Skip to main content

Advertisement

Log in

Experience of Solar Drying in Africa: Presentation of Designs, Operations, and Models

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Africa has a very high solar insolation and a large agrarian sector with a lot of drying of agricultural products carried out with mostly open sun drying. However, efforts have been made by researchers based in Africa working, under changing climatic conditions, to develop solar drying systems, using materials that are locally available. The challenge was that the solar dryers should be used to dry different kinds of products including fish, medicinal plants, fruits, wood, and vegetables and bring the studied material to low moisture content. Most of this research has been obscured since Africa is not at the forefront of solar research, coupled with technological and economic laid-backness. The solar dryers’ designs consist of direct, indirect natural or forced convection dryers or even mixed mode. These collectors are mostly tilted southwards at an angle of inclination ranging from 0° to 60° to the horizontal. Design has focused on the utilization of available local materials with some dryers that can be equipped with supplementary heating source or a storage of energy. Solar drying research among the African countries is very low generally and requires investment to boast it. Therefore, this review highlights solar dryers evaluated within the African region, including the quality of the final product, their efficiency, and prediction of its behavior using simulation and mathematical modeling. Pointing the area of future research and development is also emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

A :

Dryer surface area (m2)

A s :

Surface of the solar collector (m2)

Cp:

Specific heat (J kg−1 K−1)

C t :

Overall mass transfer coefficient (kg s−1 m−2 kPa−1)

dm:

Dry matter

e* :

Saturation vapor density of air at Ta

e :

Thickness (m)

f :

Solar fraction (%)

F′ :

Collector efficiency factor (dimensionless)

F R :

Heat removal factor

h :

Coefficient of heat transfer by convection (W m−2 K−1)

h cv :

Volumetric heat transfer coefficient (W m−3 K−1)

hr:

Adapted radiative exchange coefficient (W m−2 K−1)

H s :

Hourly solar radiation on the horizontal surface (W m−2)

I :

Irradiance (W m−2)

k :

Adapted conductive exchange coefficient (W m−2 K−1)

k ca :

Air film mass transfer coefficient (kg s−1 m−2 kPa−1)

k t :

Skin mass transfer coefficient (kg s−1 m−2 kPa−1)

L or Lv:

Latent heat of vaporization (kJ kg−1)

m :

Mass (kg)

m v :

Mass of water evaporated (kg)

:

Air mass flow rate (kg s−1)

M :

Moisture content (decimal in dry basis)

Mi:

Instantaneous moisture content (decimal in dry basis)

M loss :

Moisture loss rate from the product (kg s−1)

mp:

Mass of the drying chamber walls (kg)

P A :

Flux of energy absorbed by the absorber (W m−2)

P s :

Water vapor pressure of the evaporating surface (kPa)

Pv:

Flux of radiation absorbed by the glass calculated in watts per square meter

Q l :

Latent heat of water evaporation at 25 °C and 1 atmosphere pressure (kJ kg−1)

Q u :

Gained heat energy (J)

S :

Surface of the product (m2)

surf:

Surface (m2)

Sv:

Surface of one wall of the drying chamber (m2)

t :

Time (s)

T :

Temperature (°C or K)

T :

Cold stream temperature (K)

U :

Overall heat loss coefficient (W m−2 K−l)

V d :

Vapor deficit (kg m−3)

w :

Absolute humidity (kg of water/kg of dry air)

X :

Moisture content (kg of water/kg of dry matter)

*:

Previous tray

ΔS :

Elemental area (m2)

A:

Absorber

ach:

Heated air

am:

Ambient media

b:

Brick

c:

Skier vault

dry:

Dry matter

e:

Exterior

ext:

External

f:

Product

I:

Insulator

i:

Interior

int:

Interior

ma:

Moist air

o:

Dryer outlet temperature

p:

Polystyrene

pr:

Product

s:

Sky

sol:

Ground

v:

Glass

vap:

Vapor

w:

