Food Engineering Reviews

, Volume 10, Issue 3, pp 113–138 | Cite as

Zeta Potential of Food Matrices

  • C. Cano-Sarmiento
  • D. I. Téllez-Medina
  • R. Viveros-Contreras
  • M. Cornejo-Mazón
  • C. Y. Figueroa-Hernández
  • E. García-Armenta
  • L. Alamilla-Beltrán
  • H. S. García
  • G. F. Gutiérrez-López
Review Article


Food matrices contain electrically charged particles, which interact with each other and with the media and are produced via several interface processes and mechanisms. The understanding of electric charge interactions is complex and essential towards the development of food systems since they can determine the type of particle-particle and particle-media interactions. They strongly affect stability, rheological behavior, sedimentation, re-dispersion, filtration, shelf life, texture, flavor, and color; thus, importantly influencing food structure and stability. One of the most useful parameters that allow the study of electric interactions in food systems is the zeta potential (ZP). It is possible to find a variety of laboratory instruments designed for its evaluation. ZP is an important property for the characterization of dispersed systems in which sample preparation and measuring methods play a key role to obtain reliable and reproducible results. The use of this parameter has increased in a number of fluid food systems such as alcoholic beverages, juices, extracts, coffee, milk, yoghurt, and edible films, most of which are described in this review. There is a wide amplitude in the number of relevant publications in the literature involving ZP for different products and this is reflected in the length of the different sections of this document. This work depicts a thorough review of the main theoretical principles, applications, and relevance of this parameter in food science and technology.


Fluid foods Electrically charged particles Foods Charge Interactions Stability 

List of symbols


Particle radius, local curvature radius, capillary radius (m)


Capillary cross-section (m2)


Electrokinetic sonic amplitude (Pa)


Vector of the elemental surface


Dukhin number


Dukhin number associated with diffuse-layer conductivity


Dukhin number associated with stagnant-layer conductivity.


Elementary charge (C)


Applied electric field (Vm−1)


Henry’s functions (κa)


Electric current intensity (A)


Zeroth- and first-order modified Bessel functions of the first kind


Colloid vibration current (A)


Streaming current (A)


Boltzmann constant (J K−1)


Conductivity of dispersion medium (S m−1)

\( {\boldsymbol{K}}_{\boldsymbol{L}}^{\boldsymbol{\infty}} \)

Conductivity of a highly concentrated ionic solution (S m−1)


Complex conductivity of a suspension (S m−1)


Surface conductivity (S)


Diffuse layer surface conductivity (S)


Stagnant-layer surface conductivity (S)


Capillary length, characteristic dimension (m)


Dimensionless ionic mobility of counter ions


Electro-osmotic flow rate (m3 s−1)


Electro-osmotic flow rate per electric field (m4 s−1 V−1)


Electro-osmotic flow rate per current (m3 C−1)


Electrical resistance of a capillary or porous plug in an arbitrary solution (Ω)


Electrical resistance of a capillary or porous plug in a concentrated ionic solution (Ω)


Thermodynamic temperature (K)

\( {\boldsymbol{u}}_{\mathbf{d}}^{\ast} \)

Dynamic electrophoretic mobility (m2 s−1 V−1)


Colloid vibration potential (V)


Electrophoretic mobility (m2 s−1 V−1)


Streaming potential (V)


Electrophoretic velocity (m s−1)


Electro-osmotic velocity (m s−1)

\( \mathbf{\mathcal{z}} \)

Common charge number of ions in a symmetrical electrolyte


Relaxation of double-layer polarization, degree of electrolyte dissociation, dimensionless parameter used in electroacoustics


Applied pressure difference (Pa)


Density difference between particles and dispersion medium (kg m3)


Relative permittivity of the particle


Relative permittivity of the dispersion medium


Electric permittivity of vacuum (F m−1)


Zeta potential in Table 1 and section “Fundametals” (V)


Zeta potential in Fig. 1 (V)


Zeta potential in the text (V)


Surface potential (V)


Stern potential (V)


Dynamic viscosity of the liquid (Pas)


Reciprocal Debye length (m−1)


Density of dispersion medium (kg m3)


Volume fraction of solids


Angular frequency of an AC electric field (s−1)



Author CCS, is grateful to CONACyT and IPN-Mexico for her doctoral study grant. All authors acknowledge the financial support by CONACyT, IPN-Mexico, and UNIDA-ITVER.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.


