Skip to main content
Log in

The Arabidopsis Mediator Complex Subunit MED19a is Involved in ABI5-mediated ABA Responses

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Arabidopsis Mediator complex subunit 19a (MED19a), which mediates interactions between transcriptional regulators and RNA polymerase II, plays a critical role in plant response to infection by pathogens. However, the roles of MED19a in other signaling pathways are unknown. Here, we report that MED19a plays an important role in regulation of abscisic acid (ABA)-mediated transcriptional regulation in Arabidopsis. Plants deficient in MED19a showed reduced sensitivity to ABA inhibition of seed germination, cotyledon greening, root growth, and stomatal opening. MED19a-deficient mutants also had reduced resistance to drought stress, evidenced by high water-loss rates and low survival rates. Molecular genetic analysis revealed that MED19a mutants had down-regulated ABA-induced genes, including Em1, Em6, and RD29B, and MED19a could occupy the promoters of Em1 and Em6 in an ABA-dependent manner. Furthermore, MED19a interacted with the transcription factor ABA-insensitive 5 (ABI5) in split-luciferase complementation assays and co-immunoprecipitation assays. An analysis of double mutants (med19a-2 and abi5-7) suggested that the action of MED19a in ABA signaling was dependent upon ABI5. Furthermore, MED19a and ABI5 influenced each other in recruiting the promoters of the target genes Em1 and Em6, which are involved in embryonic development. Altogether, these results indicate that MED19a acts as a positive regulator in ABI5-mediated ABA responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen BL, Taatjes DJ (2015) The Mediator complex: a central integrator of transcription. Nat Rev Mol Cell Bio 16: 155−166

    Article  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63: 3523−3543

    Google Scholar 

  • Autran D, Jonak C, Belcram K, Beemster GT, Kronenberger J, Grandjean O, Inze D, Traas J (2002) Cell numbers and leaf development in Arabidopsis:a functional analysis of the STRUWWELPETER gene. EMBO J 21: 6036−6049

    Article  PubMed Central  Google Scholar 

  • Bäckström S, Elfving N, Nilsson R, Wingsle G, Björklund S (2007) Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Mol Cell 26: 717–729

    Article  PubMed  Google Scholar 

  • Bonawitz ND, Soltau WL, Blatchley MR, Powers BL, Hurlock AK, Seals LA, Weng JK, Stout J, Chapple C (2012) REF4 and RFR1, subunits of the transcriptional coregulatory complex mediator, are required for phenylpropanoid homeostasis in Arabidopsis. J Biol Chem 287: 5434–5445

    Article  CAS  PubMed  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir LS, Neill SJ (2006) ABAinduced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45: 113–122

    Article  CAS  PubMed  Google Scholar 

  • Brocard IM, Lynch TJ, Finkelstein RR (2002) Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response. Plant Physiol 129: 1533–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bu Q, Li H, Zhao Q, Jiang H, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Wang D, Li C (2009) The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development. Plant Physiol 150: 463–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bu Q, Lv T, Shen H, Luong P, Wang J, Wang Z, Huang Z, Xiao L, Engineer C, Kim T, Schroeder J, Huq E (2014) Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol 164: 424–439

    Article  CAS  PubMed  Google Scholar 

  • Caillaud MC, Asai S, Rallapalli G, Piquerez S, Fabro G, Jones JD (2013) A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biol 11: e1001732

    Article  PubMed  PubMed Central  Google Scholar 

  • Canet JV, Dobon A, Tornero P (2012) Non-recognition-of-BTH4, an Arabidopsis mediator subunit homolog, is necessary for development and response to salicylic acid. Plant Cell 24: 4220–4235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carles C, Bies-Etheve N, Aspart L, Leon-Kloosterziel KM, Koornneef M, Echeverria M, Delseny M (2002) Regulation of Arabidopsis thaliana Em genes: role of ABI5. Plant J 30: 373–383

    Article  CAS  PubMed  Google Scholar 

  • Chai YM, Jia HF, Li CL, Dong QH, Shen YY (2011) FaPYR1 is involved in strawberry fruit ripening. J Exp Bot 62: 5079–5089

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Jiang HL, Li L, Zhai QZ, Qi LL, Zhou WK, Liu XQ, Li HM, Zheng WG, Sun JQ, Li CY (2012) The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24: 2898–2916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhun T, Chong SY, Park BS, Wong EC, Yin JL, Kim M, Chua NH (2016) HSI2 repressor recruits MED13 and HDA6 to downregulate seed maturation gene expression directly during Arabidopsis early seedling growth. Plant Cell Physiol 57: 1689–1706