Wall

we:

External wall

wi:

Internal wall

α :

Absorptivity of coatings

ɛ :

Emissivity of plates

η f :

Fin efficiency

Ø :

Relative humidity

σ :

Stefan–Boltzmann constant

τ :

Transmittance

θ z :

Dimensionless fin base temperature

References

  1. Abam, F, Nwankwojike BI, Ohunakin OS, Ojomu SA (2014) Energy resource structure and on-going sustainable development policy in Nigeria: a review. Int J Energy Environ Eng

  2. Abdel Moneim OAB, Ismail IA, Omer EMO, Salih ZA (2014) Effect of solar drying using a natural convective solar drier on bacterial load and chemical composition of bayad (Bagrus bayad) fish flakes. Int J Multidiscip Curr Res 1100–1105

  3. Aghbashlo M, Mobli H, Rafiee S, Madadlou A (2013) A review on exergy analysis of drying processes and systems. Renew Sust Energ Rev 22:1–22

    Article  Google Scholar 

  4. Aissa W, El-Sallak M, Elhakem A (2014) Performance of solar dryer chamber used for convective drying of sponge-cotton. Therm Sci 18:S451–S462

    Article  Google Scholar 

  5. Akin I (2008) Nigeria’s dual energy problems: policy issues and challenges international. Assoc Energy Econ 2:17–18

    Google Scholar 

  6. Anyanwu CN, Oparaku OU, Onyegegbu SO, Egwuatu U, Edem NI, Egbuka K, Nwosu PN, Sharma VK (2012) Experimental investigation of a photovoltaic-powered solar cassava dryer. Dry Technol 30:398–403

    Article  CAS  Google Scholar 

  7. Ayadi M, Zouari I, Bellagi A (2015) Simulation and performance of a solar drying unit with storage for aromatic and medicinal plants. Int J Food Eng 11:597–607

    Google Scholar 

  8. Ayua E, Mugalavai V, Simon J, Weller S, Obura P, Nyabinda N (2017) Comparison of a mixed modes solar dryer to a direct mode solar dryer for African indigenous vegetable and chili processing. J Food Process Preserv e13216

  9. Bahloul N, Boudhrioua N, Kouhila M, Kechaou N (2009) Effect of convective solar drying on colour, total phenols and radical scavenging activity of olive leaves (Olea europaea L.). Int J Food Sci Technol 44:2561–2567

    Article  CAS  Google Scholar 

  10. Bahnasawy AH, Shenana ME (2004) A mathematical model of direct sun and solar drying of some fermented dairy products (Kishk). J Food Eng 61:309–319

    Article  Google Scholar 

  11. Bala EJ. Achieving renewable energy potential in Africa. Paper presentation made at Joint WEC, AUC and APUA Workshop “Solutions for sustainable energy in africa: energy efficiency, renewable energy and interconnections”, Addis Ababa, Ethiopia. 17–18th June, 2013a

  12. Bala EJ. Renewable energy and the transformation agenda in Nigeria. Paper presentation made at the commissioning ceremony of the 1st Nigerian integrated renewable energy model village, Sokoto, 4th April 2013b

  13. Bekkioui N, Hakam A, Zoulalian A, Sesbou A, El Kortbi M (2011) Solar drying of pine lumber: verification of a mathematical model. Maderas Ciencia y Tecnología 13:29–40

    Article  Google Scholar 

  14. Bekkioui N, Zoulalian A, Hakam A, Bentayeb F, Sesbou A (2009) Modelling of a solar wood dryer with glazed walls. Maderas Ciencia y Tecnología 11:191–205

    Google Scholar 

  15. Benhamou A, Fazouane F, Benyouce B (2014) Simulation of solar dryer performances with forced convection experimentally proved. Phys Procedia 55:96–105

