Development of Active Lower Limb Robotic-Based Orthosis and Exoskeleton Devices: A Systematic Review


The basic routine movements for elderly people are not easily accessible due to the weak muscles and impaired nerves in their lower extremity. In the last few years, many robotic-based rehabilitation devices, like orthosis and exoskeletons, have been designed and developed by researchers to provide locomotion assistance to support gait behavior and to perform daily activities for elderly people. However, there is still a need for improvement in the design, actuation and control of these devices for making them cost-effective in the worldwide market. In this work, a systematic review is presented on available lower limb orthosis and exoskeleton devices, to date. The devices are broadly reviewed according to joint types, actuation modes and control strategies. Furthermore, tabular comparisons have also been presented with the types and applications of these devices. Finally, the needful improvements for realizing the efficacy of lower limb rehabilitation devices are discussed along with the development stage. This review will help the designers and researchers to develop an efficient robotic device for the rehabilitation of the lower limb.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    World report on disability.

  2. 2.

    Kapsalyamov A, Jamwal PK, Hussain S, Ghayesh MH (2019) State of the art lower limb robotic exoskeletons for elderly assistance. IEEE Access 7:95075–95086

    Google Scholar 

  3. 3.

    Herr H (2009) Exoskeletons and orthoses: classification. Design challenges and future. J Neuroeng Rehabil 6:21

    Google Scholar 

  4. 4.

    Dollar AM, Herr H (2008) Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans Robot 24(1):144–158

    Google Scholar 

  5. 5.

    Herr H (2009) Exoskeletons and orthoses: classification, design challenges and future directions. J Neuroeng Rehabil 6(1):21

    Google Scholar 

  6. 6.

    Pons JL (2010) Rehabilitation exoskeletal robotics. IEEE Eng Med Biol Mag 29(3):57–63

    Google Scholar 

  7. 7.

    Kazerooni H, Steger R (2006) The Berkeley lower extremity exoskeleton. J Dyn Syst Meas Contr 128(1):14–25

    Google Scholar 

  8. 8.

    Guizzo E, Goldstein H (2005) The rise of the body bots [robotic exoskeletons]. IEEE Spectr 42(10):50–56

    Google Scholar 

  9. 9.

    Walsh CJ, Endo K, Herr H (2007) A quasi-passive leg exoskeleton for load-carrying augmentation. Int J Humanoid Robot 4(03):487–506

    Google Scholar 

  10. 10.

    Sankai Y (2010) HAL: hybrid assistive limb based on cybernics. In: Kaneko M, Nakamura Y (eds) Robotics research. Springer, Heidelberg, pp 25–34

    Google Scholar 

  11. 11.

    Wang L, Wang S, van Asseldonk EH, van der Kooij H (2013) Actively controlled lateral gait assistance in a lower limb exoskeleton. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 965–970. IEEE

  12. 12.

    Neuhaus PD, Noorden JH, Craig TJ, Torres T, Kirschbaum J, Pratt JE (2011) Design and evaluation of Mina: a robotic orthosis for paraplegics. In: 2011 IEEE international conference on rehabilitation robotics, pp 1–8. IEEE

  13. 13.

    Nakamura T, Saito K, Kosuge K (2005) Control of wearable walking support system based on human-model and GRF. In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp 4394–4399. IEEE

  14. 14.

    Esquenazi A, Talaty M, Packel A, Saulino M (2012) The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil 91(11):911–921

    Google Scholar 

  15. 15.

    Sanz-Merodio D, Cestari M, Arevalo JC, Carrillo XA, Garcia E (2014) Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance. Adv Robot 28(5):329–338

    Google Scholar 

  16. 16.

    Strausser KA, Kazerooni H (2011) The development and testing of a human machine interface for a mobile medical exoskeleton. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, pp 4911–4916. IEEE

  17. 17.

    Colombo G, Joerg M, Schreier R, Dietz V (2000) Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 37(6):693–700

    Google Scholar 

  18. 18.

    Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, Van Der Kooij H (2007) Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):379–386

    Google Scholar 

  19. 19.

    Setting the scene.

