.1: scientific data analysis and graphing software—software review. J Chem Inf Model 54(5):1552. doi: 10.1021/ci500161d CrossRefGoogle Scholar
  51. Seiler RL (2005) Combined use of 15N and 18O of nitrate and 11B to evaluate nitrate contamination in groundwater. Appl Geochem 20(9):1626–1636. doi: 10.1016/j.apgeochem.2005.04.007 CrossRefGoogle Scholar
  52. Smith SD, Huxman T, Ziter SF (2000) Elevated CO2 increase productivity and invasive species success in an arid ecosystem. Nature 408:79–82. doi: 10.1038/35040544 CrossRefGoogle Scholar
  53. Umezawa Y, Hosono T, Onodera S, Siringan F et al (2008) Sources of nitrate and ammonium contamination in groundwater under developing Asian megacities. Sci Total Environ 404(2–3):361–376. doi: 10.1016/j.scitotenv.2008.04.021 CrossRefGoogle Scholar
  54. Walvoord MA, Phillips FM, Stonestrom DA (2003) A reservoir of Nitrate Beneath Desert Soils. Science 302(5647):1021–1024. doi: 10.1126/science.1086435 CrossRefGoogle Scholar
  55. Wang DS (1997) Basis for the use of nitrogen isotopes to identify nitrogen contamination of groundwater. Acta Geosicientia Sin 18:221–223 (in Chinese) Google Scholar
  56. Weyer P, Cerhan JR, Kross BC et al (2001) Unicipal drinking water nitrate level and cancer risk in older women: tiie Iowa women’s health study. Epidemiology 12(3):327–338. doi: 10.1097/00001648-200105000-00013 CrossRefGoogle Scholar
  57. Widory D, Petelet-Giraud E, Negrel P et al (2005) Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: a synthesis. Environ Sci Technol 39(2):539–548. doi: 10.1021/es0493897 CrossRefGoogle Scholar
  58. Wigand C, McKinney RA, Cole ML, Thursby GB et al (2007) Varying Stable Nitrogen Isotope Ratios of Different Coastal Marsh Plants and Their Relationships with Wastewater Nitrogen and Land Use in New England, USA. Environ Monit Assess 1:71–81. doi: 10.1007/s10661-006-9457-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Wanjun Jiang
    • 1
    • 2
    • 3
  • Guangcai Wang
    • 1
    • 2
    • 3
    Email author
  • Yizhi Sheng
    • 1
    • 2
    • 3
  • Dan Zhao
    • 1
    • 2
    • 3
  • Chenglong Liu
    • 4
  • Yonghai Guo
    • 5
  1. 1.School of Water Resources and EnvironmentChina University of GeosciencesBeijingChina
  2. 2.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesBeijingChina
  3. 3.MOE Key Laboratory of Groundwater Circulation and EvolutionChina University of GeosciencesBeijingChina
  4. 4.Institute of GeologyChina Earthquake AdministrationBeijingChina
  5. 5.Beijing Research Institute of Uranium GeologyBeijingChina

Personalised recommendations