    Article  CAS  PubMed  Google Scholar 

  • Choi DS, Hwang BK (2011) Proteomics and functional analyses of pepper abscisic acid–responsive 1 (ABR1), which is involved in cell death and defense signaling. Plant Cell 23: 823–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743

    Article  CAS  PubMed  Google Scholar 

  • Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Travaglia CN, Piccoli PN (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plantarum 153: 79–90

    Article  CAS  Google Scholar 

  • Conaway RC, Conaway JW (2011) Function and regulation of the Mediator complex. Curr Opin Genet Dev 21: 225–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61: 651–679

    Article  CAS  PubMed  Google Scholar 

  • Dhawan R, Luo H, Foerster AM, Abuqamar S, Du HN, Briggs SD, Mittelsten SO, Mengiste T (2009) HISTONE MONOUBIQUI TINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell 21: 1000–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elfving N, Davoine C, Benlloch R, Blomberg J, Brannstrom K, Muller D, Nilsson A, Ulfstedt M, Ronne H, Wingsle G, Nilsson O, Bjorklund S (2011) The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development. Proc Natl Acad Sci USA 108: 8245–8250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12: 599–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein. Plant Cell 10: 1043–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK (2009) In vitro reconstitution of an abscisic acid signaling pathway. Nature 462: 660–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garciamata C, Lamattina L (2001) Nitric Oxide Induces Stomatal Closure and Enhances the Adaptive Plant Responses against Drought Stress. Plant Physiol 126: 1196–1204

    Article  CAS  Google Scholar 

  • Gillmor CS, Park MY, Smith MR, Pepitone R, Kerstetter RA, Poethig RS (2010) The MED12-MED13 module of Mediator regulates the timing of embryo patterning in Arabidopsis. Development 137: 113–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the arabidopsis ABI3 gene by positional cloning. Plant Cell 4: 1251–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemsley PA, Hurst CH, Kaliyadasa E, Lamb R, Knight MR, De Cothi EA, Steele JF, Knight H (2014) The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive coldregulated genes. Plant Cell 20: 9812–9841

    Google Scholar 

  • Ito J, Sono T, Tasaka M, Furutani M (2011) MACCHI-BOU 2 is required for early embryo patterning and cotyledon organogenesis in Arabidopsis. Plant Cell Physiol 52: 539–552

    Article  CAS  PubMed  Google Scholar 

  • Johnson JM, Reichelt M, Vadassery J, Gershenzon J, Oelmuller R (2014) An Arabidopsis mutant impaired in intracellular calcium elevation is sensitive to biotic and abiotic stress. BMC Plant Biol 14: 1

    Article  Google Scholar 

  • Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, Manners JM, Kazan K (2009) The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell 21: 2237–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MJ, Jang IC, Chua NH (2016) MED15 subunit mediates activation of downstream lipid-related genes by Arabidopsis WRINKLED1. Plant Physiol 171: 1951–1964

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YJ, Zheng B, Yu Y, Won SY, Mo B, Chen X (2011) The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J 30: 814–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight H, Thomson AJ, McWatters HG (2008) Sensitive to freezing6 integrates cellular and environmental inputs to the plant circadian clock. Plant Physiol 148: 293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai ZB, Schluttenhofer CM, Bhide K, Shreve J, Thimmapuram J, Lee Y, Yun DJ, Mengiste T (2014) MED18 interaction with distinct transcription factors regulates multiple plant functions. Nat Commun 5: 3064

    Article  PubMed  Google Scholar 

  • Li HM, Jiang HL, Bu QY, Zhao QZ, Sun JQ, Xie Q, Li CY (2011) The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating abscisic acid signaling and drought response. Plant Physiol 156: 550–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Huang L, Zhang YF, Ouyang ZG, Hong YB, Zhang HJ, Li DY, Song FM (2014) Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance. BMC Plant Biol 14: 1

    Article  Google Scholar 

  • Li W, Yoshida A, Takahashi M, Maekawa M, Kojima M, Sakakibara H, Kyozuka J (2015) SAD1, an RNA polymerase I subunit A34.5 of rice, interacts with Mediator and controls various aspects of plant development. Plant J 81: 282–291