  20. 20.

    del Carmen Sanchez-Villamañan M, Gonzalez-Vargas J, Torricelli D, Moreno JC, Pons JL (2019) Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles. J Neuroeng Rehabil 16(1):55

    Google Scholar 

  21. 21.

    Lee H, Ferguson PW, Rosen J (2020) Lower limb exoskeleton systems—overview. In: Rosen J, Ferguson PW (eds) Wearable robotics. Academic Press, Elsevier, pp 207–229

  22. 22.

    Subramaniyam M, Kumar K, Shanmugam D, Kim DJ, Lee KS, Park SJ, Min SN (2019) Assistive technologies for elderly—review on recent developments in lower limb and back pain management. In: 2019 International conference on applied human factors and ergonomics, pp 824–830. Springer, Cham

  23. 23.

    Shi D, Zhang W, Zhang W, Ding X (2019) A review on lower limb rehabilitation exoskeleton robots. Chin J Mech Eng 32(1):74

    Google Scholar 

  24. 24.

    Grabke EP, Masani K, Andrysek J (2019) Lower limb assistive device design optimization using musculoskeletal modeling: a review. J Med Devices 13(4):040801

    Google Scholar 

  25. 25.

    Ghaddar R, Mohammad MA (2019) A review of lower limb exoskeleton assistive devices for sit-to-stand and gait motion. Int J Curr Eng Technol 9(1):105–111

    Google Scholar 

  26. 26.

    Rose J, Gamble JG (1994) Human walking, 2nd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  27. 27.

    Yan T, Cempini M, Oddo CM, Vitiello N (2015) Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot Auton Syst 64:120–136

    Google Scholar 

  28. 28.

    Kazerooni H, Racine JL, Huang L, Steger R (2005) On the control of the berkeley lower extremity exoskeleton (BLEEX). In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp 4353–4360. IEEE

  29. 29.

    Zoss AB, Kazerooni H, Chu A (2006) Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans Mechatron 11(2):128–138

    Google Scholar 

  30. 30.

    Marcheschi S, Salsedo F, Fontana M, Bergamasco M (2011) Body extender: whole body exoskeleton for human power augmentation. In: 2011 IEEE international conference on robotics and automation, pp 611–616. IEEE

  31. 31.

    Yang Z, Zhu Y, Yang X, Zhang Y (2009) Impedance control of exoskeleton suit based on adaptive RBF neural network. In: 2009 International conference on intelligent human-machine systems and cybernetics, pp 182–187. IEEE

  32. 32.

    Yamamoto K, Hyodo K, Ishii M, Matsuo T (2002) Development of power assisting suit for assisting nurse labor. JSME Int J C-Mech Syst 45(3):703–711

    Google Scholar 

  33. 33.

    Yamamoto K, Ishii M, Noborisaka H, Hyodo K (2004) Stand lone wearable power assisting suit-sensing and control systems. In RO-MAN 2004. 13th IEEE international workshop on robot and human interactive communication (IEEE Catalog No. 04TH8759), pp 661–666. IEEE

  34. 34.

    Walsh CJ, Pasch K, Herr H (2006) An autonomous, underactuated exoskeleton for load-carrying augmentation. In: 2006 IEEE/RSJ international conference on intelligent robots and systems, pp 1410–1415. IEEE

  35. 35.

    Ahmed AIA, Cheng H, Lin X, Omer M, Atieno JM (2016) Variable admittance control for climbing stairs in human-powered exoskeleton systems. Adv Robot Autom 5(157):2

    Google Scholar 

  36. 36.

    Ouyang X, Ding S, Fan B, Li PY, Yang H (2016) Development of a novel compact hydraulic power unit for the exoskeleton robot. Mechatronics 38:68–75

    Google Scholar 

  37. 37.

    Ding S, Ouyang X, Liu T, Li Z, Yang H (2018) Gait event detection of a lower extremity exoskeleton robot by an intelligent IMU. IEEE Sens J 18(23):9728–9735

    Google Scholar 

  38. 38.

    Sanz-Merodio D, Cestari M, Arevalo JC, Garcia E (2012) Control motion approach of a lower limb orthosis to reduce energy consumption. Int J Adv Robot Syst 9(6):232

    Google Scholar 

  39. 39.