  1. 1.
    Aberoumand A (2011) A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World J Dairy Food Sci 6(1):71–78Google Scholar
  2. 2.
    Akbari A, Wu J (2016) Cruciferin nanoparticles: preparation, characterization and their potential application in delivery of bioactive compounds. Food Hydrocoll 54:107–118Google Scholar
  3. 3.
    Akissi-Kouame F, Klandar AH, Marchesseau S, Lagaude A (2009) Effect of a CO2-acidification cycle on physicochemical and acid gelation properties of skim milk reconstituted with added pectin. Int Dairy J 19(6–7):393–398Google Scholar
  4. 4.
    Alexandre EMC, Lourenço RV, Bittante AMQB, Moraes ICF, do Amaral Sobral PJ (2016) Gelatin-based films reinforced with montmorillonite and activated with nanoemulsion of ginger essential oil for food packaging applications. Food Packag Shelf Life 10:87–96Google Scholar
  5. 5.
    Alishahi A, Mirvaghefi A, Tehrani MR, Farahmand H, Shojaosadati SA, Dorkoosh FA, Elsabee MZ (2011) Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chem 126(3):935–940Google Scholar
  6. 6.
    Anarjan N, Tan CP, Nehdi IA, Ling TC (2012) Colloidal astaxanthin: preparation, characterisation and bioavailability evaluation. Food Chem 135(3):1303–1309Google Scholar
  7. 7.
    Anema SG, Klostermeyer H (1996) ζ-potentials of casein micelles from reconstituted skim milk heated at 120°C. Int Dairy J 6:673–687Google Scholar
  8. 8.
    Arfat YA, Benjakul S (2012) Impact of zinc salts on heat-induced aggregation of natural actomyosin from yellow stripe trevally. Food Chem 135(4):2721–2727Google Scholar
  9. 9.
    Arroyo-Maya IJ, Rodiles-López JO, Cornejo-Mazón M, Gutiérrez-López GF, Hernández-Arana A, Toledo-Núñez C, Barbosa-Cánovas GV, Flores-Flores JO, Hernández-Sánchez H (2012) Effect of different treatments on the ability of α-lactalbumin to form nanoparticles. J Dairy Sci 95(11):6204–6214Google Scholar
  10. 10.
    Artiga-Artigas M, Acevedo-Fani A, Martín-Belloso O (2017) Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food Control 76:1–12Google Scholar
  11. 11.
    Aryana KJ, Olson DW (2017) A 100-year review: yogurt and other cultured dairy products. J Dairy Sci 100(12):9987–10013Google Scholar
  12. 12.
    Astete CE, Sabliov CM, Watanabe F, Biris A (2009) Ca(2+) cross-linked alginic acid nanoparticles for solubilization of lipophilic natural colorants. J Agric Food Chem 57(16):7505–7512Google Scholar
  13. 13.
    Attard P, Antelmi D, Larson I (2000) Comparison of the zeta potential with the diffuse layer potential from charge titration. Langmuir 16:1542–1552Google Scholar
  14. 14.
    Ay ÇÖ, Özcan AS, Erdoğan Y, Özcan A (2012) Characterization of Punica granatum L. peels and quantitatively determination of its biosorption behavior towards lead (II) ions and acid blue 40. Colloids Surf B: Biointerfaces 100:197–204Google Scholar
  15. 15.
    Azarikia F, Abbasi S (2010) On the stabilization mechanism of Doogh (Iranian yoghurt drink) by gum tragacanth. Food Hydrocoll 24(4):358–363Google Scholar
  16. 16.
    Baglinière F, Tanguy G, Jardin J, Matéos A, Briard V, Rousseau F, Robert B, Beaucher E, Humbert G, Dary A, Gaillard JL, Amiel C, Gaucheron F (2012) Quantitative and qualitative variability of the caseinolytic potential of different strains of Pseudomonas fluorescens: implications for the stability of casein micelles of UHT milks during their storage. Food Chem 135(4):2593–2603Google Scholar
  17. 17.
    Balcão VM, Costa CI, Matos CM, Moutinho CG, Amorim M, Pintado ME, Gomes AP, Vila MM, Teixeira JA (2013) Nanoencapsulation of bovine lactoferrin for food and biopharmaceutical applications. Food Hydrocoll 32(2):425–431Google Scholar
  18. 18.
    Banerjee S, Bhattacharya S (2012) Food gels: gelling process and new applications. Crit Rev Food Sci Nutr 52(4):334–346Google Scholar
  19. 19.
    Baschali A, Tsakalidou E, Kyriacou A, Karavasiloglou N, Matalas AL (2017) Traditional low-alcoholic and non-alcoholic fermented beverages consumed in European countries: a neglected food group. Nutr Res Rev 30(1):1–24Google Scholar
  20. 20.
    Bazinet L, Pouliot Y, Castaigne F (2010) Relative contributions of charged species to conductivity changes in skim milk during electrochemical acidification. J Membr Sci 352(1–2):32–40Google Scholar
  21. 21.
    Bédié GK, Turgeon SL, Makhlouf J (2008) Formation of native whey protein isolate–low methoxyl pectin complexes as a matrix for hydro-soluble food ingredient entrapment in acidic foods. Food Hydrocoll 22(5):836–844Google Scholar
  22. 22.
    Bengoechea C, Jones OG, Guerrero A, McClements DJ (2011a) Formation and characterization of lactoferrin/pectin electrostatic complexes: impact of composition, pH and thermal treatment. Food Hydrocoll 25(5):1227–1232Google Scholar
  23. 23.
    Bengoechea C, Peinado I, McClements DJ (2011b) Formation of protein nanoparticles by controlled heat treatment of lactoferrin: factors affecting particle characteristics. Food Hydrocoll 25(5):1354–1360Google Scholar
  24. 24.
    Benítez EI, Genovese DB, Lozano JE (2009) Effect of typical sugars on the viscosity and colloidal stability of apple juice. Food Hydrocoll 23(2):519–525Google Scholar
  25. 25.
    Benítez EI, Genovese DB, Lozano JE (2007) Effect of pH and ionic strength on apple juice turbidity: application of the extended DLVO theory. Food Hydrocoll 21(1):100–109Google Scholar
  26. 26.
    Benítez EI, Lozano JE (2006) Influence of the soluble solids on the zeta potential of a cloudy apple juice. Lat Am Appl Res 36(3):163–168Google Scholar
  27. 27.
    Benítez EI, Lozano JE (2007) Effect of gelatin on apple juice turbidity. Lat Am Appl Res 37(4):261–266Google Scholar
  28. 28.
    Beysseriat M, Decker EA, McClements DJ (2006) Preliminary study of the influence of dietary fiber on the properties of oil-in-water emulsions passing through an in vitro human digestion model. Food Hydrocoll 20(6):800–809Google Scholar
  29. 29.
    Bhattacharjee S (2016) DLS and zeta potential—what they are and what they are not? J Control Release 235:337–351Google Scholar
  30. 30.
    Bhattacharjee C, Saxena VK, Dutta S (2017) Fruit juice processing using membrane technology: a review. Innovative Food Sci Emerg Technol 43:136–153Google Scholar
  31. 31.
    Bonilla J, Atarés L, Vargas M, Chiralt A (2012) Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocoll 26(1):9–16Google Scholar
  32. 32.
    Boström M, Williams DRM, Ninham BW (2001) Specific ion effects in colloid interactions: why DLVO theory fails for biology. Phys Rev Lett 87(16):1–4Google Scholar
  33. 33.
    Bouzid H, Rabiller-Baudry M, Paugam L, Rousseau F, Derriche Z, Bettahar NE (2008) Impact of zeta potential and size of caseins as precursors of fouling deposit on limiting and critical fluxes in spiral ultrafiltration of modified skim milks. J Membr Sci 314(1–2):67–75Google Scholar
  34. 34.
    Burke J, Cox A, Petkov J, Murray BS (2014) Interfacial rheology and stability of air bubbles stabilized by mixtures of hydrophobin and β-casein. Food Hydrocoll 34:119–127Google Scholar
  35. 35.
    Burton EF (1906) XXXVIII. On the properties of electrically prepared colloidal solutions. Philos Mag 11(64):425–447Google Scholar
  36. 36.
    Busscher H, Norde W (2000) Limiting values for bacterial ζ potentials. J Biomed Mater Res 50:463–464Google Scholar
  37. 37.
    Cadena PG, Pereira MA, Cordeiro RBS, Cavalcanti IMF, Barros Neto B, Pimentel MCCB, Lima Filho JL, Silva VL, Santos-Magalhães NS (2013) Nanoencapsulation of quercetin and resveratrol into elastic liposomes. Biochim Biophys Acta (BBA) Biomembr 1828(2):309–316Google Scholar
  38. 38.
    Cano-Marquina A, Tarín JJ, Cano A (2013) The impact of coffee on health. Maturitas 75(1):7–21Google Scholar
  39. 39.
    Cano-Sarmiento C, Monroy-Villagrana A, Alamilla-Beltran L, Hernandez-Sanchez H, Cornejo-Mazon M, Tellez-Medina DI, Jiménez-Martínez C, Gutierrez-Lopez GF (2014) Micromorphometric characteristics of α-tocopherol emulsions obtained by microfluidization. Rev Mex Ing Quím 13(1):201–212Google Scholar
  40. 40.
    Canto GSD, Treter J, Yang S, Borré GL, Peixoto MPG, Ortega GG (2010) Evaluation of foam properties of saponin from Ilex paraguariensis a. St. Hil. (Aquifoliaceae) fruits. Braz J Pharm Sci 46(2):237–243Google Scholar
  41. 41.
    Cebo C, Lopez C, Henry C, Beauvallet C, Ménard O, Bevilacqua C, Bouvier F, Caillat H, Martin P (2012) Goat αs1-casein genotype affects milk fat globule physicochemical properties and the composition of the milk fat globule membrane. J Dairy Sci 95(11):6215–6229Google Scholar
  42. 42.
    Chae MS, Schraft H, Hansen LT, Mackereth R (2006) Effects of physicochemical surface characteristics of listeria monocytogenes strains on attachment to glass. Food Microbiol 23(3):250–259Google Scholar
  43. 43.
    Chaparro-Mercado MC, García-Ochoa F, Hernández-Sánchez H, Alamilla-Beltrán L, Quintanilla-Carvajal MX, Cornejo-Mazón M, Pedroza-Islas R, Gutierrez-López GF (2012) Design of an interstitial structure for a grape seed oil emulsion by design of experiments and surface response. Rev Mex Ing Quím 11(1):11–21Google Scholar
  44. 44.
    Chapman D (1913) A contribution to the theory of electrocapillarity. Philos Mag 25:475–481Google Scholar