    Article  CAS  PubMed  Google Scholar 

  • Linster E, Stephan I, Bienvenut WV, Maple-Grodem J, Myklebust LM, Huber M, Reichelt M, Sticht C, Moller SG, Meinnel T, Arnesen T, Giglione C, Hell R, Wirtz M (2015) Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis. Nat Commun 6: 7640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo YJ, Wang ZJ, Ji HT, Fang H, Wang SF, Tian LN, Li X (2013) An Arabidopsis homolog of importin β1 is required for ABA response and drought tolerance. Plant J 75: 377–389

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324: 1064–1068

    CAS  PubMed  Google Scholar 

  • Melcher K, Ng LM, Zhou XE, Soon FF, Xu Y, Suino-Powell KM, Park SY, Weiner JJ, Fujii H, Chinnusamy V, Kovach A, Li J, Wang YH, Li JY, Peterson FC, Jensen DR, Yong EL, Volkman BF, Cutler SR, Zhu JK, Xu HE (2009) A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature 462: 602–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126: 969–980

    Article  CAS  PubMed  Google Scholar 

  • Merlot S, Gosti F, Guerrier D,Vavasseur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J 25: 295–303

    Article  CAS  PubMed  Google Scholar 

  • Miyazono K, Miyakawa T, Sawano Y, Kubota K, Kang HJ, Asano A,Miyauchi Y, Takahashi M, Zhi YH,Fujita Y, Yoshida T, Kodaira KS, Yamaguchi-Shinozaki K, Tanokura M (2009) Structural basis of abscisic acid signalling. Nature 462: 609–614

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Nambara E, Suzuki M, Abrams S, McCarty DR, Kamiya Y, McCourt P (2002) A screen for genes that function in abscisic acid signaling in Arabidopsis thaliana. Genetics 161: 1247–1255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y (2010) Abscisic acid and the control of seed dormancy and germination. Seed Sci Res 20: 55–67

    Article  CAS  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TFF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324: 1068–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler SR, Rodriguez PL, Marquez JA (2009) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462: 665–668

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410: 327–330

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58: 221–227

    Article  CAS  PubMed  Google Scholar 

  • Tamura N, Yoshida T, Tanaka A, Sasaki R, Bando A, Toh S, Lepiniec L, Kawakami N (2006) Isolation and characterization of high temperature-resistant germination mutants of Arabidopsis thaliana. Plant Cell Physiol 47: 1081–1094

    Article  CAS  PubMed  Google Scholar 

  • Trivedi DK, Gill SS, Tuteja N (2016) Abscisic acid (ABA): Biosynthesis, regulation and role in abiotic stress tolerance. In Tuteja N, Gill SS, eds, Plant Responses to Stress Signaling, Wiley Wiley-VCH Verlag GmbH & Co. Weinheim, Germany, pp 311–322

  • Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61: 672–685

    Article  CAS  PubMed  Google Scholar 

  • Yu LX, Setter TL (2003) Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit. Plant Physiol 131: 568–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai QZ, Zhang X, Wu FM, Feng HL, Deng L, Xu L, Zhang M, Wang QM, Li CY (2015). Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. Plant Cell 27: 2814–2828

  • Zhang X, Wang C, Zhang Y, Sun Y, Mou Z (2012) The Arabidopsis mediator complex subunit 16 positively regulates salicylatemediated systemic acquired resistance and jasmonate/ethyleneinduced defense pathways. Plant Cell 24: 4294–4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yao J, Zhang Y, Sun Y, Mou Z (2013) The Arabidopsis mediator complex subunits MED14/SWP and MED16/SFR6/ IEN1 differentially regulate defense gene expression in plant immune responses. Plant J 75: 484–497

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Chan Z, Gao J, Xing L, Cao M, Yu C, Hu Y, You J, Shi H, Zhu Y, Gong Y, Mu Z, Wang H, Deng X, Wang P, Bressan RA, Zhu JK (2016) ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci USA 113: 1949–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YF, Schluttenhoffer CM, Wang PC, Fu FY, Thimmapuram J, Zhu JK, Lee SY, Yun DJ, Mengiste T (2014) CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase dependent and independent functions. Plant Cell 26: 4149–4170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yang, R., Gong, Y. et al. The Arabidopsis Mediator Complex Subunit MED19a is Involved in ABI5-mediated ABA Responses. J. Plant Biol. 61, 97–110 (2018). https://doi.org/10.1007/s12374-017-0277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-017-0277-7

Keywords

Navigation