    Article  Google Scholar 

  16. Bennamoun L (2013a) Integration of photovoltaic cells in solar drying systems. Drying Technol: Int J 31:1284–1296

    Article  CAS  Google Scholar 

  17. Bennamoun L (2013b) Improving solar dryers’ performances using design and thermal heat storage. Food Eng Rev 5:230–248

    Article  Google Scholar 

  18. Bennamoun L (2011) Reviewing the experience of solar drying in Algeria with presentation of the different design aspects of solar dryers. Renew Sust Energ Rev 15:3371–3379

    Article  Google Scholar 

  19. Bennamoun L, Belhamri A (2011) Study of solar thermal energy in the north region of Algeria with simulation and modeling of an indirect convective solar drying system. Nat Technol 4:34–40

    Google Scholar 

  20. Berinyuy JE, Tangka JK, Weka Fotso M (2012) Enhancing natural convection solar drying of high moisture vegetables with heat storage. Agric Eng Int: CIGR J 14:141–148

    Google Scholar 

  21. Bokungu Efoto P, Efoto Eale L, Lukombo Singi S, Nzola Meso M (2015) Design, construction and operation of solar dryer for granules and micros chips of Manihot esculenta Crantz tuberous roots. Int J Thermal Environ Eng 9:99–105

    Google Scholar 

  22. Bolaji BO, Olalusi AP (2008) Performance evaluation of a mixed-mode solar dryer. AU J Technol 11:225–231

    Google Scholar 

  23. Bolaji BO (2005a) Performance evaluation of simple solar dryer for food preservation. Proceedings of 6th annual engineering conference of the school of engineering and engineering technology, Federal University of Technology Minna, Nigeria: 8–13

  24. Bolaji BO (2005b) Performance evaluation of box type absorber solar air collector for crop drying. J Food Technol Pak 3:595–600

    Google Scholar 

  25. Boubekri A, Benmoussa H, Meninouche D (2009) Solar drying kinetics of date palm fruits assuming a step-wise air temperature change. J Eng Sci Technol 4:292–304

    Google Scholar 

  26. Boubekri A, Benmoussa H, Meninouche D (2007) Solar drying of date palm fruits simulated as multi-step temperature drying. J Eng Appl Sci 2:1700–1706

    Google Scholar 

  27. Boughali S, Benmoussa H, Bouchekima B, Mennouche D, Bouguettaia H, Bechki D (2009) Crop drying by indirect active hybrid solar-electrical dryer in the eastern Algerian Septentrional Sahara. Sol Energy 83:2223–2232

    Article  Google Scholar 

  28. Boulemtafes-Boukadoum A, Benzaoui A (2011) Energy and exergy analysis of solar drying process of mint. Energy Procedia 6:583–591

    Article  Google Scholar 

  29. Boulemtafes-Boukadoum A, Benaouda N, Derbal H, Benazaoui A (2008) Analyse énergétique et thermique du processus de séchage de la menthe par énergie solaire. Revue des Énergies Renouvelables; 89–96 [Special issue: SMSTS’08]

  30. Chaudhari AD, Salve SP (2014) A review of solar dryer technologies. Int J Res Advent Technol 2:218–232

    Google Scholar 

  31. Chouicha S, Boubekri A, Mennouche D, Bouguetaia H, Berrbeuh MH, Bouhafs S, Rezzoug W (2014) Valorization study of treated Deglet-Nour dates by solar drying using three different solar driers. Energy Procedia 50:907–916

    Article  Google Scholar 

  32. Chimi H., Ouaouich A., Semmar M., Tayebi S. Industrial processing of figs by solar drying in Morocco. Ishs Acta Horticulturae 798. III International Symposium on Fig. 2008, 331, 334

  33. Chramsa-ard W, Jindaruks S, Sirisumpunwong C, Sonsaree S (2013) Performance evaluation of the desiccant bed solar dryer. Energy Procedia 34:189–197

