Skip to main content
Log in

Enrichment and Sources of Nitrogen in Groundwater in the Turpan-Hami Area, Northwestern China

Exposure and Health Aims and scope Submit manuscript

Abstract

High contents of nitrogen in groundwater were found in the Turpan-Hami area, Xinjiang, China, whereas the enrichment characteristics and sources of nitrogen were poorly understood. In this study, totally 19 groups of groundwater samples were collected in the Turpan-Hami area for chemistry and isotope analysis. Combining with the hydrochemical, hydrogen, oxygen, and nitrogen stable isotopes data, the distribution and sources of nitrogen of groundwater in the Turpan-Hami area were analyzed. The results showed that the groundwater mainly originated from the atmospheric precipitation, and the evaporation was the dominant mode for groundwater discharge in Turpan-Hami area. The concentration of nitrate (NO -3 –N) in groundwater varies from 23.29 to 1819.49 mg/L. Obvious enrichment trend of nitrogen was observed along the groundwater flow direction. The increase of nitrate, nitrite, and ammonia concentrations were consistent with that of TDS in the area. The concentrations of nitrogen species were dominated by the strong evaporation rather than human activity except for one sample. The δ15N-NO -3 in groundwater ranges from −0.6 to +31 ‰, and mostly in a range of +4.1 to +19.3 ‰. The δ18O–NO3 ranges from +16.3 to +37.4 ‰. The result indicated that nitrate in groundwater was mainly derived from atmospheric precipitation, and the conversion of nitrate, nitrite, and ammonia in groundwater was not active in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Andersson KK, Hooper AB (1983) O2 and H2O are each the source of one O in NO2 produced from NH3 by Nitrosomonas: 15N-NMR evidence. FEBS Lett 164:236–240. doi:10.1016/0014-5793(83)80292-0

    Article  CAS  Google Scholar 

  • Aravena R, Robertson WD (1998) Use of multiple isotope tracers to evaluate denitrifi-cation in ground water: study of nitrate from a large-flux septic system plume. Ground Water 36:975–982. doi:10.1111/j.1745-6584.1998.tb02104.x

    Article  CAS  Google Scholar 

  • Barnes CJ, Jacobson Q, Smith GD (1992) Origin of high-nitrate groundwater in the Australian arid zone. J Hydrol 137:181–197. doi:10.1016/0022-1694(92)90055-Z

    Article  CAS  Google Scholar 

  • Böttcher J, Strebel O, Voerkeliust S (1990) Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J Hydrol 114:413–424. doi:10.1016/0022-1694(90)90068-9

    Article  Google Scholar 

  • Canter LW (1997) Nitrates in groundwater. CRC Press, BocaRaton

    Google Scholar 

  • Chen JY, Tang CY, Yu JJ (2006) Use of 18O, 2H and 15N to identify nitrate contamination of groundwater in a wastewater irrigated field near the city of Shijiazhuang, China. Journal of Hydrology 326(1/4):367–378. doi:10.1016/j.jhydrol.2005.11.007

    Article  CAS  Google Scholar 

  • Choi WJ, Lee SM, Ro HM (2003) Evaluation of contamination sources of ground water NO3 using nitrogen isotope data: a review. Geosci J 7:81–87. doi:10.1007/BF02910268

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Fla Lewis Publishers, Boca Raton

    Google Scholar 

  • Dang YX, Pan KY, Liu ZQ (2010) The basic characteristics and metallogenic mechanism of nitrate mine in Xinjiang. Xinjiang Non ferrous Metal 5:1–5 (in Chinese)

    Google Scholar 

  • Deng L, Cao YQ, Wang WK (2007) An overview of the study on Nitrogen and Oxygen isotopes of Nitrate in groundwater. Adv Earth Sci 22:716–719

    Google Scholar 

  • Durka W, Schuize ED, Gebauer Q, Voerkelius S (1994) Effects of forest decline and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372:765–767. doi:10.1038/372765a0

