N-Glycoproteome Reveals That N-Glycosylation Plays Crucial Roles in Photosynthesis and Carbon Metabolism in Young Rice Leaves

Abstract

N-Glycosylation, one of the most prominent and abundant protein post-translational modifications in eukaryotic cells, is involved in diverse biological processes. To date, large-scale profiling of the N-glycoproteome has been only reported in rice germinating embryos, but that in rice leaves has not been profiled. Here, we report the first rice N-glycoproteome in leaves, determined by combining Concanavalin A (ConA) lectin affinity chromatography enrichment and high-resolution LC–MS/MS. In total, 282 N-glycopeptides, corresponding to 556 proteins and 643 sites, were identified from the leaves of H4 (indica) and LTH (japonica). Two conserved canonical N-glycosylation motifs N-X-T and N-X-S and two more non-canonical motifs N-X-S-X-N and A-X-X-N-X-S were revealed in rice. More than 50% of the identified proteins are localized to the chloroplast, extracellular part, and plasma membrane. Bioinformatics analysis revealed that N-glycosylation occurs on proteins involved in a wide variety of biological processes, especially photosynthesis and carbon metabolism. Protein–protein interaction networks of these proteins provided further evidence that N-glycosylation contributes to a wide range of regulatory functions. In summary, these findings revealed the complexity of the rice N-glycoproteome and provided useful information to further explore the regulatory roles of N-glycosylation in the growth, development, and stress responses of rice.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Akmal MA, Rasool N, Khan YD (2017) Prediction of N-linked glycosylation sites using position relative features and statistical moments. PLoS ONE. https://doi.org/10.1371/journal.pone.0181966

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    CAS  Article  Google Scholar 

  3. Barba-Espin G, Dedvisitsakul P, Hagglund P, Svensson B, Finnie C (2014) Gibberellic acid-induced aleurone layers responding to heat shock or tunicamycin provide insight into the N-glycoproteome, protein secretion, and endoplasmic reticulum stress. Plant Physiol 164:951–965

    CAS  Article  Google Scholar 

  4. Bause E, Hettkamp H (1979) Primary structural requirements for N-glycosylation of peptides in rat liver. FEBS Lett 108:341–344

    CAS  Article  Google Scholar 

  5. Bu T, Shen J, Chao Q, Shen Z, Yan Z, Zheng H, Wang B (2017) Dynamic N-glycoproteome analysis of maize seedling leaves during de-etiolation using concanavalin A lectin affinity chromatography and a nano-LC–MS/MS-based iTRAQ approach. PLant Cell Rep 36:1943–1958

    CAS  Article  Google Scholar 

  6. Cao W, Huang J, Jiang B, Gao X, Yang P (2016) Highly selective enrichment of glycopeptides based on zwitterionically functionalized soluble nanopolymers. Sci Rep. https://doi.org/10.1038/srep29776

    Article  PubMed  PubMed Central  Google Scholar 

  7. Catala C, Howe KJ, Hucko S, Rose JKC, Thannhauser TW (2011) Towards characterization of the glycoproteome of tomato (Solanum lycopersicum) fruit using concanavalin A lectin affinity chromatography and LC–MALDI–MS/MS analysis. Proteomics 11:1530–1544

    CAS  Article  Google Scholar 

  8. Chen R, Wang F, Tan Y, Sun Z, Song C, Ye M, Wang H, Zou H (2012) Development of a combined chemical and enzymatic approach for the mass spectrometric identification and quantification of aberrant N-glycosylation. J Proteomics 75:1666–1674

    CAS  Article  Google Scholar 

  9. Cheng A, Grant CE, Noble WS, Bailey TL (2018) MoMo: discovery of statistically significant post-translational modification motifs. Bioinformatics. https://doi.org/10.1093/bioinformatics/bty1058

    Article  PubMed  PubMed Central  Google Scholar 

  10. Childs KL, Davidson RM, Buell CR (2011) Gene coexpression network analysis as a source of functional annotation for rice genes. PLoS ONE. https://doi.org/10.1371/journal.pone.0022196