    Article  Google Scholar 

  34. ECOWAS Regional center for renewable energy and energy efficiency (ECREEE) brochure. Potentials, opportunities and barriers for the deployment and usage of solar energy technologies and services in West Africa. Discussion paper for the regional forum on the ECOWAS solar energy initiative (ESEI) 2011

  35. Dina SF, Ambarita H, Napitupulu FH, Kawai H (2015) Study on effectiveness of continuous solar dryer integrated with desiccant thermal storage for drying cocoa beans. Case Stud Therm Eng 5:32–40

    Article  Google Scholar 

  36. Dincer I (2011) Exergy as a potential tool for sustainable drying systems. Sust Cities Soc 1:91–96

    Article  Google Scholar 

  37. Eke AB (2014) Investigation of low cost solar collector for drying vegetables in rural areas. Agric Eng Int CIGR J 16:118–125

    Google Scholar 

  38. Ekechukwu OV, Norton B (1999) Review of solar-energy drying systems II: an overview of solar drying technology. Energy Convers Manag 40:615–655

    Article  CAS  Google Scholar 

  39. Ekechukwu OV, Norton B (1998) Effects of seasonal weather variations on the measured performance of a natural-circulation solar-energy tropical crop dryer. Energy Convers Manag 39:1265–1276

    Article  Google Scholar 

  40. Ekechukwu OV, Norton B (1997) Experimental studies of integral-type natural-circulation solar-energy tropical crop dryers. Energ Convers Manag 38:1483–1500

    Article  Google Scholar 

  41. EL-Amin O M A, Ismail M A, Ahmed E A, Luecke W. Design and construction of a solar dryer for mango slices. Conference: Tropentag 2006 prosperity & poverty in a globalized world: challenges for agricultural research. Bonn, Germany, October 11–13, 2006

  42. El Kannafi, A. Etude de la faisabilité du séchage solaire du bois de Thuya dans la ville d’Essaouira. Mémoire de 3ème cycle, Ecole Nationale Forestière d’Ingénieurs de Salé 2002

  43. EL Khadraoui A, Kooli S, Farhat A (2015) Study on effectiveness of mixed mode solar greenhouse dryer for drying of red pepper. Int J Sci Res Eng Technol 3:143–146

    Google Scholar 

  44. El Mokretar S, Miri R, Belhamel M (2004) Etude du bilan d’énergie et de masse d’un séchoir de type serre applications au séchage des produits agro-alimentaires. Revue des Énergies Renouvelables 7:109–123

    Google Scholar 

  45. El-Sebaii AA, Shalaby SM (2012) Solar drying of agricultural products: a review. Renew Sust Energ Rev 16:37–43

    Article  Google Scholar 

  46. Fadhel A, Koolia S, Farhata A, Bellghith A (2005) Study of the solar drying of grapes by three different processes. Desalination 185:535–541

    Article  CAS  Google Scholar 

  47. Fadhel A., Koolia S., Farhata A, Bellghith A. Experimental study of the drying of hot red pepper in the open air, under greenhouse and in a solar drier. International Journal of Renewable Energy and Biofuels 2014. Article ID 515285, 14 pages

  48. Fagunwa AO, Koya, OA, Faborode MO. Development of an intermittent solar dryer for cocoa beans. Agricultural Engineering International: the CIGR Ejournal 2009; 11: Manuscript number 1292

  49. Ferradji A, Goudjal Y, Malek A. Séchage du raisin de variété Sultanine par un séchoir solaire à convection forcée et un séchoir de type coquillage. Revue des Énergies Renouvelables 2008; 177–85 [Special issue: SMSTS’08]

  50. Ferradji A, Malek A, Bedoud M, Baziz R, Aoua SA (2001) Séchoir solaire à convection forcée pour le séchage des fruits en Algérie. Revue des Énergies Renouvelables 4:49–59

    Google Scholar 

  51. Fudholi A, Sopian K, Othman MY, Ruslan MH (2014) Energy and exergy analyses of solar drying system of red seaweed. Energy and Buildings 68:121–129