    Article  CAS  Google Scholar 

  • Faillat JP, Rambaud A (1991) Deforestation and leaching of nitrogen as nitrates in underground water in intertropical zones: the example of Cote d’lvoire. Environ Geol Water Sci 17:133–140. doi:10.1007/BF01701569

    Article  CAS  Google Scholar 

  • Friedman I, Machta L, Soller R (1962) Water vapour exchange between a water droplet and its environment. J Geophys Res 67:2761–2766. doi:10.1029/JZ067i007p02761

    Article  CAS  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW (2003) The nitrogen cascade. Bioscience 53(4):341–356

    Article  Google Scholar 

  • Gates JB, BÖHLKE JK (2008) Ecohydrological factors affecting nitrate Concentrations in a phreatic desert aquifer in northwestern China. Environ. Environ Sci Technol. 42(10):3531–3537. doi:10.1021/es702478d

    Article  CAS  Google Scholar 

  • Gates JB, Edmunds WM, Ma J, Scanlon BR (2008) Estimating groundwater recharge in a cold desert environment in northern China using chloride. Hydrogeol J 16:893–910. doi:10.1007/s10040-007-0264-z

    Article  CAS  Google Scholar 

  • Ge WS, Michalski G, Cai KQ, Wang F, Liu YR (2014) The characteristics and genesis of the massive nitrate deposits in the Turpan-Hami basin of Xinjiang, China. Acta Geologica Sin (Eng Edn) 88(supp. 1):218–219. doi:10.1111/1755-6724.12269_9

    Article  Google Scholar 

  • Geoffrey T, Dimitri V, Zheng CM (2004) AqQA: quality assurance and presentation graphics for ground water analyses. Ground Water 42(3):326–328. doi:10.1111/j.1745-6584.2004.tb02680.x

    Article  Google Scholar 

  • Guo YH, Li NN, Zhou ZC et al (2014) Groundwater chemical characteristics in Yamansu and Tianhu section for high level radioactive waste disposal repository. J Nucl Radiochem 36:78–84 (in Chinese)

    CAS  Google Scholar 

  • Guo YH, Li NN, Zhou ZC et al (2016) Characteristics and implications of groundwater isotopes in Yamansu and Tianhu preselected section for China’s high level radioactive waste disposal repository. Acta Geol Sinica 90(2):376–382 (in Chinese)

    Google Scholar 

  • Hasanah L, Iryanti M, Ardhi ND (2013) Development of software for making contour plot using matlab to be used for teaching purpose. Appl Phys Res. doi:10.5539/apr.v5n1p78

    Google Scholar 

  • Heaton THE (1990) 15N/14N ratios of NOx from vehicle engines and coal-fi red power stations. Tellus 42(3):304–307. doi:10.1034/j.1600-0889.1990.t01-1-00009.x

    Google Scholar 

  • Hejabi AT, Basavarajappa HT, Karbassi AR, Monavari SM (2011) Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India. Environ Monit Assess 182:1–13. doi:10.1007/s10661-010-1854-0

    Article  CAS  Google Scholar 

  • Hollocher TC (1984) Source of the oxygen atoms of nitrate in the oxidation of nitrite by nitrobacter agilis and evidence against a P-O-N anhydride mechanism in oxidative phosphorylation. Archive Biochem Biophys 233:721–727. doi:10.1016/0003-9861(84)90499-5

    Article  CAS  Google Scholar 

  • Huang TD (2005) Formation of wuyongblake salt lake in Xinjiang and characteristic of potassium nitrate deposit. Xinjiang Geol 23(1):36–40 (in Chinese)

    CAS  Google Scholar 

  • Kendall C (1998) Tracing Nitrogen Sources and Cycling in Catchments. In: Kendall C, McDonnell JJ (eds) Isotope Tracers in Catchment Hydrology. Elsevier, Amsterdam, pp 519–576. doi:10.1016/B978-0-444-81546-0.50023-9

    Chapter  Google Scholar 

  • Kendall C, Aravena R (2000) Nitrate isotopes in groundwater systems. Environl Tracers Subsurf Hydrol. doi:10.1007/978-1-4615-4557-6_9