  45. 45.
    Chen B, Li H, Ding Y, Suo H (2012a) Formation and microstructural characterization of whey protein isolate/beet pectin coacervations by laccase catalyzed cross-linking. LWT Food Sci Technol 47(1):31–38Google Scholar
  46. 46.
    Chen C, Zhao W, Yang R, Zhang S (2012b) Effects of pulsed electric field on colloidal properties and storage stability of carrot juice. Int J Food Sci Technol 47(10):2079–2085Google Scholar
  47. 47.
    Chen H-H, Xu S-Y, Wang Z (2006) Gelation properties of flaxseed gum. J Food Eng 77(2):295–303Google Scholar
  48. 48.
    Cheung L, Wanasundara J, Nickerson MT (2014) The effect of pH and NaCl levels on the physicochemical and emulsifying properties of a cruciferin protein isolate. Food Biophys 9(2):105–113Google Scholar
  49. 49.
    Schmidt DG, Poll JK (1986) Electrokinetic measurements on unheated and heated casein micelle systems. Neth Milk Dairy J 40:269–280Google Scholar
  50. 50.
    Chuah AM, Kuroiwa T, Ichikawa S, Kobayashi I, Nakajima M (2009) Formation of biocompatible nanoparticles via the self-assembly of chitosan and modified lecithin. J Food Sci 74(1):N1–N8Google Scholar
  51. 51.
    Chun J-Y, Choi M-J, Min S-G, Weiss J (2013) Formation and stability of multiple-layered liposomes by layer-by-layer electrostatic deposition of biopolymers. Food Hydrocoll 30(1):249–257Google Scholar
  52. 52.
    Croak S, Corredig M (2006) The role of pectin in orange juice stabilization: effect of pectin methylesterase and pectinase activity on the size of cloud particles. Food Hydrocoll 20(7):961–965Google Scholar
  53. 53.
    Couzinet-Mossion A, Balayssac S, Gilard V, Malet-Martino M, Potin-Gautier M, Behra P (2010) Interaction mechanisms between caffeine and polyphenols in infusions of Camellia sinensis leaves. Food Chem 119(1):173–181Google Scholar
  54. 54.
    Cui H, Li W, Li C, Vittayapadung S, Lin L (2016a) Liposome containing cinnamon oil with antibacterial activity against methicillin-resistant Staphylococcus aureus biofilm. Biofouling 32(2):215–225Google Scholar
  55. 55.
    Cui HY, Wu J, Lin L (2016b) Inhibitory effect of liposome-entrapped lemongrass oil on the growth of Listeria monocytogenes in cheese. J Dairy Sci 99(8):6097–6104Google Scholar
  56. 56.
    Da Silva Malheiros P, Daroit DJ, Da Silveira NP, Brandelli A (2010) Effect of nanovesicle-encapsulated nisin on growth of Listeria monocytogenes in milk. Food Microbiol 27(1):175–178Google Scholar
  57. 57.
    Dalle Zotte A, Szendro Z (2011) The role of rabbit meat as functional food. Meat Sci 88(3):319–331Google Scholar
  58. 58.
    Dan N (2016) Transport and release in nano-carriers for food applications. J Food Eng 175:136–144Google Scholar
  59. 59.
    Daubert CR, Hudson HM, Foegeding EA, Prabhasankar P (2006) Rheological characterization and electrokinetic phenomena of charged whey protein dispersions of defined sizes. LWT Food Sci Technol 39(3):206–215Google Scholar
  60. 60.
    David-Birman T, Mackie A, Lesmes U (2013) Impact of dietary fibers on the properties and proteolytic digestibility of lactoferrin nano-particles. Food Hydrocoll 31(1):33–41Google Scholar
  61. 61.
    De Britto D, de Moura MR, Aouada FA, Mattoso LHC, Assis OBG (2012) N,N,N-trimethyl chitosan nanoparticles as a vitamin carrier system. Food Hydrocoll 27(2):487–493Google Scholar
  62. 62.
    De Oliveira EF, Paula HC, de Paula RC (2014) Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids Surf B: Biointerfaces 113:146–151Google Scholar
  63. 63.
    Deepika G, Green RJ, Frazier RA, Charalampopoulos D (2009) Effect of growth time on the surface and adhesion properties of Lactobacillus rhamnosus GG. J Appl Microbiol 107(4):1230–1240Google Scholar
  64. 64.
    Deepika G, Rastall RA, Charalampopoulos D (2011) Effect of food models and low-temperature storage on the adhesion of Lactobacillus rhamnosus GG to Caco-2 cells. J Agric Food Chem 59(16):8661–8666Google Scholar
  65. 65.
    Delgado AV, González-Caballero F, Hunter RJ, Koopal LK, Lyklema J (2007) Measurement and interpretation of electrokinetic phenomena. J Colloid Interface Sci 309(2):194–224Google Scholar
  66. 66.
    Derjaguin BV, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim USSR 14(6):633–662Google Scholar
  67. 67.
    Dickinson E, Stainsby G (1982) Colloids in foods. Elsevier, LondonGoogle Scholar
  68. 68.
    Dietrich H, Gierschner K, Pecoroni S, Zimmer E, Will F (1996) New findings regarding the phenomenon of cloud stability. Flussiges Obst 63(1):7–10Google Scholar
  69. 69.
    Disalvo EA (1999) In: Sorensen TS (ed) Surface chemistry and electrochemistry of membranes, 1st edn. New York, Marcel DekkerGoogle Scholar
  70. 70.
    Doherty SB, Gee VL, Ross RP, Stanton C, Fitzgerald GF, Brodkorb A (2011) Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection. Food Hydrocoll 25(6):1604–1617Google Scholar
  71. 71.
    Doherty SB, Wang L, Ross RP, Stanton C, Fitzgerald GF, Brodkorb A (2010) Use of viability staining in combination with flow cytometry for rapid viability assessment of Lactobacillus rhamnosus GG in complex protein matrices. J Microbiol Methods 82(3):301–310Google Scholar
  72. 72.
    Dorn E (1880) Ueber die Fortführung der Electricität durch strömendes Wasser in Röhren und verwandte Erscheinungen. Ann Phys 246:46–77Google Scholar
  73. 73.
    Du B, Li J, Zhang H, Huang L, Chen P, Zhou J (2009) Influence of molecular weight and degree of substitution of carboxymethylcellulose on the stability of acidified milk drinks. Food Hydrocoll 23(5):1420–1426Google Scholar
  74. 74.
    Dukhin AS, Parlia S (2014) Measuring zeta potential of protein nano-particles using electroacoustics. Colloids Surf B: Biointerfaces 121:257–263Google Scholar
  75. 75.
    Edris AE (2012) Formulation and shelf life stability of water-borne lecithin nanoparticles for potential application in dietary supplements field. J Diet Suppl 9(3):211–222Google Scholar
  76. 76.
    El Zakhem H, Lanoisellé J-L, Lebovka NI, Nonus M, Vorobiev E (2007) Influence of temperature and surfactant on Escherichia coli inactivation in aqueous suspensions treated by moderate pulsed electric fields. Int J Food Microbiol 120(3):259–265Google Scholar
  77. 77.
    Ellerbee L, Wicker L (2011) Calcium and pH influence on orange juice cloud stability. J Sci Food Agric 91(1):171–177Google Scholar
  78. 78.
    Elmer C, Karaca AC, Low NH, Nickerson MT (2011) Complex coacervation in pea protein isolate–chitosan mixtures. Food Res Int 44(5):1441–1446Google Scholar
  79. 79.
    Faka M, Lewis MJ, Grandison AS, Deeth H (2009) The effect of free Ca2+ on the heat stability and other characteristics of low-heat skim milk powder. Int Dairy J 19(6–7):386–392Google Scholar
  80. 80.
    Famelart M-H, Gauvin G, Pâquet D, Brulé G (2009) Acid gelation of colloidal calcium phosphate-depleted preheated milk. Dairy Sci Technol 89(3–4):335–348Google Scholar
  81. 81.
    Famelart M-H, Tomazewski J, Piot M, Pezennec S (2003) Comparison of rheological properties of acid gels made from heated casein combined with β-lactoglobulin or egg ovalbumin. Int Dairy J 13:123–134Google Scholar
  82. 82.
    Fan Y, Yi J, Zhang Y, Wen Z, Zhao L (2017) Physicochemical stability and in vitro bioaccessibility of β-carotene nanoemulsions stabilized with whey protein-dextran conjugates. Food Hydrocoll 63:256–264Google Scholar
  83. 83.
    Fasolin LH, Cunha RL (2013) Characterization of soy extract processed under different drying methods and extraction conditions. Int J Food Sci Technol 48(3):503–511Google Scholar
  84. 84.
    Feng Y, Sun C, Yuan Y, Zhu Y, Wan J, Firempong CK, Omari-Sia E, Xu Y, Pu Z, Yu J, Xu X (2016) Enhanced oral bioavailability and in vivo antioxidant activity of chlorogenic acid via liposomal formulation. Int J Pharm 501(1):342–349Google Scholar
  85. 85.
    Fernández-Murga ML, Font de Valdez G, Disalvo AE (2000) Changes in the surface potential of Lactobacillus acidophilus under freeze-thawing stress. Cryobiology 41(1):10–16Google Scholar
  86. 86.
    Freyre-Fonseca V, Téllez-Medina DI, Medina-Reyes EI, Cornejo-Mazón M, López-Villegas EO, Alamilla-Beltrán L, Ocotlán-Flores J, Chirino YI, Gutiérrez-López GF (2016) Morphological and physicochemical characterization of agglomerates of titanium dioxide nanoparticles in cell culture media. J Nanomater 1–19Google Scholar
  87. 87.
    Feyzioglu GC, Tornuk F (2016) Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT Food Sci Technol 70:104–110Google Scholar
  88. 88.
    Gaspar RB, Nele M, Ferraz HC (2016) Encapsulation of α-tocopherol and β-carotene in concentrated oil-in-water beverage emulsions stabilized with whey protein isolate. J Dispers Sci Technol 38(1):89–95Google Scholar
  89. 89.
    Gassara F, Antzak C, Ajila CM, Sarma SJ, Brar SK, Verma M (2015) Chitin and chitosan as natural flocculants for beer clarification. J Food Eng 166:80–85Google Scholar
  90. 90.
    Gaucher I, Mollé D, Gagnaire V, Gaucheron F (2008) Effects of storage temperature on physico-chemical characteristics of semi-skimmed UHT milk. Food Hydrocoll 22(1):130–143Google Scholar
  91. 91.