    Article  Google Scholar 

  52. Fudholi A, Othman MY, Ruslan MH, Sopian K (2013) Drying of Malaysian Capsicum annuum L. (red chili) dried by open and solar drying. Int J Photoenergy. Article ID 167895, 1–9

    Article  Google Scholar 

  53. Gbaha P, Andoh HY, Saraka JK, Koua BK, Toure S (2007) Experimental investigation of a solar dryer with natural convective heat flow. Renew Energy 32:1817–1829

    Article  CAS  Google Scholar 

  54. GTZ. 2017. Solar drying in Morocco. Special energy programme food and nutrition library. www.nzdl.org. Downloaded 26th February 2017

  55. Gwala W, Padmavati R (2016) Comparative study of indirect solar drying, electric tray drying and open sun drying of pineapple slices using drying kinetics and drying models. Int J Latest Technol Eng Manag Appl Sci 5:1–9

    Google Scholar 

  56. Hassanain AA (2011) Drying sage (Salvia officinalis L.) in passive solar dryers. Res Agric Eng 57:19–29

    Article  Google Scholar 

  57. Hassanain AA (2010) Unglazed transpired solar dryers for medicinal plants. Dry Technol: Int J 28:240–248

    Article  Google Scholar 

  58. Hassanain AA (2009) Simple solar drying system for banana fruit. World J Agric Sci 5:446–455

    Google Scholar 

  59. Hegazy AA (2000) Thermohydraulic performance of heating solar collectors with variable width, flat absorber plates. Energy Convers Manag 41:1361–1378

    Article  Google Scholar 

  60. Ibrahim JS, Barki E, Edeoja AO (2015) Drying of chilli pepper using a solar dryer with a back-up incinerator under Makurdi humid climate. Am J Eng Res 4:108–113

    Google Scholar 

  61. Iloeje OC, Ekechukwu OV, Ezeike GOI. Internal report, Ic/93/332. International Centre for Theoretical Physics. Int Atom Energy Agency and ' United Nations Educational Scientific and Cultural Organization: 1993: 1–8

  62. Ismail MA, Ibn Idriss EM (2013) Mathematical modelling of thin layer solar drying of whole okra (Abelmoschus esculentus (L.) Moench) pods. Int Food Res J 20:1983–1989

    Google Scholar 

  63. Jingura RM, Matengaifa R (2009) Rural energy resources and agriculture’s potential as an energy producer in Zimbabwe. Energy Sources, Part B: Economics, Planning, and Policy 4:68–76

    Article  Google Scholar 

  64. Kamble AK, Pardeshi LL, Singh PL, Ade GS (2013) Drying of chilli using solar cabinet dryer coupled with gravel bed heat storage system. J Food Res Technol 1:87–94

    Google Scholar 

  65. Kenya Agricultural Research Institute (KARI) brochure 2008. Use pyrethrum solar dryers for increased income. Kenya Agricultural Research Institute (KARI) information brochure series / 75 /2008

  66. Khama R, Aissani F, Alkama R (2016) Design and performance testing of an industrial-scale indirect solar dryer. J Eng Sci Technol 11:263–1281

    Google Scholar 

  67. Kiggundu N, Wanyama J, Galyaki C, Banadda N, Muyonga JH, Zziwa A, Kabenge I (2016) Solar fruit drying technologies for smallholder farmers in Uganda, a review of design constraints and solutions. Agric Eng Int CIGR J 18:200–210

    Google Scholar 

  68. Kituu GM., Shitanda D, Kanali CL, Mailutha JT, Njoroge CK, Wainaina JK, Ondote PMO. A simulation model for solar energy harnessing by the tunnel section of a solar tunnel dryer. Agricultural Engineering International: the CIGR Ejournal 2010; 12: manuscript 1553