    Google Scholar 

  • Kendall C, McDonnell JJ (1998) Isotope tracers in catchment hydrology. Elsevier, Philadelphia, pp 519–569

    Book  Google Scholar 

  • Kendall C, Silva SR, Stober QJ (1998) Mapping spatial variability un marsh redox conditions in the Florida ever glade using biomass stable isotopic compositions. EOS 79:s88

    Google Scholar 

  • Knobeloch L, Salna B, Hogan A (2000) Blue babies and nitrate-contaminated well water. Environ Health Perspet 108(7):675–678. doi:10.2307/3434890

    Article  CAS  Google Scholar 

  • Lee KS, Bong YS, Lee D, Kim K, Kim K (2008) Tracing the sources of nitrate in the Han River watershed in Korea, using δ 15N–NO3 and δ 18O–NO3 values. Sci Total Environ 2:117–124. doi:10.1016/j.scitotenv.2008.01.058

    Article  Google Scholar 

  • Li JB (2014) Reviews on study methods of groundwater recharge in arid and semi-arid region. Dissertation, Institute of Geology, China Earthquake Administration, Beijing

  • Li YH, Qin Y, Liu F (2010) Discovery of mass independent oxygen isotopic compositions in super-scale nitrate mineral deposits from Turpan-Hami Basin, Xinjiang, China and its significance. Geochmica Et Cosmochimica Acta 84(6):1514–1519. doi:10.1111/j.1755-6724.2010.00210.x

    CAS  Google Scholar 

  • Li P, Qian H, Wu J (2014) Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, northwest China. Environ Geochem Health 36(4):693–712. doi:10.1007/s10653-013-9590-3)

    Article  CAS  Google Scholar 

  • Li P, Qian H, Howard KWF, Wu J (2015) Building a new and sustainable ‘‘Silk Road economic belt’’. Environ Earth Sci 74:7267–7270. doi:10.1007/s12665-015-4739-2

    Article  Google Scholar 

  • Li P, Wu J, Qian H, Zhang Y, Yang N, Jing L, Yu P (2016) Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert. Expo Health, Northwest China. doi:10.1007/s12403-016-0193-y

    Google Scholar 

  • Ma J, Edmunds WM (2006) Groundwater and lake evolution in the Badain Jaran desert ecosystem, Inner Mongolia. Hydrogeol J 14(7):1231–1243. doi:10.1007/s10040-006-0045-0

    Article  CAS  Google Scholar 

  • Ma J, Edmunds WM, He J, Jia B (2009) A 2000 year geochemical record of palaeoclimate and hydrology derived from dune sand moisture. Palaeogeogr Palaeoclimatol Palaeoecol 276:38–46. doi:10.1016/j.palaeo.2009.02.028

    Article  Google Scholar 

  • Mahvi AH, Nouri J, Babaei AA, Nabizadeh R (2005) Agricultural activities impact on groundwater nitrate pollution. Int J Environ Sci Technol 2(1):41–47. doi:10.1007/BF03325856

    Article  CAS  Google Scholar 

  • Mariotti A, Germon JC, Hubert P (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitriflcation and nitrification processes. Plant Soil 62(3):413–430. doi:10.1007/BF02374138

    Article  CAS  Google Scholar 

  • Marret DJ, Khattak RA, Elseewi AA, Page AL (1990) Elevated nitrate levels in soil of eastern of Mojave desert. J Environ Qual 19:658–663. doi:10.2134/jeq1990.00472425001900040005x

    Article  Google Scholar 

  • Mattern S, Sebilo M, Vanclooster M (2011) Identification of the nitrate contamination sources of the Brusselian sands groundwater body (Belgium) using a dual-isotope approach. Isot Environ Health Stud 3:279–315. doi:10.1080/10256016.2011.604127

    Google Scholar 

  • McKeon CA, Jordan FL, Glenn EP (2005) Rapid nitrate loss from a contaminated desert soil. J Arid Environ 61:119–136. doi:10.1016/j.jaridenv.2004.08.006

    Article  Google Scholar 

  • Pan WY (2014) NO3 circulation in vadose zone and its response to paleao-hydrology and environment e of Badain Jaran. Dissertation, Lanzhou University