    Gaucher I, Tanguy G, Fauquant J, Jardin J, Rousseau F, Robert B, Madec M-N, Gaucheron F (2011) Proteolysis of casein micelles by Pseudomonas fluorescens CNRZ 798 contributes to the destabilisation of UHT milk during its storage. Dairy Sci Technol 91(4):413–429Google Scholar
  92. 92.
    Genovese DB, Lozano JE (2006) In: Buera MP, Welti-Chanes J, Lillford PJ, Corti HR (eds) Water properties of food, pharmaceutical, and biological materials, 1st edn. Boca Raton, CRC PressGoogle Scholar
  93. 93.
    Genovese DB, Lozano JE (2001) The effect of hydrocolloids on the stability and viscosity of cloudy apple juices. Food Hydrocoll 15(1):1–7Google Scholar
  94. 94.
    Georgiadis N, Ritzoulis C, Sioura G, Kornezou P, Vasiliadou C, Tsioptsias C (2011) Contribution of okra extracts to the stability and rheology of oil-in-water emulsions. Food Hydrocoll 25(5):991–999Google Scholar
  95. 95.
    Geremias-Andrade IM, Souki NP, Moraes IC, Pinho SC (2017) Rheological and mechanical characterization of curcumin-loaded emulsion-filled gels produced with whey protein isolate and xanthan gum. LWT Food Sci Technol 86:166–173Google Scholar
  96. 96.
    Gharib R, Auezova L, Charcosset C, Greige-Gerges H (2017) Drug-in-cyclodextrin-in-liposomes as a carrier system for volatile essential oil components: application to anethole. Food Chem 218:365–371Google Scholar
  97. 97.
    Glantz M, Devold TG, Vegarud GE, Lindmark Månsson H, Stålhammar H, Paulsson M (2010) Importance of casein micelle size and milk composition for milk gelation. J Dairy Sci 93(4):1444–1451Google Scholar
  98. 98.
    Glawdel T, Ren C (2008) In: Li D (ed) Encyclopaedia of microfluidics and nanofluidics. Springer-Verlag Heidelberg, GermanyGoogle Scholar
  99. 99.
    Gomes LMM, Petito N, Costa VG, Falcão DQ, de Lima Araújo KG (2014) Inclusion complexes of red bell pepper pigments with β-cyclodextrin: preparation, characterisation and application as natural colorant in yogurt. Food Chem 148:428–436Google Scholar
  100. 100.
    Gómez-Zavaglia A, Tymczyszyn E, De Antoni G, Disalvo EA (2003) Action of trehalose on the preservation of Lactobacillus delbrueckii ssp. bulgaricus by heat and osmotic dehydration. J Appl Microbiol 95(6):1315–1320Google Scholar
  101. 101.
    Gouy M (1910) Sur la constitution de la charge électrique à la surface d'un électrolyte. J Phys Théor Appl 9(1):457–468Google Scholar
  102. 102.
    Goyal R, Macri LK, Kaplan HM, Kohn J (2016) Nanoparticles and nanofibers for topical drug delivery. J Control Release 240:77–92Google Scholar
  103. 103.
    Graciaa A, Morel G, Saulnier P, Lachaise J, Schechter RS (1995) The zeta potential of gas bubbles. J Colloid Interface Sci 172:131–136Google Scholar
  104. 104.
    Grahame DC (1947) The electrical double layer and the theory of electrocapillarity. Chem Rev 41(3):441–501Google Scholar
  105. 105.
    Granillo-Guerrero VG, Villalobos-Espinosa JC, Alamilla-Beltrán L, Téllez-Medina DI, Hernández-Sánchez H, Dorantes-Álvarez L, Gutiérrez-López GF (2017) Optimization of the formulation of emulsions prepared with a mixture of vitamins D and E by means of an experimental design simplex centroid and analysis of colocalization of its components. Rev Mex Ing Quím 16(3):861–872Google Scholar
  106. 106.
    Grimley H, Grandison A, Lewis M (2009) Changes in milk composition and processing properties during the spring flush period. Dairy Sci Technol 89(3–4):405–416Google Scholar
  107. 107.
    Gu YS, Decker EA, McClements DJ (2007) Application of multi-component biopolymer layers to improve the freeze–thaw stability of oil-in-water emulsions: β-Lactoglobulin–ι-carrageenan–gelatin. J Food Eng 80(4):1246–1254Google Scholar
  108. 108.
    Gu YS, Regnier L, McClements DJ (2005) Influence of environmental stresses on stability of oil-in-water emulsions containing droplets stabilized by β-lactoglobulin–ι-carrageenan membranes. J Colloid Interface Sci 286(2):551–558Google Scholar
  109. 109.
    Gülseren İ, Corredig M (2011) Changes in colloidal properties of oil in water emulsions stabilized with sodium caseinate observed by acoustic and electroacoustic spectroscopy. Food Biophys 6(4):534–542Google Scholar
  110. 110.
    Gülseren İ, Alexander M, Corredig M (2010) Probing the colloidal properties of skim milk using acoustic and electroacoustic spectroscopy. Effect of concentration, heating and acidification. J Colloid Interface Sci 351(2):493–500Google Scholar
  111. 111.
    Guerra-Rosas MI, Morales-Castro J, Ochoa-Martínez LA, Salvia-Trujillo L, Martín-Belloso O (2016) Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocoll 52:438–446Google Scholar
  112. 112.
    Guillaume C, Gastaldi E, Cuq J-L, Marchesseau S (2004) Effect of pH on rennet clotting properties of CO2-acidified skim milk. Int Dairy J 14(5):437–443Google Scholar
  113. 113.
    Guner S, Oztop MH (2017) Food grade liposome systems: effect of solvent, homogenization types and storage conditions on oxidative and physical stability. Colloids Surf A Physicochem Eng Asp 513:468–478Google Scholar
  114. 114.
    Guyomarc’h F, Renan M, Chatriot M, Gamerre V, Famelart M-H (2007) Acid gelation properties of heated skim milk as a result of enzymatically induced changes in the micelle/serum distribution of the whey protein/kappa-casein aggregates. J Agric Food Chem 55(26):10986–10993Google Scholar
  115. 115.
    Guzun-Cojocaru T, Koev C, Yordanov M, Karbowiak T, Cases E, Cayot P (2011) Oxidative stability of oil-in-water emulsions containing iron chelates: transfer of iron from chelates to milk proteins at interface. Food Chem 125(2):326–333Google Scholar
  116. 116.
    Halder S, Yadav KK, Sarkar R, Mukherjee S, Saha P, Haldar S, Karmakar S, Sen T (2015) Alteration of zeta potential and membrane permeability in bacteria: a study with cationic agents. SpringerPlus 4(672):1–14Google Scholar
  117. 117.
    Hardy WB (1900) A preliminary investigation of the conditions which determine the stability of irreversible hydrosols. Proc R Soc Lond 66:110–125Google Scholar
  118. 118.
    Hasan NU, Ejaz N, Ejaz W, Kim HS (2012) Meat and fish freshness inspection system based on odor sensing. Sensors 12(11):15542–15557Google Scholar
  119. 119.
    Helmholtz H (1879) Studien über electrische Grenzschichten. Ann Phys 243:337–382Google Scholar
  120. 120.
    Hermansson M (1999) The DLVO theory in microbial adhesion. Colloids Surf B: Biointerfaces 14:105–119Google Scholar
  121. 121.
    Hu X, Ren J, Zhao M, Cui C, He P (2011) Emulsifying properties of the transglutaminase-treated crosslinked product between peanut protein and fish (Decapterus maruadsi) protein hydrolysates. J Sci Food Agric 91(3):578–585Google Scholar
  122. 122.
    Huang J, Wang Q, Li T, Xia N, Xia Q (2017) Nanostructured lipid carrier (NLC) as a strategy for encapsulation of quercetin and linseed oil: preparation and in vitro characterization studies. J Food Eng 215:1–12Google Scholar
  123. 123.
    Hunter RJ (2013) Zeta potential in colloid science: principles and applications. Academic press, LondonGoogle Scholar
  124. 124.
    Hunter RJ (2004) More reliable zeta potentials using electroacoustics. Progr Colloid Polym Sci 128:1–10Google Scholar
  125. 125.
    Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Academic Press, LondonGoogle Scholar
  126. 126.
    Hussain H, Truong T, Bansal N, Bhandari B (2017) The effect of manipulating fat globule size on the stability and rheological properties of dairy creams. Food Biophys 12(1):1–10Google Scholar
  127. 127.
    Husson E, Araya-Farias M, Desjardins Y, Bazinet L (2013) Selective anthocyanins enrichment of cranberry juice by electrodialysis with ultrafiltration membranes stacked. Innovative Food Sci Emerg Technol 17:153–162Google Scholar
  128. 128.
    Hwang JY, Ha HK, Lee MR, Kim JW, Kim HJ, Lee WJ (2017) Physicochemical property and oxidative stability of whey protein concentrate multiple nanoemulsion containing fish oil. J Food Sci 82(2):1–8Google Scholar
  129. 129.
    Jang K, Lee H (2008) Stability of chitosan nanoparticles for l-ascorbic acid during heat treatment in aqueous solution. J Agric Food Chem 56(6):1936–1941Google Scholar
  130. 130.
    Jean K, Renan M, Famelart M-H, Guyomarc’h F (2006) Structure and surface properties of the serum heat-induced protein aggregates isolated from heated skim milk. Int Dairy J 16(4):303–315Google Scholar
  131. 131.
    Ji H, Tang J, Li M, Ren J, Zheng N, Wu L (2016) Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin. Drug Deliv 23(2):459–470Google Scholar
  132. 132.
    Jin H, Zhou W, Cao J, Stoyanov SD, Blijdenstein TBJ, De Groot PWN, Arnaudov LN, Pelan EG (2012) Super stable foams stabilized by colloidal ethyl cellulose particles. Soft Matter 8(7):2194–2205Google Scholar
  133. 133.
    Jindal M, Kumar V, Rana V, Tiwary AK (2013a) Exploring potential new gum source Aegle marmelos for food and pharmaceuticals: physical, chemical and functional performance. Ind Crop Prod 45:312–318Google Scholar
  134. 134.
    Jindal M, Kumar V, Rana V, Tiwary AK (2013b) Physico-chemical, mechanical and electrical performance of bael fruit gum–chitosan IPN films. Food Hydrocoll 30(1):192–199Google Scholar
  135. 135.