  69. Kituu GM., Shitanda D, Kanali CL, Mailutha JT, Njoroge CK, Wainaina JK, Ondote PMO. Influence of brining on the drying parameters of tilapia (Oreochromis niloticus) in a glass-covered solar tunnel dryer. Agricultural Engineering International: the CIGR Ejournal 2009; 11: Manuscript number EE 1349,

  70. Lahsasni S, Kouhilj M, Mahrouz M, Ait Mohamed L, Agorram B (2004) Characteristic drying curve and mathematical modeling of thin-layer solar drying of prickly pear cladode (Opuntia ficus-indica). J Food Process Eng 27:103–117

    Article  Google Scholar 

  71. Lamharrar A, Idlimam A, Kouhila M (2015) Thin layer forced convective solar drying characteristics of artemisia herba-alba. J Mater Environ Sci 6:264–271

    Google Scholar 

  72. Madhlopa A, Ngwalo G (2007) Solar dryer with thermal storage and biomass-backup heater. Sol Energy 81:449–462

    Article  Google Scholar 

  73. Miri R, Mokrani O, Sais F, Belhamel M (2002) Étude expérimentale d’un séchoir solaire. Revue des Énergies Renouvelables; 41–8 [Special issue: Zones Arides]

  74. Mühlbauer W, Müller J, Esper A (1996) Sun and solar crop drying. Plant Res Dev 44:1–52

    Google Scholar 

  75. Mursalim, Supratomo, Dewi YS (2002) Drying of cashew nut in shell using solar dryer. Sci Technol 3:25–33

    Google Scholar 

  76. Nasroun TH, Elamin EE, Mohammed TE (2013) Effectiveness of timber solar dryers in reducing drying time and drying defects in comparison to air drying. J Sci Technol 14:23–29

    Google Scholar 

  77. Nigerian Metrological Agency (NIMET) bulletin 2010. Nigeria climate review bulletin 2010

  78. Njoku HO, Ekechukwu OV, Onyegegbu SO (2014) Analysis of stratified thermal storage systems: an overview. Heat Mass Transf 50:1017–1030. https://doi.org/10.1007/s00231-014-1302-8

    Article  Google Scholar 

  79. Norton B, Ekechukwu OV (1993) Integral-type natural-circulation solar dryers. ASSET 15:24–33

    Google Scholar 

  80. Nour-Eddine B, Belkacem Z, Abdellah K (2015) Experimental study and simulation of a solar dryer for spearmint leaves (Mentha spicata). Int J Ambient Energy 36:50–61

    Article  CAS  Google Scholar 

  81. Nwosu NP (2010) Employing exergy-optimized pin fins in the design of an absorber in a solar air heater. Energy 35:571–575

    Article  CAS  Google Scholar 

  82. Oduor-Odote PM, Shitanda D, Obiero M, Kituu G (2010) Drying characteristics and some quality attributes of Rastrineobola argentea (Omena) and Stolephorus delicatulus (Kimarawali). Afr J Food Agric Nutr Dev 10:2998–3014

    Google Scholar 

  83. Ohunakin OS (2010) Energy utilization and renewable energy sources in Nigeria. J Eng Appl Sci 5:171–177

    Google Scholar 

  84. Okonkwo WI, Okoye EC (2005) Performance evaluation of a pebble bed solar crop dryer. Niger J Technol 24:67–73

    Google Scholar 

  85. Okoroigwe EC, Ndu EC, Okoroigwe FC (2015) Comparative evaluation of the performance of an improved solar-biomass hybrid dryer. J Energy South Afr 26:38–51

    Article  Google Scholar 

  86. Oloketuyi SI, Oyewola OM, Odesola IF (2013) Determination of optimum tilt angles for solar collectors in low-latitude tropical region. Int J Energy Environ Eng

  87. Oueslati H, Mabrouk S B, Marnii A. Design and installation of a solar-gas tunnel dryer: comparative experimental study of two scenarios of drying. IREC 2014 - 5th International Renewable Energy Congress 2014, Hammamet; Tunisia; 25–27 March 2014, Article number 6826970