    Kwa HK, Noorden JH, Missel M, Craig T, Pratt JE, Neuhaus PD (2009) Development of the IHMC mobility assist exoskeleton. In: 2009 IEEE international conference on robotics and automation, pp 2556–2562. IEEE

  40. 40.

    Sylos-Labini F, La Scaleia V, d’Avella A, Pisotta I, Tamburella F, Scivoletto G, Molinari M, Wang S, Wang L, van Asseldonk E, Van Der Kooij H (2014) EMG patterns during assisted walking in the exoskeleton. Front Hum Neurosci 8:423

    Google Scholar 

  41. 41.

    Long Y, Du Z, Chen C, Wang W, He L, Mao X, Xu G, Zhao G, Li X, Dong W (2017) Development and analysis of an electrically actuated lower extremity assistive exoskeleton. J Bionic Eng 14(2):272–283

    Google Scholar 

  42. 42.

    Chen CF, Du ZJ, He L, Shi YJ, Wang JQ, Xu GQ, Zhang Y, Wu DM, Dong W (2019) Development and hybrid control of an electrically actuated lower limb exoskeleton for motion assistance. IEEE Access 7:169107–169122

    Google Scholar 

  43. 43.

    Chen B, Zhong CH, Zhao X, Ma H, Guan X, Li X, Liang FY, Cheng JCY, Qin L, Law SW, Liao WH (2017) A wearable exoskeleton suit for motion assistance to paralysed patients. J Orthop Transl 11:7–18

    Google Scholar 

  44. 44.

    Zhu A, He S, He D, Liu Y (2016) Conceptual design of customized lower limb exoskeleton rehabilitation robot based on axiomatic design. Procedia CIRP 53:219–224

    Google Scholar 

  45. 45.

    Jin X, Zhu S, Zhu X, Chen Q, Zhang X (2017) Single-input adaptive fuzzy sliding mode control of the lower extremity exoskeleton based on human–robot interaction. Adv Mech Eng 9(2):1687814016686665

    Google Scholar 

  46. 46.

    Hyon SH, Morimoto J, Matsubara T, Noda T, Kawato M (2011) XoR: hybrid drive exoskeleton robot that can balance. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, pp 3975–3981. IEEE

  47. 47.

    Matsubara T, Uchikata A, Morimoto J (2012) Full-body exoskeleton robot control for walking assistance by style-phase adaptive pattern generation. In: 2012 IEEE/RSJ international conference on intelligent robots and systems, pp 3914–3920. IEEE

  48. 48.

    Bayon C, Ramírez O, Serrano JI, Del Castillo MD, Pérez-Somarriba A, Belda-Lois JM, Martínez-Caballero I, Lerma-Lara S, Cifuentes C, Frizera A, Rocon E (2017) Development and evaluation of a novel robotic platform for gait rehabilitation in patients with Cerebral Palsy: CPWalker. Robot Auton Syst 91:101–114

    Google Scholar 

  49. 49.

    Bayón C, Martín-Lorenzo T, Moral-Saiz B, Ramírez Ó, Pérez-Somarriba Á, Lerma-Lara S, Martínez I, Rocon E (2018) A robot-based gait training therapy for pediatric population with cerebral palsy: goal setting, proposal and preliminary clinical implementation. J Neuroeng Rehabil 15(1):69

    Google Scholar 

  50. 50.

    Aycardi LF, Cifuentes CA, Múnera M, Bayón C, Ramírez O, Lerma S, Frizera A, Rocon E (2019) Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three different levels of gait assistance using the CPWalker. J Neuroeng Rehabil 16(1):15

    Google Scholar 

  51. 51.

    Mohan S, Mohanta JK, Kurtenbach S, Paris J, Corves B, Huesing M (2017) Design, development and control of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies. Mech Mach Theory 112:272–294

    Google Scholar 

  52. 52.

    Vasanthakumar M, Vinod B, Mohanta JK, Mohan S (2019) Design and robust motion control of a planar 1P-2P RP hybrid manipulator for lower limb rehabilitation applications. J Intell Robot Syst 96(1):17–30

    Google Scholar 

  53. 53.