    Jindal M, Rana V, Kumar V, Singh RS, Kennedy JF, Tiwary AK (2013c) Sulfation of Aegle marmelos gum: synthesis, physico-chemical and functional characterization. Carbohydr Polym 92(2):1660–1668Google Scholar
  136. 136.
    Kargar M, Fayazmanesh K, Alavi M, Spyropoulos F, Norton IT (2012) Investigation into the potential ability of Pickering emulsions (food-grade particles) to enhance the oxidative stability of oil-in-water emulsions. J Colloid Interface Sci 366(1):209–215Google Scholar
  137. 137.
    Khalesi H, Emadzadeh B, Kadkhodaee R, Fang Y (2016) Whey protein isolate-Persian gum interaction at neutral pH. Food Hydrocoll 59:45–49Google Scholar
  138. 138.
    Khalid N, Shu G, Holland BJ, Kobayashi I, Nakajima M, Barrow CJ (2017) Formulation and characterization of O/W nanoemulsions encapsulating high concentration of astaxanthin. Food Res Int 102:364–371Google Scholar
  139. 139.
    Khalloufi S, Corredig M, Goff HD, Alexander M (2009) Flaxseed gums and their adsorption on whey protein-stabilized oil-in-water emulsions. Food Hydrocoll 23(3):611–618Google Scholar
  140. 140.
    Klemmer KJ, Waldner L, Stone A, Low NH, Nickerson MT (2012) Complex coacervation of pea protein isolate and alginate polysaccharides. Food Chem 130(3):710–715Google Scholar
  141. 141.
    Klinkesorn U, Namatsila Y (2009) Influence of chitosan and NaCl on physicochemical properties of low-acid tuna oil-in-water emulsions stabilized by non-ionic surfactant. Food Hydrocoll 23(5):1374–1380Google Scholar
  142. 142.
    Kong L, Beattie J, Hunter R (2001) Electroacoustic determination of size and charge of sunflower oil-in-water emulsions made by high-pressure homogenizing. Chem Eng Process Process Intensif 40(5):421–429Google Scholar
  143. 143.
    Kosmulski M (2009) Surface charging and points of zero charge. CRC Press, Boca RatonGoogle Scholar
  144. 144.
    Krivorotova T, Cirkovas A, Maciulyte S, Staneviciene R, Budriene S, Serviene E, Sereikaite J (2016) Nisin-loaded pectin nanoparticles for food preservation. Food Hydrocoll 54:49–56Google Scholar
  145. 145.
    Kühnl W, Piry A, Kaufmann V, Grein T, Ripperger S, Kulozik U (2010) Impact of colloidal interactions on the flux in cross-flow microfiltration of milk at different pH values: a surface energy approach. J Membr Sci 352(1–2):107–115Google Scholar
  146. 146.
    Kytariolos J, Charkoftaki G, Smith JR, Voyiatzis G, Chrissanthopoulos A, Yannopoulos SN, Fatouros DG, Macheras P (2013) Stability and physicochemical characterization of novel milk-based oral formulations. Int J Pharm 444(1–2):128–138Google Scholar
  147. 147.
    Laye C, McClements DJ, Weiss J (2008) Formation of biopolymer-coated liposomes by electrostatic deposition of chitosan. J Food Sci 73(5):N7–N15Google Scholar
  148. 148.
    Lee WJ, Lucey JA (2010) Formation and physical properties of yogurt. Asian Australas J Anim Sci 23(9):1127–1136Google Scholar
  149. 149.
    Leite TS, Augusto PE, Cristianini M (2015) Using high pressure homogenization (HPH) to change the physical properties of cashew apple juice. Food Biophys 10(2):169–180Google Scholar
  150. 150.
    Leite FL, Bueno CC, Da Róz AL, Ziemath EC, Oliveira ON (2012) Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy. Int J Mol Sci 13(10):12773–12856Google Scholar
  151. 151.
    Lesmes U, Baudot P, McClements DJ (2010a) Impact of interfacial composition on physical stability and in vitro lipase digestibility of triacylglycerol oil droplets coated with lactoferrin and/or caseinate. J Agric Food Chem 58(13):7962–7969Google Scholar
  152. 152.
    Lesmes U, Sandra S, Decker EA, McClements DJ (2010b) Impact of surface deposition of lactoferrin on physical and chemical stability of omega-3 rich lipid droplets stabilised by caseinate. Food Chem 123(1):99–106Google Scholar
  153. 153.
    Lević L, Tekić M, Djurić M, Kuljanin T (2007) CaCl2, CuSO4 and AlCl3 & NaHCO3 as possible pectin precipitants in sugar juice clarification. Inte J Food Sci Technol 42(5):609–614Google Scholar
  154. 154.
    Li J, McClements DJ, McLandsborough LA (2001) Interaction between emulsion droplets and Escherichia coli cells. J Food Sci 66(4):570–574Google Scholar
  155. 155.
    Li J, McLandsborough LA (1999) The effects of the surface charge and hydrophobicity of Escherichia coli on its adhesion to beef muscle. Int J Food Microbiol 53(2–3):185–193Google Scholar
  156. 156.
    Li K-K, Yin S-W, Yang X-Q, Tang C-H, Wei Z-H (2012) Fabrication and characterization of novel antimicrobial films derived from thymol-loaded zein-sodium caseinate (SC) nanoparticles. J Agric Food Chem 60(46):11592–11600Google Scholar
  157. 157.
    Li LC, Tian Y (2002) In: Swarbrick J, Boylan JC (eds) Encyclopedia of pharmaceutical technology. Marcel Dekker, New YorkGoogle Scholar
  158. 158.
    Li JM, Nie SP (2016) The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocoll 53:46–61Google Scholar
  159. 159.
    Li PH, Lu WC (2016) Effects of storage conditions on the physical stability of d-limonene nanoemulsion. Food Hydrocoll 53:218–224Google Scholar
  160. 160.
    Li J, Hwang IC, Chen X, Park HJ (2016) Effects of chitosan coating on curcumin loaded nano-emulsion: study on stability and in vitro digestibility. Food Hydrocoll 60:138–147Google Scholar
  161. 161.
    Liao L, Wang Q, Zhao M (2013) Functional, conformational and topographical changes of succinic acid deamidated wheat gluten upon freeze- and spray-drying: a comparative study. LWT Food Sci Technol 50(1):177–184Google Scholar
  162. 162.
    Lin Y, Kelly AL, O'Mahony JA, Guinee TP (2018) Effect of heat treatment, evaporation and spray drying during skim milk powder manufacture on the compositional and processing characteristics of reconstituted skim milk and concentrate. Int Dairy J 78:53–64Google Scholar
  163. 163.
    Liu W, Tian M, Kong Y, Lu J, Li N, Han J (2017) Multilayered vitamin C nanoliposomes by self-assembly of alginate and chitosan: long-term stability and feasibility application in mandarin juice. LWT Food Sci Technol 75:608–615Google Scholar
  164. 164.
    Liu Y, Sun Y, Li Y, Xu S, Tang J, Ding J, Xu Y (2011) Preparation and characterization of α-galactosidase-loaded chitosan nanoparticles for use in foods. Carbohydr Polym 83:1162–1168Google Scholar
  165. 165.
    Livney YD, Ruimy E, Aiqian MY, Zhu X, Singh H (2017) A milkfat globule membrane-inspired approach for encapsulation of emulsion oil droplets. Food Hydrocoll 65:121–129Google Scholar
  166. 166.
    Lopez C, Briard-Bion V, Ménard O, Beaucher E, Rousseau F, Fauquant J, Leconte N, Robert B (2011) Fat globules selected from whole milk according to their size: different compositions and structure of the biomembrane, revealing sphingomyelin-rich domains. Food Chem 125(2):355–368Google Scholar
  167. 167.
    Lopez C, Ménard O (2011) Human milk fat globules: polar lipid composition and in situ structural investigations revealing the heterogeneous distribution of proteins and the lateral segregation of sphingomyelin in the biological membrane. Colloids Surf B: Biointerfaces 83(1):29–41Google Scholar
  168. 168.
    Ly MH, Aguedo M, Goudot S, Le ML, Cayot P, Teixeira JA, Le TM, Belin J-M, Waché Y (2008) Interactions between bacterial surfaces and milk proteins, impact on food emulsions stability. Food Hydrocoll 22(5):742–751Google Scholar
  169. 169.
    Ly MH, Naïtali-Bouchez M, Meylheuc T, Bellon-Fontaine M-N, Le TM, Belin J-M, Waché Y (2006) Importance of bacterial surface properties to control the stability of emulsions. Int J Food Microbiol 112(1):26–34Google Scholar
  170. 170.
    Lyklema J (1995) Fundamentals of Interface and colloid science. Vol. II: Solid–Liquid Interfaces. Academic Press, LondonGoogle Scholar
  171. 171.
    Maherani B, Arab-Tehrany E, Kheirolomoom A, Cleymand F, Linder M (2012) Influence of lipid composition on physicochemical properties of nanoliposomes encapsulating natural dipeptide antioxidant l-carnosine. Food Chem 134(2):632–640Google Scholar
  172. 172.
    Malhotra A, Coupland JN (2004) The effect of surfactants on the solubility, zeta potential, and viscosity of soy protein isolates. Food Hydrocoll 18(1):101–108Google Scholar
  173. 173.
    Majeed H, Liu F, Hategekimana J, Sharif HR, Qi J, Ali B, Bian Y-Y, Ma J, Yokoyama W, Zhong F (2016) Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions. Food Chem 197:75–83Google Scholar
  174. 174.
    Manconi M, Marongiu F, Castangia I, Manca ML, Caddeo C, Tuberoso CIG, D’hallewin G, Bacchetta G, Fadda AM (2016) Polymer-associated liposomes for the oral delivery of grape pomace extract. Colloids Surf B: Biointerfaces 146:910–917Google Scholar
  175. 175.
    Manrich A, Moreira FK, Otoni CG, Lorevice MV, Martins MA, Mattoso LH (2017) Hydrophobic edible films made up of tomato cutin and pectin. Carbohydr Polym 164:83–91Google Scholar
  176. 176.
    Mao Y, McClements DJ (2012) Modulation of emulsion rheology through electrostatic heteroaggregation of oppositely charged lipid droplets: influence of particle size and emulsifier content. J Colloid Interface Sci 380(1):60–66Google Scholar
  177. 177.
    Martin GJO, Williams RPW, Dunstan DE (2007) Comparison of casein micelles in raw and reconstituted skim milk. J Dairy Sci 90(10):4543–4551Google Scholar