  88. Panwar NL, Kaushik SC, Kothari S (2012) A review on energy and exergy analysis of solar drying systems. Renew Sust Energ Rev 14:1–30

    Google Scholar 

  89. Prommas R, Rattanadecho P, Cholaseuk D (2010) Energy and exergy analyses in drying process of porous media using hot air. Int Commun Heat Mass Transfer 37

    Article  Google Scholar 

  90. Ramadan MRI, El-Sebaii AA, Aboul-Enein S, El-Bialy E (2007) Thermal performance of a packed bed double-pass solar air heater. Energy 32:1524–1535

    Article  Google Scholar 

  91. Ramde EW, Forson FK (2007) Computer aided-sizing of direct mode natural convection solar crop dryers. J Eng Technol 1:1–9

    Google Scholar 

  92. Riti JS, Shu Y (2016) Renewable energy, energy efficiency, and eco-friendly environment (R-E5) in Nigeria. Energy Sustain Soc 6. https://doi.org/10.1186/s13705-016-0072-1

  93. Sallam YI, Aly MH, Nassar AF, Mohamed EA (2013) Solar drying of whole mint plant under natural and forced convection. J Adv Res:171–178. https://doi.org/10.1016/j.jare.2013.12.001

    Article  CAS  Google Scholar 

  94. Singh PP, Singh S, Dhaliwal SS (2006) Multi-shelf domestic solar dryer. Energy Convers Manag 47:1799–1815

    Article  Google Scholar 

  95. Slama RB, Combarnous M (2011) Study of orange peels dryings kinetics and development of a solar dryer by forced convection. Sol Energy 85:570–578

    Article  Google Scholar 

  96. Société Tunisienne de l’Electricité et du Gaz (STEG) Renewable energy. Tunisia solar plan. Paper presented at world Economic Forum Japan-World Arab 2010. www.plansolairetunisien.tn

  97. Sunworks Technologies. Solar food dryer. Downloaded 26th February, 2017 www.solarfooddryer.com/Info/SolarFoodDryingWorld.htm

  98. Tefera A, Endalew W, Fikiru B (2013) Evaluation and demonstration of direct solar potato dryer. Livest Res Rural Dev 25(12):1–10

    Google Scholar 

  99. Tewolde-Berhan S, Remberg SF, Abegaz K, Narvhus J, Abay F, Wicklund T (2015) Impact of drying methods on the nutrient profile of fruits of Cordia africana Lam. in Tigray, northern Ethiopia. Fruits 70:77–90

    Article  CAS  Google Scholar 

  100. Tunde-Akintunde TY (2011) Mathematical modeling of sun and solar drying of chili pepper. Renew Energy 36:2139–2145

    Article  Google Scholar 

  101. Ucar A, Inalli M (2006) Thermal and exergy analysis of solar air collectors with passive augmentation technique. Int Commun Heat Mass Tran 33:1281–1290

    Article  Google Scholar 

  102. UNIDO (2007) Renewable energy technologies. Module 8; sustainable energy regulation and policy making for Africa

  103. World Energy Council (2013) World energy resources 2013 survey, London. www.worldenergy.org

  104. Yahya M, Fudholi A, Hafizh H, Sopian K (2016) Comparison of solar dryer and solar-assisted heat pump dryer for cassava. Sol Energy 136:606–613

    Article  Google Scholar 

  105. Youssefi M Le séchage du bois au Maroc, construction et expérimentation d’un séchoir solaire pilote. Mémoire de 3ème cycle. IVA Hassan II, Rabat 1997

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bennamoun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndukwu, M.C., Bennamoun, L. & Abam, F.I. Experience of Solar Drying in Africa: Presentation of Designs, Operations, and Models. Food Eng Rev 10, 211–244 (2018). https://doi.org/10.1007/s12393-018-9181-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-018-9181-2

Keywords

Navigation