    Baser O, Kizilhan H, Kilic E (2016) Mechanical design of a biomimetic compliant lower limb exoskeleton (BioComEx). In: 2016 International conference on autonomous robot systems and competitions (ICARSC), pp 60–65. IEEE

  54. 54.

    Baser O, Kizilhan H, Kilic E (2019) Biomimetic compliant lower limb exoskeleton (BioComEx) and its experimental evaluation. J Braz Soc Mech Sci Eng 41(5):226

    Google Scholar 

  55. 55.

    Sasaki D, Noritsugu T, Takaiwa M (2013) Development of pneumatic lower limb power assist wear driven with wearable air supply system. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 4440–4445. IEEE

  56. 56.

    Asbeck AT, Dyer RJ, Larusson AF, Walsh CJ (2013) Biologically-inspired soft exosuit. In: 2013 IEEE 13th international conference on rehabilitation robotics (ICORR), pp 1–8. IEEE

  57. 57.

    Nakamura T, Saito K, Wang Z, Kosuge K (2005) Realizing model-based wearable antigravity muscles support with dynamics terms. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, pp 2694–2699. IEEE

  58. 58.

    Chen F, Yu Y, Ge Y, Sun J, Deng X (2007) WPAL for enhancing human strength and endurance during walking. In: 2007 International conference on information acquisition, pp 487–491. IEEE

  59. 59.

    He H, Kiguchi K (2007) A study on EMG-based control of exoskeleton robots for human lower-limb motion assist. In: 2007 6th International special topic conference on information technology applications in biomedicine, pp 292–295. IEEE

  60. 60.

    Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, Contreras-Vidal JL (2015) The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J Neuroeng Rehabil 12(1):54

    Google Scholar 

  61. 61.

    Wu J, Gao J, Song R, Li R, Li Y, Jiang L (2016) The design and control of a 3DOF lower limb rehabilitation robot. Mechatronics 33:13–22

    Google Scholar 

  62. 62.

    Sánchez-Manchola M, Gómez-Vargas D, Casas-Bocanegra D, Múnera M, Cifuentes CA (2018) Development of a robotic lower-limb exoskeleton for gait rehabilitation: AGoRA exoskeleton. In: 2018 IEEE ANDESCON, pp 1–6. IEEE

  63. 63.

    Zhang X, Hashimoto M (2011) Synchronization based control for walking assist suit-evaluation on synchronization and assist effect. In: Key engineering materials, vol 464, pp 115–118. Trans Tech Publications

  64. 64.

    Zhang X, Hashimoto M (2012) Synchronization-based trajectory generation method for a robotic suit using neural oscillators for hip joint support in walking. Mechatronics 22(1):33–44

    Google Scholar 

  65. 65.

    Talaty M, Esquenazi A, Briceno JE (2013) Differentiating ability in users of the ReWalkTM powered exoskeleton: an analysis of walking kinematics. In: 2013 IEEE 13th international conference on rehabilitation robotics (ICORR), pp 1–5. IEEE

  66. 66.

    Aphiratsakun N, Parnichkun M (2009) Balancing control of AIT leg exoskeleton using ZMP based FLC. Int J Adv Robot Syst 6(4):34

    Google Scholar 

  67. 67.

    Tagliamonte NL, Sergi F, Carpino G, Accoto D, Guglielmelli E (2013) Human-robot interaction tests on a novel robot for gait assistance. In: 2013 IEEE 13th international conference on rehabilitation robotics (ICORR), pp 1–6. IEEE

  68. 68.

    Kong K, Jeon D (2006) Design and control of an exoskeleton for the elderly and patients. IEEE/ASME Trans Mechatron 11(4):428–432

    Google Scholar 

  69. 69.

    Quintero H, Farris R, Hartigan C, Clesson I, Goldfarb M (2011) A powered lower limb orthosis for providing legged mobility in paraplegic individuals. Top Spinal Cord Injury Rehabil 17(1):25–33

    Google Scholar 

  70. 70.

    Farris RJ, Quintero HA, Goldfarb M (2011) Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans Neural Syst Rehabil Eng 19(6):652–659

    Google Scholar 

  71. 71.