  178. 178.
    Martín-Molina A, Quesada-Pérez M, Galisteo-González F, Hidalgo-Álvarez R (2003) Looking into overcharging in model colloids through electrophoresis: asymmetric electrolytes. J Chem Phys 118(9):4183–4189Google Scholar
  179. 179.
    Matsumiya K, Takahashi W, Inoue T, Matsumura Y (2010) Effects of bacteriostatic emulsifiers on stability of milk-based emulsions. J Food Eng 96(2):185–191Google Scholar
  180. 180.
    McClements DJ (2015) Food emulsions: principles, practices, and techniques. CRC Press, Boca RatonGoogle Scholar
  181. 181.
    McClements DJ, Rao J (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51(4):285–330Google Scholar
  182. 182.
    McClements DJ, Decker EA, Park Y, Weiss J (2009) Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr 49(6):577–606Google Scholar
  183. 183.
    McClements DJ (1999) Food emulsions: principles, practice, and techniques. CRC Press, Boca RatonGoogle Scholar
  184. 184.
    Ménard O, Ahmad S, Rousseau F, Briard-Bion V, Gaucheron F, Lopez C (2010) Buffalo vs cow milk fat globules: size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. Food Chem 120(2):544–551Google Scholar
  185. 185.
    Michalski MC, Leconte N, Briard-Bion V, Fauquant J, Maubois JL, Goudédranche H (2006) Microfiltration of raw whole milk to select fractions with different fat globule size distributions: process optimization and analysis. J Dairy Sci 89(10):3778–3790Google Scholar
  186. 186.
    Michalski M-C, Michel F, Sainmont D, Briard V (2002) Apparent ζ-potential as a tool to assess mechanical damages to the milk fat globule membrane. Colloids Surf B: Biointerfases 23(1):23–30Google Scholar
  187. 187.
    Mirhosseini H, Tan CP, Hamid NSA, Yusof S (2007) Modeling the relationship between the main emulsion components and stability, viscosity, fluid behavior, zeta-potential, and electrophoretic mobility of orange beverage emulsion using response surface methodology. J Agric Food Chem 55(19):7659–7666Google Scholar
  188. 188.
    Mirhosseini H, Tan CP, Taherian AR (2008) Effect of glycerol and vegetable oil on physicochemical properties of arabic gum-based beverage emulsion. Eur Food Res Technol 228(1):19–28Google Scholar
  189. 189.
    Mirhosseini H, Tan CP, Taherian AR, Boo HC (2009) Modeling the physicochemical properties of orange beverage emulsion as function of main emulsion components using response surface methodology. Carbohydr Polym 75(3):512–520Google Scholar
  190. 190.
    Missana T, Adell A (2000) On the applicability of DLVO theory to the prediction of clay colloids stability. J Colloid Interface Sci 230(1):150–156Google Scholar
  191. 191.
    Monroy-Villagrana A, Cano-Sarmiento C, Alamilla-Beltrán L, Hernández-Sánchez H, Gutiérrez-López GF (2014) Coupled Taguchi-RSM optimization of the conditions to emulsify alpha-tocopherol in an arabic gum-maltodextrin matrix by microfluidization. Rev Mex Ing Quím 13(3):679–688Google Scholar
  192. 192.
    Moreau L, Kim H-J, Decker EA, McClements DJ (2003) Production and characterization of oil-in-water emulsions containing droplets stabilized by beta-lactoglobulin-pectin membranes. J Agric Food Chem 51(22):6612–6617Google Scholar
  193. 193.
    Mounsey JS, O’Kennedy BT (2009) Stability of β-lactoglobulin/micellar casein mixtures on heating in simulated milk ultrafiltrate at pH 6.0. Int J Dairy Technol 62(4):493–499Google Scholar
  194. 194.
    Nagarajan M, Benjakul S, Prodpran T, Songtipya P, Kishimura H (2012) Characteristics and functional properties of gelatin from splendid squid (Loligo formosana) skin as affected by extraction temperatures. Food Hydrocoll 29(2):389–397Google Scholar
  195. 195.
    Naji-Tabasi S, Razavi SMA, Mehditabar H (2017) Fabrication of basil seed gum nanoparticles as a novel oral delivery system of glutathione. Carbohydr Polym 157:1703–1713Google Scholar
  196. 196.
    Nalinanon S, Benjakul S, Kishimura H (2010) Collagens from the skin of arabesque greenling (Pleurogrammus azonus) solubilized with the aid of acetic acid and pepsin from albacore tuna (Thunnus alalunga) stomach. J Sci Food Agric 90(9):1492–1500Google Scholar
  197. 197.
    Nejadmansouri M, Hosseini SMH, Niakosari M, Yousefi GH, Golmakani MT (2016) Physicochemical properties and storage stability of ultrasound-mediated WPI-stabilized fish oil nanoemulsions. Food Hydrocoll 61:801–811Google Scholar
  198. 198.
    Ngan LTK, Wang S-L, Hiep DM, Luong PM, Vui NT, Dinh TM, Dzung NA (2014) Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity. Res Chem Intermed 40(6):2165–2175Google Scholar
  199. 199.
    Nikiforidis CV, Kiosseoglou V (2009) Aqueous extraction of oil bodies from maize germ (Zea mays) and characterization of the resulting natural oil-in-water emulsion. J Agric Food Chem 57(12):5591–5596Google Scholar
  200. 200.
    Nongonierma AB, Abrlova M, Fenelon MA, Kilcawley KN (2009) Evaluation of two food grade proliposomes to encapsulate an extract of a commercial enzyme preparation by microfluidization. J Agric Food Chem 57(8):3291–3297Google Scholar
  201. 201.
    Offengenden M, Wu J (2013) Egg white ovomucin gels: structured fluids with weak polyelectrolyte properties. RSC Adv 3(3):910–917Google Scholar
  202. 202.
    Ogawa S, Decker EA, McClements DJ (2003a) Production and characterization of O/W emulsions containing cationic droplets stabilized by lecithin-chitosan membranes. J Agric Food Chem 51(9):2806–2812Google Scholar
  203. 203.
    Ogawa S, Decker EA, McClements DJ (2003b) Influence of environmental conditions on the stability of oil in water emulsions containing droplets stabilized by lecithin-chitosan membranes. J Agric Food Chem 51(18):5522–5527Google Scholar
  204. 204.
    Okubo T, Okamoto J, Tsuchida A (2008) Convectional, sedimentation, and drying dissipative patterns of coffee in the presence of cream and in its absence. Colloid Polym Sci 287(3):351–365Google Scholar
  205. 205.
    Oliveira LS, Franca AS (2008) Low-cost adsorbents from agri-food wastes. Food Science and Technology, New Research, pp 171–209Google Scholar
  206. 206.
    Onsaard E, Vittayanont M, Srigam S, McClements DJ (2005) Properties and stability of oil-in-water emulsions stabilized by coconut skim milk proteins. J Agric Food Chem 53(14):5747–5753Google Scholar
  207. 207.
    Overbeek JTG (1952) In: Kruyt HR (ed) Colloid science, vol 1. Amsterdam, ElsevierGoogle Scholar
  208. 208.
    Pavlou A, Ritzoulis C, Filotheou A, Panayiotou C (2016) Emulsifiers extracted from winery waste. Waste Biomass Valoriz 7(3):533–542Google Scholar
  209. 209.
    Perrechil FA, Cunha RL (2013) Stabilization of multilayered emulsions by sodium caseinate and κ-carrageenan. Food Hydrocoll 30:606–613Google Scholar
  210. 210.
    Perumalla AVS, Hettiarachchy NS (2011) Green tea and grape seed extracts—potential applications in food safety and quality. Food Res Int 44(4):827–839Google Scholar
  211. 211.
    Pfaltzgraff LA, Cooper EC, Budarin V, Clark JH (2013) Food waste biomass: a resource for high-value chemicals. Green Chem 15(2):307–314Google Scholar
  212. 212.
    Phianmongkhol A, Varley J (2003) Zeta potential measurement for air bubbles in protein solutions. J Colloid Interface Sci 260(2):332–338Google Scholar
  213. 213.
    Philippe M, Gaucheron F, Le Graet Y, Michel F, Garem A (2003) Physicochemical characterization of calcium-supplemented skim milk. Lait 83(1):45–59Google Scholar
  214. 214.
    Philippe M, Legraet Y, Gaucheron F (2005) The effects of different cations on the physicochemical characteristics of casein micelles. Food Chem 90(4):673–683Google Scholar
  215. 215.
    Picton H, Linder SE (1892) XI. Solution and pseudo-solution. Part I. J Chem Soc Trans 61:148–172Google Scholar
  216. 216.
    Pinilla CMB, Brandelli A (2016) Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against gram-positive and gram-negative bacteria in milk. Innovative Food Sci Emerg Technol 36:287–293Google Scholar
  217. 217.
    Polychniatou V, Tzia C (2014) Study of formulation and stability of co-surfactant free water-in-olive oil nano-and submicron emulsions with food grade non-ionic surfactants. J Am Oil Chem Soc 91(1):79–88Google Scholar
  218. 218.
    Pradhan B, Kumar N, Saha S, Roy A (2015) Liposome: method of preparation, advantages, evaluation and its application. J Appl Pharm Res 3(3):1–8Google Scholar
  219. 219.
    Priegnitz B-E, Wargenau A, Brandt U, Rohde M, Dietrich S, Kwade A, Krull R, Fleißner A (2012) The role of initial spore adhesion in pellet and biofilm formation in Aspergillus niger. Fungal Genet Biol 49(1):30–38Google Scholar
  220. 220.
    Puglisi I, Petrone G, Lo Piero AR (2012) Role of actinidin in the hydrolysis of the cream milk proteins. Food Bioprod Process 90(3):449–452Google Scholar
  221. 221.
    Qi C, Chen Y, Huang J-H, Jin Q-Z, Wang X-G (2012) Preparation and characterization of catalase-loaded solid lipid nanoparticles based on soybean phosphatidylcholine. J Sci Food Agric 92(4):787–793Google Scholar
  222. 222.
    Rabiey L, Britten M (2009) Effect of protein composition on the rheological properties of acid-induced whey protein gels. Food Hydrocoll 23(3):973–979Google Scholar