    Article  PubMed  PubMed Central  Google Scholar 

  11. Contessa JN, Bhojani MS, Freeze HH, Rehemtulla A, Lawrence TS (2008) Inhibition of N-linked glycosylation disrupts receptor tyrosine kinase signaling in tumor cells. Cancer Res 68:3803–3809

    CAS  Article  Google Scholar 

  12. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    CAS  Article  Google Scholar 

  13. Haeweker H, Rips S, Koiwa H, Salomon S, Saijo Y, Chinchilla D, Robatzek S, von Schaewen A (2010) Pattern recognition receptors require N-glycosylation to mediate plant immunity. J Biol Chem 285:4629–4636

    CAS  Article  Google Scholar 

  14. Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049

    CAS  Article  Google Scholar 

  15. Horton P, Park K, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35S:W585–W587

    Article  Google Scholar 

  16. Kaji H, Shikanai T, Sasaki-Sawa A, Wen H, Fujita M, Suzuki Y, Sugahara D, Sawaki H, Yamauchi Y, Shinkawa T, Taoka M, Takahashi N, Isobe T, Narimatsu H (2012) Large-scale identification of N-glycosylated proteins of mouse tissues and construction of a glycoprotein database, GlycoProtDB. J Proteome Res 11:4553–4566

    CAS  Article  Google Scholar 

  17. Kumar S, Kumar K, Pandey P, Rajamani V, Padmalatha KV, Dhandapani G, Kanakachari M, Leelavathi S, Kumar PA, Reddy VS (2013) Glycoproteome of elongating cotton fiber cells. Mol Cell Proteomics 12:3677–3689

    CAS  Article  Google Scholar 

  18. Ma J, Wang D, She J, Li J, Zhu J, She Y (2016) Endoplasmic reticulum-associated N-glycan degradation of cold-upregulated glycoproteins in response to chilling stress in Arabidopsis. New Phytol 212:282–296

    CAS  Article  Google Scholar 

  19. Martin C, Zhang Y (2007) Mechanisms of epigenetic inheritance. Curr Opin Cell Biol 19:266–272

    CAS  Article  Google Scholar 

  20. Mohnen D, Tierney ML (2011) Plants get hyp to O-glycosylation. Science 332:1393–1394

    CAS  Article  Google Scholar 

  21. Mustafa G, Komatsu S (2014) Quantitative proteomics reveals the effect of protein glycosylation in soybean root under flooding stress. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00627

    Article  PubMed  PubMed Central  Google Scholar 

  22. Parker BL, Palmisano G, Edwards AVG, White MY, Engholm-Keller K, Lee A, Scott NE, Kolarich D, Hambly BD, Packer NH, Larsen MR, Cordwell SJ (2011) Quantitative N-linked glycoproteomics of myocardial ischemia and reperfusion injury reveals early remodeling in the extracellular environment. Mol Cell Proteomics DO I:10. https://doi.org/10.1074/mcp.M110.006833

    CAS  Article  Google Scholar 

  23. Phuc VNL, Goldman R, Karagiannis K, Narsule T, Simonyan V, Soika V, Mazumder R (2013) Structure-based comparative analysis and prediction of N-linked glycosylation sites in evolutionarily distant eukaryotes. Genomics Proteomics Bioinform 11:96–104

    Article  Google Scholar 

  24. Pless DD, Lennarz WJ (1977) Enzymatic conversion of proteins to glycoproteins. Proc Natl Acad Sci USA 74:134–138

    CAS  Article  Google Scholar 

  25. Rose JKC, Lee S (2010) Straying off the highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome. Plant Physiol 153:433–436

    CAS  Article  Google Scholar 

  26. Ruiz-May E, Hucko S, Howe KJ, Zhang S, Sherwood RW, Thannhauser TW, Rose JKC (2014) A comparative study of lectin affinity based plant N-Glycoproteome profiling using tomato fruit as a model. Mol Cell Proteomics 13:566–579

    CAS  Article  Google Scholar 

  27. Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8:983–994

    CAS  Article  Google Scholar 

  28. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    CAS  Article  Google Scholar 

  29. Song W, Mentink RA, Henquet MGL, Cordewener JHG, van Dijk ADJ, Bosch D, America AHP, van der Krol AR (2013) N-Glycan occupancy of Arabidopsis N-glycoproteins. J Proteomics 93:343–355