    Wu CH, Mao HF, Hu JS, Wang TY, Tsai YJ, Hsu WL (2018) The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury. J Neuroeng Rehabil 15(1):14

    Google Scholar 

  72. 72.

    Mori Y, Okada J, Takayama K (2006) Development of a standing style transfer system “ABLE” for disabled lower limbs. IEEE/ASME Trans Mechatron 11(4):372–380

    Google Scholar 

  73. 73.

    Belforte G, Gastaldi L, Sorli M (2001) Pneumatic active gait orthosis. Mechatronics 11(3):301–323

    Google Scholar 

  74. 74.

    Yeh TJ, Wu MJ, Lu TJ, Wu FK, Huang CR (2010) Control of McKibben pneumatic muscles for a power-assist, lower-limb orthosis. Mechatronics 20(6):686–697

    Google Scholar 

  75. 75.

    Sawicki GS, Ferris DP (2009) A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. J Neuroeng Rehabil 6(1):23

    Google Scholar 

  76. 76.

    Kao PC, Lewis CL, Ferris DP (2010) Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. J Biomech 43(2):203–209

    Google Scholar 

  77. 77.

    Kao PC, Lewis CL, Ferris DP (2010) Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking. J Biomech 43(7):1401–1407

    Google Scholar 

  78. 78.

    Chen G, Qi P, Guo Z, Yu H (2016) Mechanical design and evaluation of a compact portable knee–ankle–foot robot for gait rehabilitation. Mech Mach Theory 103:51–64

    Google Scholar 

  79. 79.

    Winter DA (2009) Biomechanics and motor control of human movement. Wiley, Hoboken

    Google Scholar 

  80. 80.

    Lenzi T, Carrozza MC, Agrawal SK (2013) Powered hip exoskeletons can reduce the user’s hip and ankle muscle activations during walking. IEEE Trans Neural Syst Rehabil Eng 21(6):938–948

    Google Scholar 

  81. 81.

    Ronsse R, Koopman B, Vitiello N, Lenzi T, De Rossi, SMM, Van Den Kieboom J, Van Asseldonk E, Carrozza MC, Van Der Kooij H, Ijspeert AJ (2011) Oscillator-based walking assistance: a model-free approach. In 2011 IEEE international conference on rehabilitation robotics, pp 1–6. IEEE

  82. 82.

    Aguirre-Ollinger G (2013) Learning muscle activation patterns via nonlinear oscillators: application to lower-limb assistance. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, pp 1182–1189. IEEE

  83. 83.

    Yu Y, Liang W, Ge Y (2011) Jacobian analysis for parallel mechanism using on human walking power assisting. In: 2011 IEEE international conference on mechatronics and automation, pp 282–288. IEEE

  84. 84.

    Do Nascimento BG, Vimieiro CBS, Nagem DAP, Pinotti M (2008) Hip orthosis powered by pneumatic artificial muscle: voluntary activation in absence of myoelectrical signal. Artif Organs 32(4):317–322

    Google Scholar 

  85. 85.

    Lewis CL, Ferris DP (2011) Invariant hip moment pattern while walking with a robotic hip exoskeleton. J Biomech 44(5):789–793

    Google Scholar 

  86. 86.

    d’Elia N, Vanetti F, Cempini M, Pasquini G, Parri A, Rabuffetti M, Ferrarin M, Lova RM, Vitiello N (2017) Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots. J Neuroeng Rehabil 14(1):29

    Google Scholar 

  87. 87.

    Guzmán CH, Blanco A, Brizuela JA, Gómez FA (2017) Robust control of a hip–joint rehabilitation robot. Biomed Signal Process 35:100–109

    Google Scholar 

  88. 88.

    Junius K, Lefeber N, Swinnen E, Vanderborght B, Lefeber D (2017) Metabolic effects induced by a kinematically compatible hip exoskeleton during STS. IEEE Trans Biomed Eng 65(6):1399–1409

    Google Scholar 

  89. 89.