  223. 223.
    Rafiee Z, Barzegar M, Sahari MA, Maherani B (2017) Nanoliposomal carriers for improvement the bioavailability of high-valued phenolic compounds of pistachio green hull extract. Food Chem 220:115–122Google Scholar
  224. 224.
    Ramalingam P, Ko YT (2016) Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf B: Biointerfaces 139:52–61Google Scholar
  225. 225.
    Ramos OS, Malcata FX (2011) In: Moo-young M (ed), comprehensive biotechnology Vol. 3, 2nd ed. Elsevier, AmsterdamGoogle Scholar
  226. 226.
    Raouche S, Dobenesque M, Bot A, Lagaude A, Marchesseau S (2009) Casein micelles as a vehicle for iron fortification of foods. Eur Food Res Technol 229(6):929–935Google Scholar
  227. 227.
    Rebolleda S, Sanz MT, Benito JM, Beltrán S, Escudero I, San-José MLG (2015) Formulation and characterisation of wheat bran oil-in-water nanoemulsions. Food Chem 167:16–23Google Scholar
  228. 228.
    Relkin P, Shukat R (2012) Food protein aggregates as vitamin-matrix carriers: impact of processing conditions. Food Chem 134(4):2141–2148Google Scholar
  229. 229.
    Reuss FF (1809) Sur un nouvel effet de l'electricité galvanique. Memoires de la Societe Imperiale des Naturalistes de Moscou 2:327–337Google Scholar
  230. 230.
    Rezvani E, Schleining G, Taherian AR (2012) Assessment of physical and mechanical properties of orange oil-in-water beverage emulsions using response surface methodology. LWT Food Sci Technol 48(1):82–88Google Scholar
  231. 231.
    Ricaurte L, de Perea-Flores MJ, Martinez A, Quintanilla-Carvajal MX (2016) Production of high-oleic palm oil nanoemulsions by high-shear homogenization (microfluidization). Innovative Food Sci Emerg Technol 35:75–85Google Scholar
  232. 232.
    Sadahira MS, Lopes FCR, Rodrigues MI, Netto FM (2014) Influence of protein–pectin electrostatic interaction on the foam stability mechanism. Carbohydr Polym 103:55–61Google Scholar
  233. 233.
    Sağlam D, Venema P, De Vries R, Shi J, Van der Linden E (2013) Concentrated whey protein particle dispersions: heat stability and rheological properties. Food Hydrocoll 30(1):100–109Google Scholar
  234. 234.
    Saha A, Tyagi S, Gupta RK, Tyagi YK (2017) Natural gums of plant origin as edible coatings for food industry applications. Crit Rev Biotechnol 37(8):1–15Google Scholar
  235. 235.
    Salvia-Trujillo L, Rojas-Graü A, Soliva-Fortuny R, Martín-Belloso O (2012) Physicochemical characterization of lemongrass essential oil–alginate nanoemulsions: effect of ultrasound processing parameters. Food Bioprocess Technol 6(9):2439–2446Google Scholar
  236. 236.
    Salvia-Trujillo L, Rojas-Graü MA, Soliva-Fortuny R, Martín-Belloso O (2013) Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocoll 30(1):401–407Google Scholar
  237. 237.
    Sánchez-González L, Cháfer M, Hernández M, Chiralt A, González-Martínez C (2011) Antimicrobial activity of polysaccharide films containing essential oils. Food Control 22(8):1302–1310Google Scholar
  238. 238.
    Sánchez-González L, Cháfer M, Chiralt A, González-Martínez C, Pastor C (2010a) Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohydr Polym 82(4):277–283Google Scholar
  239. 239.
    Sánchez-González L, González-Martínez C, Chiralt A, Cháfer M (2010b) Physical and antimicrobial properties of chitosan–tea tree essential oil composite films. J Food Eng 98(4):443–452Google Scholar
  240. 240.
    Sánchez-González L, Vargas M, González-Martínez C, Chiralt A, Cháfer M (2009) Characterization of edible films based on hydroxypropylmethylcellulose and tea tree essential oil. Food Hydrocoll 23(8):2102–2109Google Scholar
  241. 241.
    Santipanichwong R, Suphantharika M, Weiss J, McClements DJ (2008) Core-shell biopolymer nanoparticles produced by electrostatic deposition of beet pectin onto heat-denatured β-lactoglobulin aggregates. J Food Sci 73(6):N23–N30Google Scholar
  242. 242.
    Sari TP, Mann B, Kumar R, Singh RRB, Sharma R, Bhardwaj M, Athira S (2015) Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocoll 43:540–546Google Scholar
  243. 243.
    Saulnier P, Lachaise J, Morel G, Graciaa A (1996) Zeta potential of air bubbles in surfactant solutions. J Colloid Interface Sci 182(2):395–399Google Scholar
  244. 244.
    Schär-Zammaretti P, Dillmann M-L, D’Amico N, Affolter M, Ubbink J (2005) Influence of fermentation medium composition on physicochemical surface properties of Lactobacillus acidophilus. Appl Environ Microbiol 71(12):8165–8173Google Scholar
  245. 245.
    Shah NP (2017) Yogurt in health and disease prevention. Academic Press, LondonGoogle Scholar
  246. 246.
    Shekoohiyan S, Ghoochani M, Mohagheghian A, Mahvi AH, Yunesian M, Nazmara S (2012) Determination of lead, cadmium and arsenic in infusion tea cultivated in north of Iran. Iranian J Environ Health Sci Eng 9(37):1–6Google Scholar
  247. 247.
    Schnell CN, Galván MV, Peresin MS, Inalbon MC, Vartiainen J, Zanuttini MA, Mocchiutti P (2017) Films from xylan/chitosan complexes: preparation and characterization. Cellulose 24(10):4393–4403Google Scholar
  248. 248.
    Schulze H (1882) Schwefelarsen in wässriger Lösung. J Prakt Chem 25:431–452Google Scholar
  249. 249.
    Schulze H (1883) Antimontrisulfid in wässeriger Lösung. J Prakt Chem 27:320–332Google Scholar
  250. 250.
    Schwenzfeier A, Helbig A, Wierenga PA, Gruppen H (2013) Emulsion properties of algae soluble protein isolate from Tetraselmis sp. Food Hydrocoll 30(1):258–263Google Scholar
  251. 251.
    Sebaaly C, Charcosset C, Stainmesse S, Fessi H, Greige-Gerges H (2016) Clove essential oil-in-cyclodextrin-in-liposomes in the aqueous and lyophilized states: from laboratory to large scale using a membrane contactor. Carbohydr Polym 138:75–85Google Scholar
  252. 252.
    Sebaaly C, Jraij A, Fessi H, Charcosset C, Greige-Gerges H (2015) Preparation and characterization of clove essential oil-loaded liposomes. Food Chem 178:52–62Google Scholar
  253. 253.
    Sejersen MT, Salomonsen T, Ipsen R, Clark R, Rolin C, Engelsen SB (2007) Zeta potential of pectin-stabilised casein aggregates in acidified milk drinks. Int Dairy J 17(4):302–307Google Scholar
  254. 254.
    Senée J, Robillard B, Vignes-Adler M (2001) The ζ-potential of the endogenous particles of a wine of champagne in relation to the foaming behavior. Colloids Surf B: Biointerfaces 21(1–3):59–67Google Scholar
  255. 255.
    Sennett P, Oliver JP (1965a) In: Ross S (ed) The chemistry and physics of interfaces. American Chemical Society, WashingtonGoogle Scholar
  256. 256.
    Sennett P, Oliver JP (1965b) Colloidal dispersions, electrokinetic effects, and the concept of zeta potential. Ind Eng Chem 57(8):32–50Google Scholar
  257. 257.
    Sherman P (1970) Industrial rheology. Academic Press, New YorkGoogle Scholar
  258. 258.
    Sikand V, Tong PS, Walker J (2010) Heat stability of reconstituted, protein-standardized skim milk powders. J Dairy Sci 93(12):5561–5571Google Scholar
  259. 259.
    Singh P, Benjakul S, Maqsood S, Kishimura H (2011) Isolation and characterisation of collagen extracted from the skin of striped catfish (Pangasianodon hypophthalmus). Food Chem 124(1):97–105Google Scholar
  260. 260.
    Siwińska-Stefańska K, Nowacka M, Kołodziejczak-Radzimska A, Jesionowski T (2012) Preparation of hybrid pigments via adsorption of selected food dyes onto inorganic oxides based on anatase titanium dioxide. Dyes Pigments 94(2):338–348Google Scholar
  261. 261.
    Soleimanpour M, Koocheki A, Kadkhodaee R (2013) Effect of Lepidium perfoliatum seed gum addition on whey protein concentrate stabilized emulsions stored at cold and ambient temperature. Food Hydrocoll 30(1):292–301Google Scholar
  262. 262.
    Sooresh A, Zeng Z, Chandrasekharan J, Pillai SD, Sayes CM (2012) A physiologically relevant approach to characterize the microbial response to colloidal particles in food matrices within a simulated gastrointestinal tract. Food Chem Toxicol 50(9):2971–2977Google Scholar
  263. 263.
    Sorrivas V, Genovese DB, Lozano JE (2006) Effect of pectinolytic and amylolytic enzymes on apple juice turbidity. J Food Process Preserv 30(2):118–133Google Scholar
  264. 264.
    Stern O (1924) Zur theorie der elektrolytischen doppelschicht. Z Elektrochem Angew Phys Chem 30:508–516Google Scholar
  265. 265.
    Suarez SE, Añón MC (2018) Comparative behaviour of solutions and dispersions of amaranth proteins on their emulsifying properties. Food Hydrocoll 74:115–123Google Scholar
  266. 266.
    Sujitha MV, Kannan S (2013) Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim Acta A Mol Biomol Spectrosc 102:15–23Google Scholar
  267. 267.
    Tan C, Feng B, Zhang X, Xia W, Xia S (2016) Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocoll 52:774–784Google Scholar
  268. 268.
    Tangsuphoom N, Coupland JN (2008) Effect of pH and ionic strength on the physicochemical properties of coconut milk emulsions. J Food Sci 73(6):E274–E280Google Scholar
  269. 269.
    Tangsuphoom N, Coupland JN (2009) Effect of surface-active stabilizers on the surface properties of coconut milk emulsions. Food Hydrocoll 23(7):1801–1809Google Scholar
  270. 270.