    CAS  Article  Google Scholar 

  30. Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R–56R

    CAS  Article  Google Scholar 

  31. Strasser R (2014) Biological significance of complex N-glycans in plants and their impact on plant physiology. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00363

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sun B, Ma L, Yan X, Lee D, Alexander V, Hohmann LJ, Lorang C, Chandrasena L, Tian Q, Hood L (2013) N-glycoproteome of E14.Tg2a mouse embryonic stem cells. PLoS ONE 8:2. https://doi.org/10.1371/journal.pone.0055722

    CAS  Article  Google Scholar 

  33. Trempel F, Kajiura H, Ranf S, Grimmer J, Westphal L, Zipfel C, Scheel D, Fujiyama K, Lee J (2016) Altered glycosylation of exported proteins, including surface immune receptors, compromises calcium and downstream signaling responses to microbe-associated molecular patterns in Arabidopsis thaliana. BMC Plant Biol. https://doi.org/10.1186/s12870-016-0718-3

    Article  PubMed  PubMed Central  Google Scholar 

  34. Van Den Steen P, Rudd PM, Dwek RA, Opdenakker G (1998) Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol 33:151–208

    Article  Google Scholar 

  35. Vasudevan K, Gruissem W, Bhullar NK (2015) Identification of novel alleles of the rice blast resistance gene Pi54. Sci Rep-UK. https://doi.org/10.1038/srep15678

    Article  Google Scholar 

  36. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–360

    CAS  Article  Google Scholar 

  37. Xiao W, Yang Q, Wang H, Guo T, Liu Y, Zhu X, Chen Z (2011) Identification and fine mapping of a resistance gene to Magnaporthe oryzae in a space-induced rice mutant. Mol Breed 28:303–312

    CAS  Article  Google Scholar 

  38. Xu S, Medzihradszky KF, Wang Z, Burlingame AL, Chalkley RJ (2016) N-Glycopeptide pofiling in Arabidopsis inflorescence. Mol Cell Proteomics 15:048–2054

    Article  Google Scholar 

  39. Ying J, Zhao J, Hou Y, Wang Y, Qiu J, Li Z, Tong X, Shi Z, Zhu J, Zhang J (2017) Mapping the N-linked glycosites of rice (Oryza sativa L.) germinating embryos. PLoS ONE 12:3. https://doi.org/10.1371/journal.pone.0173853

    CAS  Article  Google Scholar 

  40. Zaia J (2008) Mass spectrometry and the emerging field of glycomics. Chem Biol 15:881–892

    CAS  Article  Google Scholar 

  41. Zhu J, Sun Z, Cheng K, Chen R, Ye M, Xu B, Sun D, Wang L, Liu J, Wang F, Zou H (2014) Comprehensive mapping of protein N-glycosylation in human liver by combining hydrophilic interaction chromatography and hydrazide chemistry. J Proteome Res 13:1713–1721

    CAS  Article  Google Scholar 

  42. Zielinska DF, Gnad F, Schropp K, Wisniewski JR, Mann M (2012) Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46:542–548

    CAS  Article  Google Scholar 

  43. Zielinska DF, Gnad F, Wisniewski JR, Mann M (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141:897–907

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Open Subject of State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources (Grant no. SKLCUSA-b201504), Public Welfare Research and Capacity Building Transformation Funds in Guangdong (Grant no. 2015A020209138), and the National Key Technology Research and Development Program of China (Grant no. 2016YFD0102102).

Author information

Affiliations

Authors

Contributions

CC designed the experiments; JFW, HW, ML, and TG performed the experiments; JFW analyzed the data and wrote the manuscript. All the authors agreed on the final submission and posted no conflicting interest.

Corresponding author

Correspondence to Chun Chen.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wen, H., Li, M. et al. N-Glycoproteome Reveals That N-Glycosylation Plays Crucial Roles in Photosynthesis and Carbon Metabolism in Young Rice Leaves. J. Plant Biol. 63, 165–175 (2020). https://doi.org/10.1007/s12374-020-09243-9

Download citation

Keywords

  • N-Glycosylation
  • N-Glycoproteome
  • Oryza sativa L.
  • LC–MS/MS