    Junius K, Degelaen M, Lefeber N, Swinnen E, Vanderborght B, Lefeber D (2017) Bilateral, misalignment-compensating, full-DOF hip exoskeleton: design and kinematic validation. Appl Bionics Biomech 2017(5):1–14

    Google Scholar 

  90. 90.

    Chen B, Grazi L, Lanotte F, Vitiello N, Crea S (2018) A real-time lift detection strategy for a hip exoskeleton. Front Neurorobot 12:17

    Google Scholar 

  91. 91.

    Chen B, Lanotte F, Grazi L, Vitiello N, Crea S (2019) Classification of lifting techniques for application of a robotic hip exoskeleton. Sensors. 19(4):963

    Google Scholar 

  92. 92.

    Lai WY, Ma H, Liao WH, Fong DTP, Chan KM (2013) HIP-KNEE control for gait assistance with powered knee orthosis. In: 2013 IEEE international conference on robotics and biomimetics (ROBIO), pp 762–767. IEEE

  93. 93.

    Pratt JE, Krupp BT, Morse CJ, Collins SH (2004) The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. In: IEEE international conference on robotics and automation, 2004. Proceedings. ICRA’04, vol 3, pp 2430–2435. IEEE

  94. 94.

    Fleischer C, Hommel G (2008) A human–exoskeleton interface utilizing electromyography. IEEE Trans Robot 24(4):872–882

    Google Scholar 

  95. 95.

    Aguirre-Ollinger G, Colgate JE, Peshkin MA, Goswami A (2012) Inertia compensation control of a one-degree-of-freedom exoskeleton for lower-limb assistance: initial experiments. IEEE Trans Neural Syst Rehabil Eng 20(1):68–77

    Google Scholar 

  96. 96.

    Gams A, Petrič T, Debevec T, Babič J (2013) Effects of robotic knee exoskeleton on human energy expenditure. IEEE Trans Biomed Eng 60(6):1636–1644

    Google Scholar 

  97. 97.

    Arazpour M, Chitsazan A, Bani MA, Rouhi G, Ghomshe FT, Hutchins SW (2013) The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis. Prosthet Orthot Int 37(5):411–414

    Google Scholar 

  98. 98.

    Kim K, Yu CH, Jeong GY, Heo M, Kwon TK (2013) Analysis of the assistance characteristics for the knee extension motion of knee orthosis using muscular stiffness force feedback. J Mech Sci Technol 27(10):3161–3169

    Google Scholar 

  99. 99.

    Karavas N, Ajoudani A, Tsagarakis N, Saglia J, Bicchi A, Caldwell D (2013) Tele-impedance based stiffness and motion augmentation for a knee exoskeleton device. In: 2013 IEEE international conference on robotics and automation, pp 2194–2200. IEEE

  100. 100.

    Spring AN, Kofman J, Lemaire ED (2012) Design and evaluation of an orthotic knee-extension assist. IEEE Trans Neural Syst Rehabil Eng 20(5):678–687

    Google Scholar 

  101. 101.

    Dollar AM, Herr H (2008) Design of a quasi-passive knee exoskeleton to assist running. In: 2008 IEEE/RSJ international conference on intelligent robots and systems, pp 747–754. IEEE

  102. 102.

    Madani T, Daachi B, Djouani K (2016) Non-singular terminal sliding mode controller: application to an actuated exoskeleton. Mechatronics 33:136–145

    Google Scholar 

  103. 103.

    Sherwani KI, Kumar N, Chemori A, Khan M, Mohammed S (2020) RISE-based adaptive control for EICoSI exoskeleton to assist knee joint mobility. Robot Auton Syst 124:103354

    Google Scholar 

  104. 104.

    Norris JA, Granata KP, Mitros MR, Byrne EM, Marsh AP (2007) Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults. Gait Posture 25(4):620–627

    Google Scholar 

  105. 105.

    Polinkovsky A, Bachmann RJ, Kern NI, Quinn, RD (2012) An ankle foot orthosis with insertion point eccentricity control. In: 2012 IEEE/RSJ international conference on intelligent robots and systems, pp 1603–1608. IEEE

  106. 106.

    Takemura H, Onodera T, Ming D, Mizoguchi H (2012) Design and control of a wearable stewart platform-type ankle-foot assistive device. Int J Adv Robot Syst 9(5):202

    Google Scholar 

  107. 107.