    Taylor TM, Gaysinsky S, Davidson PM, Bruce BD, Weiss J (2007) Characterization of antimicrobial-bearing liposomes by ζ-potential, vesicle size, and encapsulation efficiency. Food Biophys 2(1):1–9Google Scholar
  271. 271.
    Taylor TM, Davidson PM, Bruce BD, Weiss J (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr 45(7–8):587–605Google Scholar
  272. 272.
    Thai CCD, Bakir H, Doherty WOS (2012) Insights to the clarification of sugar cane juice expressed from sugar cane stalk and trash. J Agric Food Chem 60(11):2916–2923Google Scholar
  273. 273.
    Thanasukarn P, Pongsawatmanit R, McClements DJ (2006) Utilization of layer-by-layer interfacial deposition technique to improve freeze–thaw stability of oil-in-water emulsions. Food Res Int 39(6):721–729Google Scholar
  274. 274.
    Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellov M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A 25(7):795–821Google Scholar
  275. 275.
    Tippetts M, Martini S (2012) Influence of ι-carrageenan, pectin, and gelatin on the physicochemical properties and stability of milk protein-stabilized emulsions. J Food Sci 77(2):C253–C260Google Scholar
  276. 276.
    Trucillo P, Campardelli R, Reverchon E (2018) Production of liposomes loaded with antioxidants using a supercritical CO2 assisted process. Powder Technol 323:155–162Google Scholar
  277. 277.
    Truong T, Palmer M, Bansal N, Bhandari B (2016) In: Hartel RW (ed) Effect of milk fat globule size on the physical functionality of dairy products, series title: Springer briefs in food, health, and nutrition. New York, SpringerGoogle Scholar
  278. 278.
    Tsioulpas A, Koliandris A, Grandison AS, Lewis MJ (2010) Effects of stabiliser addition and in-container sterilisation on selected properties of milk related to casein micelle stability. Food Chem 122(4):1027–1034Google Scholar
  279. 279.
    Tymczyszyn EE, Díaz R, Pataro A, Sandonato N, Gómez-Zavaglia A, Disalvo EA (2008) Critical water activity for the preservation of Lactobacillus bulgaricus by vacuum drying. Int J Food Microbiol 128(2):342–347Google Scholar
  280. 280.
    Tymczyszyn EE, Del Rosario DM, Gómez-Zavaglia A, Disalvo EA (2007) Volume recovery, surface properties and membrane integrity of Lactobacillus delbrueckii subsp. bulgaricus dehydrated in the presence of trehalose or sucrose. J Appl Microbiol 103(6):2410–2419Google Scholar
  281. 281.
    Ünal Hİ, Erdoǧan B (1998) The use of sepiolite for decolorization of sugar juice. Appl Clay Sci 12(5):419–429Google Scholar
  282. 282.
    Usui S, Sasaki H (1978) Zeta potential measurements of bubbles in aqueous surfactant solutions. J Colloid Interface Sci 65(1):36–45Google Scholar
  283. 283.
    Valencia-Pérez AZ, García-Morales MH, Cárdenas-López JL, Herrera-Urbina JR, Rouzaud-Sández O, Ezquerra-Brauer JM (2008) Effect of thermal process on connective tissue from jumbo squid (Dosidicus gigas) mantle. Food Chem 107(4):1371–1378Google Scholar
  284. 284.
    Vargas M, Albors A, Chiralt A, González-Martínez C (2009) Characterization of chitosan–oleic acid composite films. Food Hydrocoll 23(2):536–547Google Scholar
  285. 285.
    Vegi GMN, Sistla R, Srinivasan P, Beedu SR, Khar RK, Diwan PV (2009) Emulsifying properties of gum kondagogu (Cochlospermum gossypium), a natural biopolymer. J Sci Food Agric 89(8):1271–1276Google Scholar
  286. 286.
    Veneranda M, Hu Q, Wang T, Luo Y, Castro K, Madariaga JM (2018) Formation and characterization of zein-caseinate-pectin complex nanoparticles for encapsulation of eugenol. LWT Food Sci Technol 89:596–603Google Scholar
  287. 287.
    Vergara-Castañeda H, Hernandez-Martinez AR, Estevez M, Mendoza S, Luna-Barcenas G, Pool H (2016) Quercetin conjugated silica particles as novel biofunctional hybrid materials for biological applications. J Colloid Interface Sci 466:44–55Google Scholar
  288. 288.
    Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, AmsterdamGoogle Scholar
  289. 289.
    Vichi S, Gallardo-Chacón J, Pradelles R, Chassagne D, López-Tamames E, Buxaderas S (2010) Surface properties of Saccharomyces cerevisiae lees during sparkling wine ageing and their effect on flocculation. Int J Food Microbiol 140(2–3):125–130Google Scholar
  290. 290.
    Vidal V, Marchesseau S, Cuq JL (2002) Physicochemical properties of acylated casein micelles in milk. J Food Sci 67(1):42–47Google Scholar
  291. 291.
    Villalobos-Castillejos F, Alamilla-Beltrán L, Leyva-Daniel DE, Monroy-Villagrana A, Jiménez-Guzmán J, Dorantes-Álvarez L, Gutiérrez-López GF (2017) Long term stability of microfluidized emulsions used in microencapsulation by spray drying. Rev Mex Ing Quím 16(1):221–228Google Scholar
  292. 292.
    Wade T, Beattie JK, Rowlands WN, Augustin M-A (1996) Electroacoustic determination of size and zeta potential of casein micelles in skim milk. J Dairy Res 63:387–404Google Scholar
  293. 293.
    Wade T, Beattie JK (1997) Electroacoustic determination of size and zeta potential of fat globules in milk and cream emulsions. Colloids Surf B: Biointerfaces 10(2):73–85Google Scholar
  294. 294.
    Wargenau A, Fleißner A, Bolten CJ, Rohde M, Kampen I, Kwade A (2011) On the origin of the electrostatic surface potential of Aspergillus niger spores in acidic environments. Res Microbiol 162(10):1011–1017Google Scholar
  295. 295.
    Were LM, Bruce BD, Davidson PM, Weiss J (2003) Size, stability, and entrapment efficiency of phospholipid nanocapsules containing polypeptide antimicrobials. J Agric Food Chem 51(27):8073–8079Google Scholar
  296. 296.
    Wu J, Liu J, Dai Q, Zhang H (2013) The stabilisation of acidified whole milk drinks by carboxymethylcellulose. Int Dairy J 28(1):40–42Google Scholar
  297. 297.
    Wu T, Wu C, Fu S, Wang L, Yuan C, Chen S, Hu Y (2017) Integration of lysozyme into chitosan nanoparticles for improving antibacterial activity. Carbohydr Polym 155:192–200Google Scholar
  298. 298.
    Xu Q, Liu Z, Nakajima M, Ichikawa S, Nakamura N, Roy P, Okadome H, Shiina T (2010) Characterization of a soybean oil-based biosurfactant and evaluation of its ability to form microbubbles. Bioresour Technol 101(10):3711–3717Google Scholar
  299. 299.
    Yin B, Deng W, Xu K, Huang L, Yao P (2012) Stable nano-sized emulsions produced from soy protein and soy polysaccharide complexes. J Colloid Interface Sci 380(1):51–59Google Scholar
  300. 300.
    Yu Y, Xiao G, Wu J, Xu Y, Tang D, Chen Y, Wen J, Fu M (2013) Comparing characteristic of banana juices from banana pulp treated by high pressure carbon dioxide and mild heat. Innovative Food Sci Emerg Technol 18:95–100Google Scholar
  301. 301.
    Yuan Y, Wan Z-L, Yin S-W, Yang X-Q, Qi J-R, Liu G-Q, Zhang Y (2013) Characterization of complexes of soy protein and chitosan heated at low pH. LWT Food Sci Technol 50(2):657–664Google Scholar
  302. 302.
    Zambrano-Zaragoza ML, Mercado-Silva E, Gutiérrez-Cortez E, Castaño-Tostado E, Quintanar-Guerrero D (2011) Optimization of nanocapsules preparation by the emulsion–diffusion method for food applications. LWT Food Sci Technol 44(6):1362–1368Google Scholar
  303. 303.
    Zasoski RJ (2008) In: Chesworth W (ed) Encyclopedia of soil science. Netherlands, SpringerGoogle Scholar
  304. 304.
    Zhai X, Lin D, Liu D, Yang X (2018) Emulsions stabilized by nanofibers from bacterial cellulose: new potential food-grade Pickering emulsions. Food Res Int 103:12–20Google Scholar
  305. 305.
    Zhang J, Bing L, Reineccius GA (2016) Comparison of modified starch and Quillaja saponins in the formation and stabilization of flavor nanoemulsions. Food Chem 192:53–59Google Scholar
  306. 306.
    Zhao D, Lau E, Padilla-Zakour OI, Moraru CI (2017) Role of pectin and haze particles in membrane fouling during cold microfiltration of apple cider. J Food Eng 200:47–58Google Scholar
  307. 307.
    Zhao Q, Selomulya C, Wang S, Xiong H, Chen XD, Li W, Peng H, Xie J, Sun W, Zhou Q (2012) Enhancing the oxidative stability of food emulsions with rice dreg protein hydrolysate. Food Res Int 48(2):876–884Google Scholar
  308. 308.
    Zou X-Q, Guo Z, Huang J-H, Jin Q-Z, Cheong L-Z, Wang X-G, Xu X-B (2012) Human milk fat globules from different stages of lactation: a lipid composition analysis and microstructure characterization. J Agric Food Chem 60(29):7158–7167Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • C. Cano-Sarmiento
    • 1
  • D. I. Téllez-Medina
    • 2
  • R. Viveros-Contreras
    • 3
  • M. Cornejo-Mazón
    • 4
  • C. Y. Figueroa-Hernández
    • 1
  • E. García-Armenta
    • 5
  • L. Alamilla-Beltrán
    • 2
  • H. S. García
    • 6
  • G. F. Gutiérrez-López
    • 2
  1. 1.CONACYT-Unidad de Investigación y Desarrollo en Alimentos (UNIDA) del Instituto Tecnológico de Veracruz. Calz.VeracruzMexico
  2. 2.Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexicoMexico
  3. 3.CONACYT-Instituto de Ciencias BásicasUniversidad VeracruzanaXalapaMexico
  4. 4.Departamento de Biofísica, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexicoMexico
  5. 5.Facultad de Ciencias Químico BiológicasUniversidad Autónoma de SinaloaCuliacánMexico
  6. 6.Unidad de Investigación y Desarrollo en Alimentos (UNIDA) del Instituto Tecnológico de Veracruz. Calz.VeracruzMexico

Personalised recommendations