  • Qin Y, Li YH, Liu F, Hou KJ, Wan DF (2008) Mass Independent Oxygen Isotope Fractionation in Nitrate Deposits of the Turpan-Hami Area, Xinjiang. Acta Geoscientica Sinica 6:729–734

    Google Scholar 

  • Qin Y, Li YH, Bao HM, Liu F et al (2012a) Massive atmospheric nitrate accumulation in a continental interior desert, northwestern China. Geology 40(7):623–626. doi:10.1130/G32953.1

    Article  CAS  Google Scholar 

  • Qin Y, Li YH, Liu F et al (2012b) N and O isotopes and the ore-forming mechanism of nitrate deposits in the Turpan-Hami Basin, Xinjiang, China. Sci China Earth Sci 55:213–220. doi:10.1007/s11430-011-4358-z

    Article  CAS  Google Scholar 

  • Qiu HX, Liu GQ, Jiao CY (1997) The circulation of nitrogen and groundwater pollution in Xindian area: case study. J Ocean Univ Qingdao 27(4):533–538 (in Chinese)

    Google Scholar 

  • Schaeffer SM, Billings SA, Evans RD (2003) Responses of soil nitrogen dynamics in a Mojave Desert ecosystem to manipulations in soil carbon and nitrogen availability. Oecologia 134:547–553. doi:10.1007/s00442-002-1130-2

    Article  CAS  Google Scholar 

  • Seifert E (2014) OriginPro 9.1: scientific data analysis and graphing software—software review. J Chem Inf Model 54(5):1552. doi:10.1021/ci500161d

    Article  CAS  Google Scholar 

  • Seiler RL (2005) Combined use of 15N and 18O of nitrate and 11B to evaluate nitrate contamination in groundwater. Appl Geochem 20(9):1626–1636. doi:10.1016/j.apgeochem.2005.04.007

    Article  CAS  Google Scholar 

  • Smith SD, Huxman T, Ziter SF (2000) Elevated CO2 increase productivity and invasive species success in an arid ecosystem. Nature 408:79–82. doi:10.1038/35040544

    Article  CAS  Google Scholar 

  • Umezawa Y, Hosono T, Onodera S, Siringan F et al (2008) Sources of nitrate and ammonium contamination in groundwater under developing Asian megacities. Sci Total Environ 404(2–3):361–376. doi:10.1016/j.scitotenv.2008.04.021

    Article  CAS  Google Scholar 

  • Walvoord MA, Phillips FM, Stonestrom DA (2003) A reservoir of Nitrate Beneath Desert Soils. Science 302(5647):1021–1024. doi:10.1126/science.1086435

    Article  CAS  Google Scholar 

  • Wang DS (1997) Basis for the use of nitrogen isotopes to identify nitrogen contamination of groundwater. Acta Geosicientia Sin 18:221–223 (in Chinese)

    CAS  Google Scholar 

  • Weyer P, Cerhan JR, Kross BC et al (2001) Unicipal drinking water nitrate level and cancer risk in older women: tiie Iowa women’s health study. Epidemiology 12(3):327–338. doi:10.1097/00001648-200105000-00013

    Article  CAS  Google Scholar 

  • Widory D, Petelet-Giraud E, Negrel P et al (2005) Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: a synthesis. Environ Sci Technol 39(2):539–548. doi:10.1021/es0493897

    Article  CAS  Google Scholar 

  • Wigand C, McKinney RA, Cole ML, Thursby GB et al (2007) Varying Stable Nitrogen Isotope Ratios of Different Coastal Marsh Plants and Their Relationships with Wastewater Nitrogen and Land Use in New England, USA. Environ Monit Assess 1:71–81. doi:10.1007/s10661-006-9457-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangcai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Wang, G., Sheng, Y. et al. Enrichment and Sources of Nitrogen in Groundwater in the Turpan-Hami Area, Northwestern China. Expo Health 8, 389–400 (2016). https://doi.org/10.1007/s12403-016-0209-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12403-016-0209-7

Keywords

Navigation