    Leclair J, Pardoel S, Helal A, Doumit M (2020) Development of an unpowered ankle exoskeleton for walking assist. Disabil Rehabil Assist Technol 15(1):1–13

    Google Scholar 

  108. 108.

    Kim K, Kim JJ, Kang SR, Jeong, GY, Kwon TK (2010) Analysis of the assistance characteristics for the plantarflexion torque in elderly adults wearing the powered ankle exoskeleton. In: International conference on control automation and systems (ICCAS 2010), pp 576–579. IEEE

  109. 109.

    Blaya JA, Herr H (2004) Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng 12(1):24–31

    Google Scholar 

  110. 110.

    Malcolm P, Derave W, Galle S, De Clercq D (2013) A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. PLoS ONE 8(2):e56137

    Google Scholar 

  111. 111.

    Malcolm P, Fiers P, Segers V, Van Caekenberghe I, Lenoir M, De Clercq D (2009) Experimental study on the role of the ankle push off in the walk-to-run transition by means of a powered ankle-foot-exoskeleton. Gait Posture 30(3):322–327

    Google Scholar 

  112. 112.

    Erdogan A, Celebi B, Satici AC, Patoglu V (2017) Assist On-Ankle: a reconfigurable ankle exoskeleton with series-elastic actuation. Auton Robots 41(3):743–758

    Google Scholar 

  113. 113.

    Mohammed S, Amirat Y, Rifai H (2012) Lower-limb movement assistance through wearable robots: state of the art and challenges. Adv Robot 26(1–2):1–22

    Google Scholar 

  114. 114.

    Mosher RS, S.o.A. Engineers (1967) Handyman to hardiman: society of automotive engineers. Popular Sci

  115. 115.

    Gilbert KE, Callan PC (1968) Hardiman I prototype. General Electric Company, Schenectady, NY. GE Technical Report S-68-1081

  116. 116.

    Vukobratovic M, Hristic D, Stojiljkovic Z (1974) Development of active anthropomorphic exoskeletons. Med Biol Eng 12(1):66–80

    Google Scholar 

  117. 117.

    Morimoto J, Noda T, Hyon SH (2012) Extraction of latent kinematic relationships between human users and assistive robots. In: 2012 IEEE international conference on robotics and automation, pp 3909–3915. IEEE

  118. 118.

    Saito Y, Kikuchi K, Negoto H, Oshima T, Haneyoshi T (2005) Development of externally powered lower limb orthosis with bilateral-servo actuator. In: 9th International conference on rehabilitation robotics, 2005. ICORR 2005, pp 394–399. IEEE

  119. 119.

    Suzuki K, Mito G, Kawamoto H, Hasegawa Y, Sankai Y (2007) Intention-based walking support for paraplegia patients with Robot Suit HAL. Adv Robot 21(12):1441–1469

    Google Scholar 

  120. 120.

    Pratt GA, Williamson MM (1995) Series elastic actuators. In: Proceedings 1995 IEEE/RSJ international conference on intelligent robots and systems. Human robot interaction and cooperative robots, vol 1, pp 399–406. IEEE

  121. 121.

    Ikehara T (2010) Development of a closed-fitting-type walking assistance device on leg with a self-contained control system. J Robot Mechatron 22(3):380

    Google Scholar 

  122. 122.

    Ikehara T, Nagamura K, Ushida T, Tanaka E, Saegusa S, Kojima S, Yuge L (2011) Development of closed-fitting-type walking assistance device for legs and evaluation of muscle activity. In: 2011 IEEE international conference on rehabilitation robotics, pp 1–7. IEEE

  123. 123.

    Kawamoto H, Taal S, Niniss H, Hayashi T, Kamibayashi K, Eguchi K, Sankai Y (2010) Voluntary motion support control of Robot Suit HAL triggered by bioelectrical signal for hemiplegia. In: 2010 Annual international conference of the IEEE engineering in medicine and biology, pp 462–466. IEEE

  124. 124.

    Chen F, Yu Y, Ge Y, Fang Y (2009) WPAL for human power assist during walking using dynamic equation. In: 2009 International conference on mechatronics and automation, pp 1039–1043. IEEE

  125. 125.

    Righetti L, Buchli J, Ijspeert AJ (2006) Dynamic hebbian learning in adaptive frequency oscillators. Physica D 216(2):269–281

    MathSciNet  MATH  Google Scholar 

  126. 126.

    Ronsse R, Lenzi T, Vitiello N, Koopman B, Van Asseldonk E, De Rossi SMM, Van Den Kieboom J, Van Der Kooij H, Carrozza MC, Ijspeert AJ (2011) Oscillator-based assistance of cyclical movements: model-based and model-free approaches. Med Biol Eng Comput 49(10):1173

    Google Scholar 

  127. 127.

    Passino KM, Yurkovich S (1998) Fuzzy control, vol 42. Addison-Wesley, Boston

    Google Scholar 

  128. 128.

    Narayan J, Singla E, Soni S, Singla A (2018) Adaptive neuro-fuzzy inference system–based path planning of 5-degrees-of-freedom spatial manipulator for medical applications. Proc Inst Mech Eng H 232(7):726–732

    Google Scholar 

  129. 129.

    Ross TJ (2009) Fuzzy logic with engineering applications. Wiley, Hoboken

    Google Scholar 

  130. 130.

    Kazerooni H, Steger R, Huang L (2006) Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX). Int J Robot Res 25(5–6):561–573

    Google Scholar 

  131. 131.

    Grazi L, Crea S, Parri A, Molino Lova R, Micera S, Vitiello N (2018) Gastrocnemius myoelectric control of a robotic hip exoskeleton can reduce the user’s lower-limb muscle activities at push off. Front Neurosci 12:71

    Google Scholar 

  132. 132.

    Young AJ, Gannon H, Ferris DP (2017) A biomechanical comparison of proportional electromyography control to biological torque control using a powered hip exoskeleton. Front Bioeng Biotechnol 5:37

    Google Scholar 

  133. 133.

    Kalita B, Dwivedy SK (2018) Dynamic analysis of a parametrically excited golden Muga silk embedded pneumatic artificial muscle. In: 14th International conference on vibration engineering and technology of machinery (VETOMAC XIV), vol 211, p 02008. EDP Sciences

  134. 134.

    Haines CS, Lima MD, Li N, Spinks GM, Foroughi J, Madden JD, Kim SH, Fang S, de Andrade MJ, Göktepe F, Göktepe Ö (2014) Artificial muscles from fishing line and sewing thread. Science 343(6173):868–872

    Google Scholar 

  135. 135.

    Guo H, Liao WH (2011) Optimization of a multifunctional actuator utilizing magnetorheological fluids. In: 2011 IEEE/ASME international conference on advanced intelligent mechatronics (AIM), pp 67–72. IEEE

  136. 136.

    Ekso Bionics, An exoskeleton bionic suit or a wearable robot that helps people walk again.

  137. 137.

    Rex Bionics—Step into the Future.

  138. 138.

    Indego—Powering People Forward, Parker Indego.

  139. 139.

    Gurriet T, Finet S, Boeris G, Duburcq A, Hereid A, Harib O, Masselin M, Grizzle J, Ames AD (2018) Towards restoring locomotion for paraplegics: Realizing dynamically stable walking on exoskeletons. In: 2018 IEEE international conference on robotics and automation (ICRA), pp 2804–2811. IEEE

  140. 140.


  141. 141.

    Honda Walking Assist Device, Honda.

  142. 142.

    BELK—Knee Exoskeleton, GOGOA.

  143. 143.

    Keeogo—Knee exoskeleton.

  144. 144.

    C-Brace—Reshaping the future, Ottobock US.

Download references

Author information



Corresponding author

Correspondence to Bhaben Kalita.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalita, B., Narayan, J. & Dwivedy, S.K. Development of Active Lower Limb Robotic-Based Orthosis and Exoskeleton Devices: A Systematic Review. Int J of Soc Robotics (2020).

Download citation


  • Robotic devices
  • Rehabilitation
  • Lower limb
  • Joint types
  • Actuation modes
  • Control strategies